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Abstract

Using Mellin-Barnes integrals we give a method to compute a relevant subgroup of
the monodromy group of an A-hypergeometric system of differential equations. Pre-
sumably this group is the full monodromy group of the system

1 Introduction

At the end of the 1980’s Gel’fand, Kapranov and Zelevinsky, in [11], [12], [13], defined
a general class of hypergeometric functions, encompassing the classical one-variable hy-
pergeometric functions, the Appell and Lauricella functions and Horn’s functions. They
are called A-hypergeometric functions and they provide a beautiful and elegant basis
of a theory of hypergeometric functions in several variables. For an introduction to the
subject we refer the reader to [33], [5] or the book by Saito, Sturmfels and Takayama,
[29]. We briefly recall the main facts. Let A ⊂ Zr be a finite set such that

1. The Z-span of A is Zr.

2. There exists a linear form h such that h(a) = 1 for all a ∈ A.

Let α = (α1, . . . , αr) ∈ Rr. Denote A = {a1, . . . ,aN} (with N > r). Writing the vectors
ai in column form we get the so-called A-matrix

A =


a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
ar1 ar2 · · · arN


For i = 1, 2, . . . , r consider the first order differential operators

Zi = ai1v1∂1 + ai2v2∂2 + · · ·+ aiNvN∂N

1



1 INTRODUCTION 2

where ∂j = ∂
∂vj

for all j.

Let
L = {(l1, . . . , lN ) ∈ ZN | l1a1 + l2a2 + · · ·+ lNaN = 0}

be the lattice of integer relations between the elements of A. For every l ∈ L we define
the so-called box-operator

2l =
∏
li>0

∂lii −
∏
li<0

∂−lii

The system of differential equations

(Zi − αi)Φ = 0 (i = 1, . . . , r)

2lΦ = 0 l ∈ L

is known as the system of A-hypergeometric differential equations and we denote it by
HA(α). It turns out that in general the solution space of HA(α) is finite dimensional
with dimension equal to the volume of the convex hull Q(A) of A. In order to be more
precise we have to introduce C(A), the cone generated by the R≥0-linear combinations
of a1, . . . ,aN . We say that an A-hypergeometric system is non-resonant if the boundary
of C(A) has empty intersection with the shifted lattice α + Zr. We have the following
theorem.

Theorem 1.1 (GKZ, Adolphson) Suppose either one of the following conditions holds,

1. the toric ideal IA in C[∂1, . . . , ∂N ] generated by the box operators has the Cohen-
Macaulay property.

2. The system HA(α) is non-resonant.

Then the rank of HA(α) is finite and equals the volume of the convex hull Q(A) of the
points of A. The volume is normalized so that a minimal (r − 1)-simplex with integer
vertices in h(x) = 1 has volume 1.

Theorem 1.1 is proven in [13], (corrected in [15]) and [1, Corollary 5.20].
Among the many papers written on A-hypergeometric equations there are very few
papers dealing with the monodromy group of these systems in general. In the case
of one-variable hypergeometric functions there is the paper by Beukers and Heckman,
[8], which give an characterisation of monodromy groups as complex reflection groups.
There is also a classical method to compute monodromy with respect to an explicit
basis of functions using so-called Mellin-Barnes integrals, see F.C.Smith, [32]. In the
special case of the fourth order equation with symplectic monodromy there is a detailed
calculation in [9]. A recent paper by Golyshev and Mellit, [16], deals with the same
problem using Fourier-transforms of Γ-products. A recent paper by K.Mimachi [25]
uses computation of twisted cycle intersection.
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For the two-variable Appell system F1 and Lauricella’s FD, monodromy follows from
the work by E.Picard [28], T.Terada [35] and Deligne-Mostow [10]. In T.Sasaki’s pa-
per [30] we find explicit monodromy generators for Appell F1. They all use the fact
that Lauricella functions of FD-type can be written as one-dimensional twisted period
integrals and monodromy is a representation of the pure braid group on n + 1 strands
(where n is the number of variables).
The two-variable Appell F2 has been considered explicitly by M.Kato, [19]. The Appell
F3 system has the same A-set as Appell F2, and therefore gives nothing new. Finally,
the Appell system F4 has been considered completely explicitely by K.Takano [34] and
later Kaneko, [18]. In Haraoka, Ueno [17] we find some rigidity considerations on the
monodromy of F4. In the paper [24] by K.Matsumoto and M.Yoshida, the authors
provide generators for the monodromy of Lauricella FA.
Finally, the complete monodromy of the Aomoto-Gel’fand system E(3, 6) has been de-
termined by K.Matsumoto, T.Sasaki, N.Takayama, M.Yoshida in [22] and further prop-
erties in [23]. See also M.Yoshida’s book ’Hypergeometric Functions, my Love’, [36].
In essentially all of the above studies the monodromy is computed by studying the be-
haviour of Euler integrals for hypergeometric functions under analytic continuation and
corresponding deformation of the contours of integration. For this, knowledge of the
fundamental group of the complement of the singular locus of the system of equations is
required. It is the purpose of the present paper to avoid these geometric difficulties as
long as possible and compute monodromy groups of A-hypergeometric systems by meth-
ods which are combinatorial in nature. We do this by starting with local monodromy
groups which arise from series expansions of solutions of HA(α). It is well known that
such local expansions correspond one-to-one with regular triangulations of A. This is a
discovery by Gel’fand, Kapranov and Zelevinsky that we shall explain in Section 2. The
local monodromy groups have to be glued together to build a global monodromy group.
This glue is provided by multidimensional Mellin-Barnes integrals as defined in Section
3. Unfortunately, the Mellin-Barnes integrals do not always provide a basis of solutions.
But if they do (Assumption 4.5), the construction of the global group generated by
the local contributions is completely combinatorial. In Section 6 we give a practical
recipe for the calculation of these matrices. This algorithm is based on the theoretical
considerations in the preceding sections.
Although in a good number of classical cases the method described in Section 6 works
very well, it is not always garantueed to work. There are two potential obstacles:

1. There does not always exist a basis of Mellin-Barnes solutions. In many classical
cases such a basis exists. For example, two variable Appell, Horn and higher
Lauricella FA, FB, FD. But, on the other hand, in case of Lauricella FC and many
other Aomoto-systems such a basis does not seem to exist. This is a subject of
further investigation.
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2. The group we calculate is the subgroup generated by the contributions of local
monodromies at different points, modulo scalars. Let us call this group lMon. It
is not clear if this group equals the complete monodromy group modulo scalars,
which we denote Mon.

The reason we consider the monodromy group modulo scalars is that for the A-
hypergeometric system and their classical counterparts these groups are the same.
An explanation for this can be found at the end of Section 2.

The groups we calculate are determined with respect to a basis of solutions in Mellin-
Barnes integral form. In the case of one variable n+1Fn they turn out to coincide with
the matrices found in [8] (see Section 8). If one would like to calculate monodromy
matrices with respect to explicit bases of local power series expansions one would have
to find an explicit calculation of a Mellin-Barnes integral as a linear combination of
power series solutions. This is a tedious task which we like to carry out in a forthcoming
paper. We remark that such a calculation has been carried out in the so-called confluent
case (i.e. A does not lie in translated hyperplane) by O.N.Zhdanov and A.K.Tsikh,
[37]. In her PhD-thesis from 2009, Lisa Nilsson [26] introduced (non-confluent) A-
hypergeometric functions in terms of Mellin-Barnes integrals and initiated their study.
It is these integrals that we shall use.
In the remainder of this paper we assume that the shifted lattice α + Zr has empty
intersection with any hyperplane spanned by r − 1 independent elements of A. In that
case we say that the system is totally non-resonant. Note that this is stronger than
just non-resonance where only the faces of the cone spanned by the elements of A are
involved. Non-resonance (and a fortiori total non-resonance) ensures that our system
is irreducible, see for example [14, Thm 2.11] or [6] for a slightly more elementary
proof. Non-resonance also implies that A-hypergeometric systems whose parameter
vectors are the same modulo Zr have isomorphic monodromy, see [6, Thm 2.1], which
is actually a theorem due to B.Dwork. Total non-resonance implies T-nonresonance
for every triangulation T in the terminology of Gel’fand, Kapranov and Zelevinsky. In
particular this implies that the local solution expansions will not contain logarithms.
So local monodromy representations act by characters. We prefer to leave the case of
logarithmic local solutions for a later occasion.
The starting data of our computation will not be the set A and parameter vector α, but
rather a dual version as follows. Let d = N − r. This will be the number of variables in
the classical counterpart of the A-hypergeometric system (number of essential variables,
e.g. d = 2 in the Appell cases). Choose a Z-basis for the lattice L, which has rank d,
and write the basis elements as rows of a d×N matrix B. In the literature the transpose
of B is often called a Gale dual of A, we simply call B a B-matrix. The matrix B has
the property that it has maximal rank d, the Z-span of the columns is Zd and A.Bt is
the zero matrix. We denote the columns of B by bj , j = 1, . . . , N . Then the space
L⊗R ⊂ RN is parametrized by the N -tuple (b1 ·s, . . . ,bN ·s) with s = (s1, . . . , sd) ∈ Rd
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as parameters. In our computations we take a B-matrix as starting data and instead of
the parameters α we choose γ = (γ1, . . . , γN ) ∈ RN such that γ1a1 + · · · + γNaN = α.
Notice that there is some ambiguity in the choice of γ which we will fix later. The reason
we take B and γ as starting data is that they are easily read off from the classical power
series expansions. In the next section we see an example of this.

2 Power series solutions

Consider the system HA(α) and a formal solution

Φγ =
∑
l∈L

vl1+γ1
1 · · · vlN+γN

N

Γ(l1 + γ1 + 1) · · ·Γ(lN + γN + 1)

where γ is chosen such that α = γ1a1 + · · ·+ γNaN . This expansion was introduced in
[13]. It is a Laurent series multiplied by generally non-integral powers of the variables
vi. We call such a series a twisted Laurent series. As is well-known we have a freedom of
choice in γ by shifts over L⊗R. We shall use this freedom in the following way where,
again, we denote the columns of the B-matrix by bi. Choose a subset I ⊂ {1, 2, . . . , N}
with |I| = d = N − r such that bi with i ∈ I are linearly independent. It is known
that | det(bi)i∈I | = | det(aj)j 6∈I | and we denote this quantity by ∆I . Choose γ such that
γi ∈ Z for all i ∈ I. There are precisely ∆I such choices for γ which are distinct modulo
L⊗ R. The series Φ now reads

Φγ =
∑
l∈L

∏
i∈I

vli+γii

Γ(li + γi + 1)
×
∏
j 6∈I

v
lj+γi
j

Γ(lj + γj + 1)

Since γi ∈ Z for all i ∈ I this summation extends over all l with γi + li ≥ 0 for all i ∈ I.
The other terms vanish because 1/Γ(γi+ li+1) = 0 whenever γi+ li is a negative integer
for some i ∈ I. Hence Φγ is now a twisted power series. Let us fix such a choice of γ. It
is not hard to see that a set of series Φγ with γ-values which are distinct modulo L⊗R,
is linearly independent over C.
Let now ρ1, . . . , ρN be any N -tuple with the property that ρ1l1 + · · ·+ρN lN > 0 for any
non-zero l ∈ L with li ≥ 0 for all i ∈ I. Then, according to Theorem [5, Proposition 16.2]
or [33, Section 3.3,3.4], the series Φγ converges for all v1, . . . , vN with ∀i : |vi| = tρi and
t ∈ R>0 sufficiently small. We call such an N -tuple ρ1, . . . , ρN a convergence direction
of Φγ .
There is one important assumption we need in order to make this approach work.
Namely the garantee that none of the arguments γj + lj is a negative integer when
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j 6∈ I. Otherwise we might even end up with a trivial series solution. Notice that

α =

N∑
j=1

γjaj ≡
∑
j 6∈I

γjaj(mod Zr)

So if γj ∈ Z for some j 6∈ I, the point α lies modulo Zr in a space spanned by the
r − 1 remaining vectors ai. Under the assumption of total non-resonance this situation
cannot occur.
From now on we assume that HA(α) is totally non-resonant. We denote the set of all
sets I such that ∆I = | det(bi)i∈I | 6= 0 by I. When s = ∆I > 1 we must take s copies
of I in this list. To each I ∈ I there corresponds a choice of γ and we see to it that
all these choices are distinct modulo L⊗ R. So to an index set I which occurs s times
there correspond s choices of γ that are distinct modulo L ⊗ R. The corresponding
powerseries solutions are denoted by ΦI .
Choose I ∈ I and a convergence direction (ρ1, . . . , ρN ) such that ρ1l1 + · · ·+ ρN lN > 0
for all non-zero l ∈ L with ∀i ∈ I : li ≥ 0. Note that if (ρ1, . . . , ρN ) is a convergence
direction, then after adding an element of the R-row span of A, it is still a convergence
condition since Ax = 0 for all x ∈ L ⊗ R. Consider the element ρ =

∑N
i=1 ρibi in the

column span of B. By shifting over the row span of A we can see to it that ρi = 0 for
all i 6∈ I. Hence ρ =

∑
i∈I ρibi. The convergence condition is now equivalent to saying

that the new ρi are positive. So if we denote

bI =

{∑
i∈I

λibi

∣∣∣∣∣λi > 0

}
,

the convergence condition can be restated as ρ ∈ bI . By a slight abuse of language we
call the vector ρ also a convergence direction.
Conversely, fix an element ρ in the span of all bi which does not lie on the boundary
of any bI . Define Iρ = {I|ρ ∈ bI}. Then, by the theory of Gel’fand, Kapranov and
Zelevinsky the powerseries ΦI with I ∈ Iρ form a basis of solutions with a common
open region of convergence. We call such a set a basis of local solutions of HA(α). It
also follows from the theory that the sets Iρ are in one-to-one correspondence with the
regular triangulations of the set A. This correspondence is given by Iρ 7→ {Ic|I ∈ Iρ}.
The intersections of the simplicial cones bI define a subdivision of Rd into open convex
polyhedral cones whose closure of the union is Rd. This is a polyhedral fan which
is called the secondary fan. The open cones in the secondary fan are in one-to-one
correspondence with the bases of local series solutions. As an example let us take the
system Appell F2. The standard Appell F2-series reads

F2(α, β, β′, γ, γ′, x, y) =
∑
m,n≥0

(α)m+n(β)m(β′)n
m!n!(γ)m(γ′)n

xmyn.
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We hope no confusion arise with the existing notations α,γ. Using the identity

Γ(z)Γ(1− z) = π/ sinπz

we see that the series is proportional to∑
m,n≥0

xmyn

Γ(−α−m−n+1)Γ(−β−m+1)Γ(−β′−n+1)Γ(γ+m)Γ(γ′+n)Γ(m+1)Γ(n+1)
.

The basisvectors (−1,−1, 0, 1, 0, 1, 0) and (−1, 0,−1, 0, 1, 0, 1) of L are given to us nat-
urally because these are the coefficient vectors of m and n respectively in the Γ-factors
of the expansion just given. This follows from the shape of the canonical solution Φγ .
So our B-matrix reads

B =

(
−1 −1 0 1 0 1 0
−1 0 −1 0 1 0 1

)
.

A parameter vector γ can also be read off from the Γ-expansion, namely

γ = (−α,−β,−β′, γ − 1, γ′ − 1, 0, 0).

The column vectors of B are depicted here,

b1

b4 , b6

b5 , b7

b2

b3

For example, consider the vector (−0.5, 1) in this picture. We see that it is contained in
the positive cones of the following pairs: {b2,b5}, {b2,b7}, {b1,b5}, {b1,b7}. Taking
the complimentary sets of indices of each pair we get

{1, 3, 4, 6, 7}, {1, 3, 4, 5, 6}, {2, 3, 4, 5, 6}, {2, 3, 4, 5, 6}.

These form the index sets of the simplices of a triangulation of the set A. Take the
alternative parameter vector

γ = (γ′ − β − α− 1, 0, γ′ − 1− β′, γ − β − 1, 0,−β, 1− γ′),
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which differs from the original choice by an element of L ⊗ R. The coordinates on
positions 2,5 are made zero, corresponding to the choice b2,b5. The formal solution for
this new parameter vector reads

∑
m,n

vγ
′−β−α−1−m−n

1 v−m2 vγ
′−β′−1−n

3 vγ−β−1+m
4 vn5 v

−β+m
6 v1−γ

′+n
7

Γ(γ′−β−α−m−n)Γ(−m+1)Γ(γ′−β′−n)Γ(γ−β+m)Γ(n+1)Γ(−β+m)Γ(2−γ′+n)
.

Since 1/Γ(n+1) = 0 when n < 0 and 1/Γ(−m+1) = 0 when m > 0 we see that our sum-
mation runs overm ≤ 0 and n ≥ 0. Replacem by−m to get vγ

′−β−α−1
1 vγ

′−β′−1
3 vγ−β−1

4 v−β6 v1−γ
′

7

times ∑
m,n≥0

(v1v2v
−1
4 v−1

6 )m(v5v7v
−1
1 v−1

3 )n

Γ(γ′−β−α+m−n)Γ(m+1)Γ(γ′−β′−n)Γ(γ−β−m)Γ(n+1)Γ(−β−m)Γ(2−γ′+n)
,

a twisted powerseries in v1v2v
−1
4 v−1

6 and v5v7v
−1
1 v−1

6 , which has (−0.5, 1) as convergence
direction. In the same way we can construct three other (twisted) powerseries expansions
and thus obtain a basis of local powerseries solutions of our system.
To return to our general story, suppose we have a basis of local series solutions and
suppose they converge in an open neighbourhood of a set defined by |v1| = r1, . . . , |vN | =
rN with ri > 0 for all i. Let γ(1), . . . ,γ(D) be the choices of γ used in the construction
of the local series solutions Φ1, . . . ,ΦD. Given any N -tuple of integers n1, . . . , nN we
define the closed path c(n1, . . . , nN ) by

(r1e
2πin1t, . . . , rNe

2πinN t), t ∈ [0, 1].

Taking (r1, . . . , rN ) as a base point, the series Φj changes into

exp(2πi(n1γ
(j)
1 + · · ·+ nNγ

(j)
N )) = exp(2πi n · γ(j))

times Φj after analytic continuation along c(n1, . . . , nN ). The group of these substitu-
tions is called a local monodromy group with respect to Φ1, . . . ,ΦD. It is important to
note that it is generated by d elements and a group of scalar elements generated by the
scalars exp(2πiαj), j = 1, . . . , r. The explanation is as follows. The r rows of the matrix
A span a lattice. The basis of rows can be completed to a basis of ZN by d = N − r
extra integer vectors n1, . . . ,nd, say. So all n ∈ ZN are Z-linear combinations of these
vectors. Suppose that n is the j-th row of A. Since n · γ(i) = αj for all i = 1, . . . , D,
the local monodromy transformation is the scalar element given by exp(2πiαj). The
remaining vectors n1, . . . ,nd provide us with d generators. In our implementation in
Section 6 we shall make a sensible choice for these generators.
The fact that we have d generators corresponds to the fact that the number of essential
variables (modulo homogeneities) is d. The scalar group is simply the difference between
the full A-hypergeometric system and its classical counterpart. In this paper we shall
adopt the convention that we compute the monodromy modulo scalars. Hence it suffices
to compute the d generators of the local monodromies.
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3 Mellin-Barnes integrals

Let notations be as in the previous sections. Consider the parametrization of L ⊗ R
by the N -tuple (b1 · s, . . . ,bN · s) with s = (s1, . . . , sd) ∈ Rd as parameters. Choose
σ = (σ1, . . . , σd) ∈ Rd.
We now complexify the parameters si and consider the integral

M(v1, . . . , vN ) =

∫
σ+
√
−1 Rd

N∏
i=1

Γ(−γi − bi · s)vγi+bi·s
i ds (MB)

where ds = ds1 ∧ · · · ∧ dsd and the integration takes place over −∞ < Im(si) <∞ and
Re(si) = σi for i = 1, . . . , d. This is an example of a so-called Mellin-Barnes integral. It
will be crucial in the determination of the monodromy of A-hypergeometric systems.
We prove the following Theorem,

Theorem 3.1 Assume that γi < −bi · σ for i = 1, 2, . . . , N . Then the Mellin-Barnes
integral M(v1, . . . , vN ) satisfies the set of A-hypergeometric equations HA(α).

This will be done under the assumption that the Mellin-Barnes integral converges ab-
solutely. We come to the matter of convergence in the next section.

Proof: The Mellin-Barnes integral clearly has the property

M(ta1v1, . . . , t
aN vN ) = tαM(v1, . . . , vN )

for all t ∈ (C∗)N . So M(v) satisfies the hypergeometric homogeneity equations.
Now let λ ∈ L and put λ = λ+−λ− where λ± have non-negative coefficients and disjoint
support. Define |λ| =

∑N
i=1 |λi|. Then

2λM(v1, . . . , vN )

= (−1)|λ|/2
∫
σ+
√
−1Rd

N∏
i=1

Γ(−γi − bi · s + λ+,i)v
γi+bi·s−λ+,i
i ds

− (−1)|λ|/2
∫
σ+
√
−1Rd

N∏
i=1

Γ(−γi − bi · s + λ−,i)v
γi+bi·s−λ−,i
i ds.

Choose sλ such that bi · sλ = λi for i = 1, . . . , N . Then the second integral is actually
integration over sλ +

√
−1Rd of the integrand of the first integral.

Because of the assumption γi < −bi · σ we see that −γi − tbi · (sλ + γ) + λ+,i > 0 for
all t ∈ [0, 1] and i = 1, . . . , N . Hence the d+ 1-dimensional domain {t(sλ +γ) + iRd|0 ≤
t ≤ 1} does not contain any poles of the integrand and a homotopy argument gives that
the two integrals are equal and cancel.

2
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Not all systems HA(α) allow a choice of negative γi. However, under the assumption
of non-resonance it is known that two hypergeometric systems HA(α) and HA(α′) have
the same monodromy if α − α′ ∈ Zr (see [6, Theorem 2.1]). We call such systems
contiguous. Thus we can always replace an irreducible A-hypergeometric system by a
contiguous one which does allow a choice of γi < −bi · σ for all i. In concrete cases we
can also play with the value of σ. From now on we make this assumption, i.e all our
Mellin-Barnes integrals are solution of an A-hypergeometric system. Of course there is
also the question whether or not M(v1, . . . , vN ) is a trivial function. By Proposition 4.5
we will find that it is non-trivial.

4 Convergence of the Mellin-Barnes integral

We find from [2] the following estimate. Suppose s = a + bi with a1 < a < a2 and
|b| → ∞. Then

|Γ(a+ bi)| =
√

2π|b|a−1/2e−π|b|/2[1 +O(1/|b|)].

Notice also that for any v ∈ C∗ we have |va+bi| = |v|ae−b arg(v). Write sj = σj + iτj for
j = 1, . . . , N − r. Let us denote θj = arg(vj) and lj(τ ) = lj(τ1, . . . , τd). The integrand
in the Mellin-Barnes integral can now be estimated by∣∣∣∣∣

N∏
i=1

Γ(−γi − bi · s))vγi+bi·s
i

∣∣∣∣∣ ≤ c1 max
j
|τj |c2 exp

− N∑
j=1

π|bj · τ |/2− θjbj · τ


where c1, c2 are positive numbers depending only on γj , vj , σj . In order to ensure con-
vergence of the integral we must have that

N∑
j=1

π|bj · τ |/2 + θjbj · τ > 0 (C)

for every non-zero τ ∈ Rd. We apply the following Lemma.

Lemma 4.1 Given N vectors p1, . . . ,pN in Rd. Suppose they have rank d. Let q ∈ Rd.
Then the following statements are equivalent,

i) For all non-zero x ∈ Rd:

|q · x| <
N∑
i=1

|pi · x|

ii) There exist µ1, . . . , µN with −1 < µi < 1 such that

q = µ1p1 + · · ·+ µNpN .
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Proof: First suppose that q = µ1p1 + · · ·+ µNpN . Then, for all non-zero x ∈ Rd,

|q · x| = |
N∑
i=1

µipi · x|

≤
N∑
i=1

|µi||pi · x| <
N∑
i=1

|pi · x|

To show the converse statement consider the set

V =

{
N∑
i=1

µipi

∣∣∣∣∣ − 1 < µi < 1

}
.

This is a convex set. Suppose q 6∈ V . Then there exists a linear form h such that h(q) >
h(p) for all p ∈ V . In other words, there exists x ∈ Rd such that q · x >

∑N
i=1 λipi · x

for all −1 < λi < 1. In particular,

|q · x| ≥
N∑
i=1

|pi · x|

contradicting our assumption. Hence q ∈ V .
2

Application of Lemma 4.1 with q =
∑N

j=1 θjbj and pj = πbj/2 to inequality (C) on
page 10 yields the following criterion.

Corollary 4.2 Let notations be as above. Then the Mellin-Barnes integral converges
absolutely if there exist µi ∈ (−1, 1) such that

N∑
i=1

θi
2π

bi =
1

4

N∑
i=1

µibi.

Let us define ZB = {1
4

∑N
i=1 µibi|µi ∈ (−1, 1)}. This is a so-called zonotope in d-

dimensional space. The convergence condition for the Mellin-Barnes integral now reads

N∑
i=1

θi
2π

bi ∈ ZB.

As an example let us again take the system Appell F2. Recall that our B-matrix reads

B =

(
−1 −1 0 1 0 1 0
−1 0 −1 0 1 0 1

)t
.
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As before, a parameter vector γ can also be read off from the Γ-expansion, namely
γ = (−α,−β,−β′, γ − 1, γ′ − 1, 0, 0). When α, β, β′ > 0 and γ, γ′ < 1 we see that γ has
negative components, except for the last two. By making a suitable choice for σ ∈ R2

we can see to it that γi < −bi ·γ for all i. Thus the corresponding Mellin-Barnes integral
is indeed a solution of the F2-system. The zonotope ZB can be pictured as

1-1

1

-1

and the convergence condition reads

1

2π
(−θ1 − θ2 + θ4 + θ6,−θ1 − θ3 + θ5 + θ7) ∈ ZB.

Note that the four points (±1/2,±1/2) are contained in ZB. They correspond to the
arguments θ = 2π(0, 0, 0, 0, 0,±1/2,±1/2). These argument choices represent the same
point in v1, . . . , v7 -space. Hence we have four Mellin-Barnes solutions of the system F2

around one point. According to Proposition 4.3 these integrals are linearly independent,
and hence form a basis of local solutions of the F2-system. We say that we have a Mellin-
Barnes basis of solutions.

Proposition 4.3 Let v0 = (v
(0)
1 , . . . , v

(0)
N ) ∈ (C∗)N and let Θ be a finite set of N -

tuples θ = (θ1, . . . , θN ) such that v
(0)
j = |v(0)

j | exp(iθj) and the sums 1
2π

∑d
j=1 θjbj are

distinct elements of ZB. To each θ ∈ Θ denote the corresponding determination of the
Mellin-Barnes integral in the neighbourhood of v0 by Mθ.
Then the functions Mθ are linearly independent over C.

The proof of this Lemma depends on a d-dimensional version or if one wants, repeated
application, of the following Theorem.

Theorem 4.4 (Mellin inversion theorem) Let φ(z) be function on C satisfying the
follwoing properties

(a) φ is analytic in a vertical strip of the form α < x = Re(z) < β where α, β ∈ R.

(b)
∫∞
−∞ |φ(x+ iy)|dy converges for all x ∈ (α, β).
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(c) φ(z)→ 0 uniformly as |y| → ∞ in α+ ε < x < β − ε for all ε > 0.

Denote for all t > 0,

f(t) =
1

2πi

∫ c+i∞

c−i∞
t−zφ(z)dz.

Then,

φ(z) =

∫ ∞
0

tz−1f(t)dt.

For a proof of this theorem see [21, Appendix 4, p341-342]. A treatment of the multidi-
mensional case can also be found for example in [3].

Proof of Proposition 4.3. Suppose we have a non-trivial relation
∑

θ∈Θ λθMθ = 0. Let
us use the notation (θ ·B)(s) = θ1b1 · s+ · · ·+ θNbN · s. The relation can be written as

0 =

∫
s∈σ+

√
−1Rd

(∑
θ∈Θ

λθe
(θ·B)(s)

)
|v1|b1·s · · · |vN |bN ·s

N∏
i=1

Γ(−γi − bi · s)ds

Let us now write xj = |v1|b1j · · · |vN |bNj where bij are the entries of the B-matrix. Then

|v1|b1·s · · · |vN |bN ·s = xs11 · · ·x
sd
d

By repeated use of the Mellin inversion Theorem 4.4 we conclude that the vanishing of
the integral implies the identical vanishing of∑

θ∈Θ

λθe
(θ·B)(s)

Since the exponentials are all distinct linear forms in s1, . . . , sd this implies that λθ = 0
for all θ ∈ Θ.

2

Another proof of Proposition 4.3 can be found in [26, Lemma 5.5]. However, I hesitate
somewhat about its completeness and decided to give the proof above.

Since we assume that γi < 0 for all i, all Mellin-Barnes integrals are solutions of the cor-
responding A-hypergeometric system. It would be very convenient if such a basis of solu-
tions given by Mellin-Barnes integrals would always exist. It turns out that with the ex-
ception of Appell F4 all d = 2 systems Appell F1, F2, F3 and Horn G1, G2, G3, H1, . . . ,H7

this is the case. A theoretical framework for a result like this may be provided in the
PhD-thesis of Lisa Nilsson [26] suggesting that there does indeed exist such a basis if
the complement of the so-called coamoeba of the A-resultant is non-empty. In [26] this
is elaborated for the case d = 2.
Let us now make the following assumption on our system HA(α).
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Assumption 4.5 There exists a point v0 ∈ (C∗)N with an open neighbourhood in which
there exists a Mellin-Barnes basis of solutions.

For the practical determination of a Mellin-Barnes basis we use the following Proposi-
tion.

Proposition 4.6 Let HA(α) be a non-resonant system of rank D. The system allows
a Mellin-Barnes basis of solutions if and only if the zonotope ZB contains D distinct
points τ1, . . . , τD whose coordinates differ by integers. Note that ZB is an open set in
Rd.

Proof: From the discussion above it follows that the existence of a Mellin-Barnes basis
corresponds to the choice of D N -tuples (θ1, . . . , θN ), representing argument choices of
a given point. Hence the differences between these N -tuples have coordinates which are
integer multiples of 2π. The sums 1

2π

∑N
i=1 θibi are distinct, hence the D Mellin-Barnes

basis elements correspond to D points τi ∈ ZB whose coordinates also differ by integers.
Suppose conversely we have D points τi ∈ ZB whose coordinates differ by integers.
Since the Z-span of the columns bi is Zd we can find for every i integers ni1, . . . , niN
such that τi− τ1 = ni1b1 + · · ·+niNbN . So if (θ1, . . . , θN ) is an argument choice for τ1,
then the N -tuples (θ1 + 2πni1, . . . , θN + 2πniN ) represent argument choices for τi with
i = 1, 2, . . . , D.

2

For later use, we consider the vector θj of arguments and the vectors τj as column
vectors. Then 2πτj = Bθj for j = 1, 2, . . . , D.

5 Monodromy computation

Suppose our system HA(α) allows a Mellin-Barnes basis of solutions (Assumption 4.5).
Denote the basis elements by M1, . . . ,MD and the corresponding points in ZB by
τ1, . . . , τD. It is the goal of this section to compute the local monodromy groups with
respect to the basis M1, . . . ,MD. To this end we shall determine the transition matrices
from M1, . . . ,MD to each of the bases of local series expansions.
To each point τi there corresponds a (not necessarily unique) choice of arguments θi =
(Arg(v1), . . . ,Arg(vN )) for i = 1, . . . , D. We assume that the arguments are chosen such
that the differences θi − θ1 have all their components equal to integer multiples of 2π
(see Proposition 4.6). Let v0 ∈ (C∗)N be a point whose coordinates have arguments τ1.
In particular we have a basis of Mellin-Barnes solutions around v0. The Mellin-Barnes
integral corresponding to the argument vector θi is denoted by Mi.
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Let f1, . . . , fD be a basis of series expansions for some local basis. Suppose that the
realm of convergence of these local series expansions contains the torus R: |vi| = ri for
i = 1, . . . , N . Choose a point v′0 ∈ R with the same argument values as v0 and let δ be
a path from v0 to v′0 while keeping the arguments fixed. In a neighbourhood of v′0 we
also have a Mellin-Barnes basis of solutions which are simply the analytic continuation
of M1, . . . ,MD along δ. For any N -tuple of integers n = (n1, . . . , nN ) we consider the
loop

c = c(n) = c(n1, . . . , nN ) : (e2πin1tv
(0)′

1 , . . . , e2πinN tv
(0)′

N ), t ∈ [0, 1].

Note that after analytic continuation of M1 along the path c((θj − θ1)/2π) we end up
with the Mellin-Barnes solution Mj for every j. We denote this path by cj .
Let us denote a basis of local series expansions by f1, . . . , fD and the corresponding
choices of γ by γ(1), . . . ,γ(D). We regard the latter as row vectors. Then there exist
scalars µi such that

M1 = µ1f1 + · · ·+ µDfD

in a neighbourhood of v′0. After continuation along cj the integral M1 changes into
Mj for every j. Under the paths cj the local expansions fi are multiplied by scalars.
The space spanned by M1, . . . ,MD is D-dimensional. The space spanned by the images
of µ1f1 + · · · + µDfD under cj(v

′
0), j = 1, 2, . . . , D is at most equal to the number of

non-zero µi. Hence we conclude that µi 6= 0 for all i. Let us renormalise the fi such
that

M1 = f1 + · · ·+ fD.

Then after continuation along cj we get

Mj = eiγ
(1)(θj−θ1)f1 + · · ·+ eiγ

(D)(θj−θ1)fD

for every j. Define

Xρ =


1 · · · 1

eiγ
(1)(θ2−θ1) · · · eiγ

(D)(θ2−θ1)

...
...

eiγ
(1)(θD−θ1) · · · eiγ

(D)(θD−θ1)

 .

Then  M1
...

MD

 = Xρ

 f1
...
fD


hence Xρ is the desired transition matrix. Let us now consider any closed path of
the form δ−1c(n)δ,n ∈ ZN beginning and ending in v0. Continuation of M1, . . . ,MD

along δ is trivial since the Mellin-Barnes integrals converge throughout. However these
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integrals do not converge anymore if we continue along c(n). For that we have to
change to the local basis fi, i = 1, . . . , D. Analytic continuation along c(n) changes

them into e2πin·γ(i)
fi for i = 1, . . . , D. Express these solutions in terms of the Mi again

and continue back along δ−1. The monodromy matrix can be computed as follows.
Let χρ(n) be the diagonal D × D-matrix with entries e2πiγ(i)n, i = 1, . . . , D. It is
the monodromy matrix with respect to f1, . . . , fD. With respect to M1, . . . ,MD this
monodromy element has matrix Xρχρ(n)X−1

ρ . Thus we see that all local monodromies
can be written with respect to a fixed Mellin-Barnes basis.

6 An implementation

The considerations in the previous sections, together with some practical tricks, lead to
an algorithm to compute monodromy matrices, which we describe in this section.
We start with a totally non-resonant hypergeometric system HA(α) and we assume
that there exists a Mellin-Barnes basis. The starting data are a d×N B-matrix B and
a parametervector γ0 (in row form) such that Aγ0 = α. In general both B and γ0

can easily be read off from an explicit series solution of a hypergeometric system. For
example, from the expansion of Appell F2 as on page 7. We also assume we know the
rank D of the system.

Step 1. Using the B-matrix we determine the zonotope ZB and a find D distinct points
in it, whose coordinates differ by integers. Since we assumed the existence of a Mellin-
Barnes basis these points exist. Call the points τ1, . . . , τD. From the proof of Proposition
4.6 we know that to each τi there exists a column vector of arguments θi ∈ Rn such that
2πτi = Bθi. However, we do not compute these angle vectors.

Step 2. Construct the set I of all subsets I of cardinality d of the columns {b1, . . . ,bN}
with δI = |deti∈I(bi)| 6= 0. As a fine point, if ∆I > 1 we include ∆I copies of I in I.
For each I there exists a parametervector γI in the following way. Denote the rows of
the B-matrix B by l1, . . . , ld, recall that this is a basis of the lattice L. In case ∆I = 1
we take the uniquely determined real numbers µ1, . . . , µd such that γ0 +µ1l1 + · · ·+µdld
has i-th coordinate 0 for all i ∈ I and call this sum γI . In case ∆I > 1 we make
∆I choices for (µ1, . . . , µd), distinct modulo Zd, such that γ0 + µ1l1 + · · · + µdld has
integer coordinates on the i-th position for all i ∈ I. In this way we get ∆I different
parametervectors γI (in row form) for a given I ∈ I. However, in the computation we
only retain the (row vectors) µI = (µ1, . . . , µd)

t for each I. They have the property that
γI − γ0 = µIB for all I.

Step 3. To every I we associate a column vector XI of length D given by

XI = (1, exp(2πiµI(τ2 − τ1)), . . . , exp(2πiµI(τD − τ1)))t. (1)
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Since, for each j = 1, 2, . . . , D we have

2πµI(τj − τ1) = µIB(θj − θ1)

= (γI − γ0)(θj − θ1)

the j-th components of XI differs by a factor

exp(−iγ0(θj − θ1))

from the similar components in the columns of the transition matrices Xρ. The only
effect is that the transition matrices built out of our present XI will give us the transition
of the Mellin-Barnes basis to a renormalized local basis. This will have no effect on the
monodromy computation.

Step 4. For every cone in the secondary fan (specified by a convergence direction ρ inside
that cone) we determine the sets I ∈ I such that the cone or, equivalently, ρ lies in the
positive real cone spanned by the vectors {bi}i∈I . Call this set of sets Iρ. The theory
of Gel’fand, Kapranov and Zelevinsky tells us that Iρ contains precisely D sets (when
we count possible repetitions of a set with ∆I > 1). Let Xρ be the D×D-matrix whose
columns are the vectors XI with I ∈ Iρ. The matrices Xρ are the transition matrices
from the Mellin-Barnes basis to the local power series basis, all of whose elements contain
ρ as a convergence direction.

Step 5. For every cone in the secondary fan (specified by a convergence direction ρ) we
determine the characters of the local monodromies of the corresponding power series
solutions. Let I0 be such that |det(bj)j∈I0 | = 1 We choose a set of d generators for the
local monodromy as follows. For every j = 1, . . . , d we define nj ∈ ZN such that nj has
support in I0 and Bnj = ej , the j-th standard basis vector in Rd. Since the support is
in I0 we have γ0nj = 0. Furthermore,

γInj = (γI − γ0)nj = (µI − µI0)Bnj = µIj − µ
I0
j

for j = 1, . . . , d. Hence the characters corresponding to the path c(nj) read

exp(2πiγInj) = exp(2πi(µIj − µ
I0
j )).

Step 6. This is the final step in which we compute d monodromy matrices for every
cone of the secondary fan. For a cone, specified by a convergence direction ρ, and a
loop c(nj) (defined in step 5) we construct the matrix Xρ as in Step 4, and a diagonal
matrix χρ,j with entries exp(2πiµIj ), I ∈ Iρ, as in Step 5. We see to it that both in Xρ

and χρ,j we keep the same ordering of the set Iρ. Then construct the matrix

Mρ,j = Xρχρ,jX
−1
ρ .
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Let F be the number of open cones in the secondary fan. Then we get dF monodromy
matrices in this way. They generate a subgroup of the monodromy group whose projec-
tivization (quotient by scalars) we denote by lMon. As remarked before, computation
of local monodromies by other loops will only add scalar matrices and therefore does
not change lMon.

7 An example, Appell F2

Recall that a B-matrix is given by

B =

(
−1 −1 0 1 0 1 0
−1 0 −1 0 1 0 1

)
and a parameter vector γ0 = (−α,−β,−β′, γ−1, γ′−1, 0, 0). We trust that no confusion
will arise with the existing notations α and γ. Two powerseries solution expansions have
already been given on pages 6 and 7. The set I consists of 15 elements, {1, 3}, {1, 4},
{1, 6}, {1, 5}, {1, 7}, {1, 2}, {2, 3}, {2, 5}, {2, 7}, {3, 4}, {3, 6}, {4, 5}, {4, 7}, {5, 6},
{6, 7}. Here is a table with the corresponding values of µJ .

J µJ

1 {1, 3} −α+ β′,−β′
2 {1, 4} 1− γ,−1− α+ γ
3 {1, 6} 0,−α
4 {1, 5} −1− α+ γ′, 1− γ′
5 {1, 7} −1 + γ′,−α, 0
6 {1, 2} −β,−α+ β
7 {2, 3} −β,−β′

8 {2, 5} −β, 1− γ′
9 {2, 7} −β, 0
10 {3, 4} 1− γ,−β′
11 {3, 6} 0,−β′
12 {4, 5} 1− γ, 1− γ′
13 {4, 7} 1− γ, 0
14 {5, 6} 0, 1− γ′
15 {6, 7} 0, 0

As noted earlier, the zonotope ZB contains the four points (±1/2,±1/2). Define

τ1 = (−1/2,−1/2)t, τ2 = (1/2,−1/2)t, τ3 = (−1/2, 1/2)t, τ4 = (1/2, 1/2)t.

Then the vectors XJ , as defined in Step 3 of our algorithm on page 16, read

1, e(µJ1 ), e(µJ2 ), e(µJ1 + µJ2 )

where we use the notations e(x) = e2πix and a = e(α), b = e(β), b′ = e(β′), c = e(γ), c′ =
e(γ′). Here is the list of all XJ with the same ordering as in the previous table,
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J XJ

1 {1, 3} 1 b′/a 1/b′ 1/a
2 {1, 4} 1 1/c c/a 1/a
3 {1, 6} 1 1 1/a 1/a
4 {1, 5} 1 c′/a 1/c′) 1/a
5 {1, 7} 1 1/a 1 1/a
6 {1, 2} 1 1/b b/a 1/a
7 {2, 3} 1 1/b 1/b′ 1/bb′

8 {2, 5} 1 1/b 1/c′ 1/bc′

9 {2, 7} 1 1/b 1 1/b
10 {3, 4} 1 1/c 1/b′ 1/cb′

11 {3, 6} 1 1 1/b′ 1/b′

12 {4, 5} 1 1/c 1/c′ 1/cc′

13 {4, 7} 1 1/c 1 1/c
14 {5, 6} 1 1 1/c′ 1/c′

15 {6, 7} 1 1 1 1

To write down local monodromies we use Step 5 of our algorithm. The characters e(µ1)
are said to correspond to path I and the characters e(µ2) correspond to path II. We do
not need to write down a separate table for them since they are simply the second and
third component of the vectors XJ .
As an example for the action of path I on a local basis we take the four local basis so-
lutions with convergence direction −0.5, 1, as before. The transition matrix Xρ consists
of the vectors XJ with numbering 4,5,8,9 in Table 7. The transition matrix reads

Xρ =


1 1 1 1
c′/a 1/a 1/b 1/b
1/c′ 1 1/c′ 1
1/a 1/a 1/bc′ 1/b


For the path I we get the monodromy matrix

Xρ


c′/a 0 0 0

0 1/a 0 0
0 0 1/b 0
0 0 0 1/b

X−1
ρ

which equals 
0 1 0 0

(−1 + c′)/ab 1/b+ 1/a+ c′/a c′/ab −c′/a
0 0 0 1

−1/ab 1/a 0 1/b


with respect to the Mellin-Barnes basis. For the path II we get

0 0 1 0
0 0 0 1
−1/c′ 0 1 + 1/c′ 0

0 −1/c′ 0 1 + 1/c′

 .

The calculation so far has been carried out for the convergence direction (−0.5, 1). In
fact we get the same matrices for every convergence direction in the cone spanned by
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b2,b5 of the secondary fan. We can proceed in the same way with the other four cones.
In each case we find two monodromy matrices. After removing duplicate matrices we
end up with six monodromy matrices. They are given in the Appendix of this paper,
together with a comparison of them with the five generators given by M.Kato in [19].
It turns out that the group generated by our six generators is conjugate to the group
computed in [19].

8 An example, Clausen 3F2

In this section we apply our method to the case of one variable

3F2

(
α1, α2, α3

β1, β2

∣∣∣∣ z)
which, up to a constant factor, is defined by the series∑

n≥0

Γ(α1 + n)Γ(α2 + n)Γ(α3 + n)

Γ(β1 + n)Γ(β2 + n)n!
zn.

Using the identity Γ(z)Γ(1− z) = π/ sinπz we see that the series is proportional to∑
n

(−z)n

Γ(1− α1 − n)Γ(1− α2 − n)Γ(1− α3 − n)Γ(β1 + n)Γ(β2 + n)Γ(1 + n)
.

So the B-matrix is given by

B = (−1,−1,−1, 1, 1, 1)t

and ZB is simply the open interval (−3/2, 3/2). In it we can take the three points
τ1 = −1, τ2 = 0, τ3 = 1 and so we see that we have a Mellin-Barnes basis of solutions.
For the set I0 we take {6} and

γ0 = (−α1,−α2, α3, β1, β2, 0).

We consider the components modulo Z. The set of columns of B has 6 subsets of
cardinality 1 and the corresponding values of µ1 are

α1, α2, α3,−β1,−β2, 0.

Letting ai = e(αi) and bj = e(βj) we get for the vectors XJ ,

(1, a1, a
2
1), (1, a2, a

2
2), (1, a3, a

2
3)
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(1, b1, b
2
1), (1, b2, b

2
2), (1, 1, 1).

There is only one loop to consider for every local basis. Consider the convergence
direction −1. This lies in the positive cones spanned by b1,b2,b3 respectively. The
transition matrix reads

Xρ =

 1 1 1
a1 a2 a3

a2
1 a2

2 a2
3


and the diagonal character matrix

χρ =

 a1 0 0
0 a2 0
0 0 a3

 .

We get

XρχρX
−1
ρ =

 0 1 0
0 0 1

a1a2a3 −a2a3 − a2a1 − a3a1 a1 + a2 + a3

 .

This is precisely the matrix representation for the monodromy matrix around z = ∞
for 3F2 as given in [8]. We get a similar result for the monodromy matrix around z = 0
(with b1, b2, 1 instead of a1, a2, a3)

9 Existence of Mellin-Barnes bases

In this section we show that certain families of hypergeometric equations satify Assump-
tion 4.5, and some don’t (the case of Lauricell FC).

9.1 Lauricella FA

The Lauricella system FA in n variables is a system of rank 2n. From the powerseries

FA(a,b, c|x) =
∑
m≥0

(a)|m|(b)m

(c)mm!
xm

in x = (x1, . . . , xn) we see that an n× (3n+ 2) B-matrix is given by
1 1 0 · · · 0 −1 0 · · · 0 −1 0 · · · 0
1 0 1 · · · 0 0 −1 · · · 0 0 −1 · · · 0
...

...
1 0 0 · · · 1 0 0 · · · 0 0 0 · · · − 1


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The B-zonotope is thus given by the points

λ(e1 + · · · en) +

m∑
i=1

µiei

where |λ| < 1/4 and |µi| < 3/4 for i = 1, . . . , n. Let us choose ε > 0 sufficiently small.
Consider the 2n points

(3/4− 2ε)(e1 + · · ·+ en)− k1e1 − · · · knen

where ki ∈ {0, 1} for all i. Each such point equals

(1/4− ε)(e1 + · · ·+ en) + (1/2− k1 − ε)e1 + · · ·+ (1/2− kn − ε)en

which is clearly contained in the B-zonotope.

9.2 Lauricella FB

The Lauricella system FB is also a system of rank 2n. From the powerseries

FB(a,b, c|x) =
∑
m≥0

(a)m(b)m
(c)|m|m!

xm

in x = (x1, . . . , xn) we see that an n× (3n+ 2) B-matrix is given by
1 0 · · · 0 1 0 · · · 0 −1 −1 0 · · · 0
0 1 · · · 0 0 1 · · · 0 −1 0 −1 · · · 0
...

...
0 0 · · · 1 0 0 · · · 1 −1 0 0 · · · − 1


Note the B-zonotope is the same as in the case of Lauricella FA. Hence there exists a
Mellin-Barnes basis of solutions.

9.3 Lauricella FD

The Lauricella system FD in n variables is a system of rank n+1. From the powerseries

FD(a,b, c|x) =
∑
m≥0

(a)|m|(b)m

(c)|m|m!
xm
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in x = (x1, . . . , xn) we deduce an n× (2n+ 2) B-matrix
1 1 0 · · · 0 −1 −1 0 · · · 0
1 0 1 · · · 0 −1 0 −1 · · · 0
...

...
1 0 0 · · · 1 −1 0 0 · · · −1


Hence the B-zonotope consists of the points

λ0(e1 + · · ·+ en) + λ1e1 + · · ·+ λnen

where |λi| < 1/2 for i = 0, 1, . . . , n. Choose ε > 0 sufficiently small and consider the
n+ 1 points

−ε(ne1 + (n− 1)e2 + · · ·+ 2en−1 + en) +

k∑
i=0

ei

for k = 0, 1, 2 . . . , n. Each such point can be rewritten as

(1/2− (n− k − 1/2)ε)(e1 + · · ·+ en) +

n∑
j=1

(±1/2− (k − j − 1/2)ε)ej

where ±1/2 is 1/2 if k > j + 1/2 and −1/2 if k < j + 1/2. Hence they are contained in
the B-zonotope and we have found a Mellin-Barnes basis for Lauricella FD.

9.4 Lauricella FC

The Lauricella system FC in n variables is system of rank 2n. From the powerseries

FC(a, b, c|x) =
∑
m≥0

(a)|m|(b)|m|

(c)mm!
xm

in x = (x1, . . . , xn we deduce an n× (2n+ 2) B-matrix
1 1 −1 0 · · · 0 −1 0 · · · 0
1 1 0 −1 · · · 0 0 −1 · · · 0
...

...
1 1 0 0 · · · −1 0 0 · · · −1


Note that the B-zonotope is the same as for Lauricella FD, but this time we have to
find a Mellin-Barnes basis of 2n solutions. Clearly this is impossible if n > 1.
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9.5 Aomoto-Gel’fand system E(3, 6)

This system forms the subject of the second part of M.Yoshida’s book [36]. It is an
Aomoto system which can be reinterpreted as an A-hypergeometric system. It has four
essential variables (d = 4) and rank 6. system that corresponds to configurations of six
points (or lines) in P2. We start by giving the A-matrix of the system,

A =


0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1


and the parameters (α1, α2, 2− α4, 2− α5, 2− α6). The integrand of the Euler integral
as defined in [7, p 607] reads

sα1−1tα2−1t1−α4
1 t1−α5

2 t1−α6
3

1− t1(s+ t+ 1)− t2(s+ v1t+ v3)− t3(s+ v2t+ v4)
ds ∧ dt ∧ dt1 ∧ dt2 ∧ dt3.

Perform the substitutions t1 → t1/(s + t + 1), t2 → t2/(s + v1t + v3) and t3 → t3/(s +
v2t+ v4). We obtain the integrand

t1−α4
1 t1−α5

2 t1−α6
3

1− t1 − t2 − t3

6∏
i=1

(Li)
αi−1ds ∧ dt ∧ dt1 ∧ dt2 ∧ dt3

where
L1 = s, L2 = t, L3 = 1, L4 = s+ t+ 1,

L5 = s+ v1t+ v3, L6 = s+ v2t+ v4

and α3 = 3 − α1 − α2 − α4 − α5 − α6. Integration with respect to t1, t2, t3 leaves us
with a 2-form which is the integrand given on page 221 of [36], but with vi instead of
xi. Thus we see that our A-matrix corresponds to a Gel’fand-Aomoto system which is
associated to configurations of six lines in P2. The system is a four variable system of
rank 6. It is irreducible if and only if none of the αi is an integer, see [23, Prop 2]. A
possible B-matrix reads

B =


1 0 −1 0 0 0 −1 0 1
1 −1 0 0 0 0 −1 1 0
1 0 −1 −1 0 1 0 0 0
1 −1 0 −1 1 0 0 0 0


t

The set I consists of 81 sets, and hence 81 distinct local solutions. The number of local
solution bases is 108. In a straightforward manner one can check that the B-zonotope
ZB contains the points

p, p+ (0, 0, 0, 1), p+ (1, 0, 0, 0), p+ (1, 0, 1, 1), p+ (1, 1, 0, 1), p+ (1, 1, 1, 1)



10 HERMITIAN FORMS 25

where p = (−0.9,−0.4,−0.5,−0.7). Hence the system E(3, 6) has a Mellin-Barnes basis
of solutions. Computation of a set of generators for the monodromy group lMon is now
straightforward. We get 82 matrices, but have not made an attempt to compare with
the 20 generators of Mon found in [22].

10 Hermitian forms

In the cases where we carried out the algorithm given above, it turns out that whenever
α ∈ Rr, and the system is totally nonresonant, there exists a unique (up to a constant
factor) hermitean form which is invariant under the group lMon. Subsequent studies
lead us to the following conjecture.

Conjecture 10.1 Let HA(α) be a non-resonant A-hypergeometric system with α ∈ Rr.
Then there exists a non-trivial unique (up to scalars) Hermitean form, invariant under
the monodromy group. More concretely, there exist a Hermitean D ×D-matrix H such
that gtHg = H for all elements g of the monodromy group. Here D denotes the rank of
HA(α).
Moreover, when the system is totally non-resonant, the signature of H is determined by
the signs of the numbers ∏

i 6∈I
sin(πγIi )

as I runs through the elements of Iρ for some convergence direction ρ.

We want to deal with this matter in another paper. However, we do like to add that a
detailed calculation shows that the signatures thus obtained are in accordance with the
results on E(3, 6) in [23, Prop 1] (except for a small printing error). Note that signature
(5, 1) does not occur. Similarly, calculations for Lauricella FD give us results which are
in accordance with Picard [28], Terada [35] and Deligne-Mostow [10].

11 Appendix

Here we reproduce the six matrices obtained from the monodromy calculation of Appell
F2.

M1 =


0 0 1 0
0 0 0 1

−(1 + c)/ab′) c/ab′ 1/b′ + 1/a+ c/a −c/a
−1/ab′ 0 1/a 1/b′

 ,
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M2 =


0 0 1 0
0 0 0 1

−b/ab′ − 1/c′ b/c′ 1 + b/a+ 1/c′ b(−1 + 1/b′ − 1/c′)
−1/ab′ 0 1/a 1/b′

 ,

M3 =


0 0 1 0
0 0 0 1
−1/c′ 0 1 + 1/c′ 0

0 −1/c′ 0 1 + 1/c′

 ,

M4 =


0 1 0 0

−b′/ab− 1/c 1 + b′/a+ 1/c b′/c b′(−1 + 1/b− 1/c)
0 0 0 1

−1/ab 1/a 0 1/b

 ,

M5 =


0 1 0 0
−1/c 1 + 1/c 0 0

0 0 0 1
0 0 −1/c 1 + 1/c

 ,

M6 =


0 1 0 0

−(1 + c′)/ab 1/b+ 1/a+ c′/a c′/ab −c′/a
0 0 0 1

−1/ab 1/a 0 1/b

 .

Now let g1, g2, g3, g4, g5 be the monodromy matrices defined in formulas (2.7), (2.8),
(2.9), (2.10), (2.11) in M.Kato’s paper [19], where our symbols a, b, b′, c, ′ are Kato’s
symbols e(a), e(b), e(b′), e(c), e(c′). Define the conjugation matrix

S =


−1 c c′ −cc′
−1 1 c′ −c′
−1 c 1 −c
−1 1 1 −1

 .

Then the relations between the Mi and gj are given by

M1 = S−1g2g3g5S M2 = S−1g2g5S, M3 = S−1g2S

M4 = S−1g1g4S, M5 = S−1g1S, M6 = S−1g1g3g4S.

From these relations it follows that the group we computed and the group computed in
[19] are conjugate.
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[29] M.Saito, B.Sturmfels, N.Takayama, Gröbner Deformations of Hypergeometric Dif-
ferential Equations, Algorithms and Computation in Math. 6, Springer 2000

[30] T.Sasaki, On the finiteness of the monodromy group of the system of hypergeomet-
ric differential equations (FD). J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977)
565-573.

[31] M.Schulze, U.Walther, Resonance equals reducibility for A-hypergeometric sys-
tems, Algebra Number Theory 6 (2012), 527-537.



REFERENCES 29

[32] F.C.Smith, Relations among the fundamental solutions of the generalized hyperge-
ometric equation when p = q + 1. Non-logarithmic cases. Bulletin of the AMS 44
(1938), 429-33.

[33] J.Stienstra, GKZ hypergeometric structures, in: Arithmetic and geometry around
hypergeometric functions, 313-371, Progr. Math., 260, Birkhäuser, Basel, 2007.
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