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1 Introduction
In this paper we describe the geometry of the energy momentum mapping of the
complexified spherical pendulum. For background on the classical spherical pen-
dulum we refer the reader to [4, chpt. IV]. We show that this complex Hamiltonian
system is Mumford-Jacobi completely integrable [9, p.3.51–3.53] and admits an
analogue of the period lattice [5] and action angle coordinates [4, Apend. D]. Fol-
lowing the variation of the period lattice around a closed loop in the complement
of the discriminant locus of a family of elliptic curves (see equation (9) below),
we show that the complexified spherical pendulum has monodromy [4, p.383].

The monodromy of the complexified spherical pendulum also has been de-
scribed in recent papers by Audin [2] (unpublished) and Gavrilov and Vivlo [6].
Audin starts with a Lax pair related to the complexified spherical pendulum. She
then studies the geometry of a singular normalization C̃c of the family of affine
elliptic curves Cc:

µ2 + λ4 + 2c2λ
3 + 2c1λ

2 + 1 = 0,

which is part of the spectral curve of the Lax pair. Using Picard-Lefschetz tech-
niques, she then computes the variation of the period map H1(C̃c,Z) → C2 as
c = (c1, c2) traces out a curve in the complement of the discriminant locus of Cc.

The paper of Gavrilov and Vivolo starts with the discriminant locus of Cc and
then constructs a set of action-angle coordinates, which gives a simple proof of
Horozov’s theorem for the spherical pendulum. Using these action-angle coordi-
nates and Picard-Lefschetz theory, they show that the complex spherical pendulum
has monodromy.

There are serveral difficulties with the approaches to monodromy used in the
above papers. The most serious one is that the exact relation of the family Cc
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with the dynamics of the complexified spherical pendulum is nowhere explained.
Audin’s choice of the singular normalization C̃c of the family Cc is not motivated
from the dynamics. Also she does not explain what the generalized Jacobian
for C̃c is. (The published literature on generalized Jacobians is inaccessible to
dynamicists).

On the other hand, we think that our explanation of monodromy is direct. The
key obsevation is that a level set of a regular value of the energy momentum map
is a C∗-bundle over an elliptic curve. Moreover, it is a quotient of C2 by a rank
3 lattice. The inverse of the quotient map is simply given by the action angle
variables on the level set.

We note that the monodromy we find is not the same the same as the classic
Picard-Fuchs monodromy described in [3, p.657–693], because it involves a dif-
ferential form of the third kind, nor it is the same as the monodromy given in [1].
We have just given an analytic proof of a geometric explanation of monodromy
suggested by Knörrer [8].

2 The complexified spherical pendulum
In this section we describe the complex Hamiltonian system given by the com-
plexified spherical pendulum.

Let 〈 , 〉 be the standard symmetric bilinear form on C3, namely, 〈x, y〉 =∑3
i=1 xiyi for x, y ∈ C3. Set Q = {x ∈ C3 〈x, x〉 = 1}. Then Q is the complexi-

fication of the 2-sphere S 2 in R3. Let

M = T Q = {(x, v) ∈ Q × C3 〈x, v〉 = 0}

be the tangent bundle of Q with bundle projection pr : M → Q : (x, v) → x. On
M there is a holomorphic nondegenerate closed 2-form ω which is obtained by
pulling back the canonical symplectic form on the cotangent bundle of Q by the
flat map associated to 〈 , 〉. Note that M is a smooth subvariety of C3 × C3.

Recall [4, p.149] that as a constrained Hamiltonian system (H, M, ω), the com-
plexified spherical pendulum has Hamiltonian

H : M → C : (x, v)→ 1
2 〈v, v〉 + x3. (1)
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Moreover, its motion is governed by the Hamiltonian vector field XH, whose inte-
gral curves satisfy

ẋ = v

v̇ = −e3 + (〈x, e3〉 − 〈v, v〉)x.
(2)

The group SO(2,C) = {A =

(
a −b
b a

)
∈ Gl(2,C) a2 + b2 = 1} acts on M by

Φ̃ : SO(2,C) × M → M : (A, (x, v))→ (
(

A 0
0 1

)
x,

(
A 0
0 1

)
v ) . (3)

This action is Hamiltonian, has momentum mapping

L : M → C : (x, v)→ x1v2 − x2v1, (4)

and the associated Hamiltonian vector field XL has integral curves which satisfy

ẋ = e3 × x

v̇ = e3 × v.
(5)

Since Φ̃ leaves H invariant, L is an integral of XH. Let

ẼM : M → C2 : (x, v)→ (H(x, v), L(x, v))

be the energy momentum mapping.

For later purposes it is convenient to introduce new coordinates (ξ1, ξ2, z, η1, η2, y)
on C3 × C3 where

ξ1 = x1 + ix2, ξ2 = x1 − ix2, η1 = v1 + iv2, η2 = v1 − iv2.

In these coordinates the defining equations of M are

ξ1ξ2 + 1 = 1 − z2 and ξ1η2 + ξ2η1 + 2zy = 0.

The energy momentum mapping ẼM becomes

EM : M → C2 : (ξ, z, η, y)→ (c1, c2), (6)

where
c1 = 1

2 (η1η2 + y2) + z and c2 = 1
i (ξ2η1 − ξ1η2).
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In addition, the SO(2,C)-action Φ̃ becomes the C∗-action

Φ : C∗ × M → M :
(
λ, (ξ1, ξ2, z, η1, η2, y)

)
→ (λξ1, λ

−1ξ2, z, λη1, λ
−1η2, z).

Proposition 2.1. Let M◦ be the subset of M consisting of all points (ξ1, ξ2, z, η1, η2, y)
where at least one of the monomials ξ1ξ2, ξ1η2, ξ2η1, η1η2 is nonzero. Then the fol-
lowing statements hold.

1. The C∗-action Φ on M◦ is free and proper.

2. The map
π : M◦ → C4 : (ξ1, ξ2, z, η1, η2, y)→ (z, y, c1, c2)

is the quotient map M◦ → M◦/C∗ of the C∗-action Φ.

3. The image of the map π is the subvariety E◦ of C4 defined by
{
(z, y, c1, c2) ∈ C4 y2 = fc(z)

}
\(±1, 0,±1, 0),

where
fc(z) = 2(z2 − 1)(z − c1) − c2

2. (7)

4. The map π : M◦ → E◦ is the projection map of a C∗-bundle over E◦.

Proof.
1. First of all note that the map Φλ with λ , 1 has a fixed point if and only if
ξ1 = ξ2 = η1 = η2 = 0. Hence C∗ acts freely on M◦. To verify that the action Φ

is proper, it suffices to show that for any two compact subsets K1 and K2 of M◦

the set L = {λ ∈ C∗ K1 ∩ Φλ(K2) , ∅} is compact. Since K2 ⊆ M◦ is compact,
at least one of the products |ξ1ξ2|, |ξ1η2|, |ξ2η1|, |η1η2| restricted to K2 is bounded
below by a positve number. Suppose for example that |ξ1ξ2| is bounded below by
ρ > 0. In addition, the modulus of coordinates of points in K1 are bounded above
by some number R. Hence for every λ ∈ L there is a point in K2 whose ξ1 and ξ2

coordinates satisfy |λ||ξ1| < R and |λ|−1|ξ2| < R. Using the upper and lower bounds
for |ξ1| and |ξ2| we find that ρ/R2 < |λ| < R2/ρ. Thus L ⊆ C is contained in a
bounded set which is bounded away from zero. A standard argument using the
continuity of Φ shows that L is closed. Consequently L is compact.
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2. Given the equation of M and the definition of c1, c2, the following equalities
hold for points of M◦

ξ1ξ2 = 1 − z2

ξ1η2 = −zy − ic2

ξ2η1 = −zy + ic2

η1η2 = 2(c1 − z) − y2.

(8)

Note that the points of M◦ have the property that at least one of the right hand
sides of the equations (8) is nonzero. Conversely, if we choose p = (z, y, c1, c2) so
that at least one of the right hand sides of (8) is nonzero, we see that the inverse
image of p under the map π is a single C∗-orbit. Hence π is the quotient map of
the action Φ.

3. Note that the identity (ξ1ξ2)(η1η2) = (ξ1η2)(ξ2η1) gives rise to

(1 − z2)(2(c1 − z) − y2) = −(zy + ic2)(−zy + ic2),

which can be simplified to

y2 = fc(z) = 2(z2 − 1)(z − c1) − c2
2.

4. Finally, if C∗ acts freely and properly on a complex manifold V , then the
quotient map V → V/C∗ is the projection map of a C∗ -bundle over V/C∗. In
particular, this holds when V = M◦. �

For any value of c = (c1, c2) consider the affine elliptic curve

Ec : y2 = fc(z).

It is easy to check that Ec is smooth if and only if fc has no multiple roots, that is,
if and only if c does not lie on the discriminant locus ∆ defined by

0 = g.c.d( fc, f ′c ) = 27
4 c4

2 + 2c1(c2
1 − 9)c2

2 − 4(c2
1 − 1)2.† (9)

The quotient variety E◦ = M◦/C∗ can be considered as a family of affine elliptic
curves Ec parametrized by c = (c1, c2).

†Since c1 = 3
2 s − 1

2
1
s , c2

2 = − 1
s (1 − s2), s ∈ C∗ is a parametrization of ∆ by rational functions,

it follows that the genus its projectivization ∆ is 0. Because ∆ has three ordinary double points, it
is an immersion of a 2-sphere in complex projective 2-space with three normal crossings.
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Let
Ens = {(c1, c2, z, y) ∈ (C2\∆) × C2 y2 = fc(z)}.

Then Ens is the union of all smooth affine elliptic curves Ec. Since the points
(±1, 0) lie in ∆, it follows that Ens ⊆ E◦. Let Mns be the inverse image of Ens

under the quotient map π and let Mc be the inverse image of Ec under π. Then Mc

is the c-level set of the energy momentum map EM. The geometrical structure of
these level sets will become a major issue later on in this paper. By proposition
2.1 we know that π : Mns → Ens is a C∗-bundle. If we restrict this bundle to the
nonsingular curve Ec, we see that Mc is a C∗-bundle over Ec.

That the discriminant locus ∆ plays an important role can be seen from the
following proposition.

Proposition 2.2. The derivative of the map EM|Mns : Mns → C2\∆ has maximal
rank at every point of Mns.

Proof. The map EM|Mns is the composition of the projection map
π : Mns → Ens followed by the map

ρ : Ens → C2\∆ : (z, y, c1, c2)→ (c1, c2).

Since π is a quotient map of a free and proper action, its derivative has maximal
rank. Thus it suffices to show that the derivative of ρ has maximal rank at every
point of Ens. Suppose not. Then there is a point p of Ens where all the partial
derivatives of F(z, y, c1, c2) = −y2 + fc(z) vanish and y2 = fc(z). Hence y(p) = 0
and ∂ fc(z)

∂z (p) = 0. Moreover, fc(z(p)) = y2(p) = 0. Thus z(p) is a double zero of fc

which is contrary to our assumption that c < ∆. �

3 A partial compactification of Mc and Ec

In this section we find a partial compactification of the affine elliptic curve Ec and
the c-level set Mc of the energy momentum mapping.

Since the curves Ec in Ens are affine, Ec is not complete. We would like to
complete each Ec by adding the point at infinity. We do this as follows. The
variety Ens is an affine subvariety of (C2\∆) × C2 with coordinates ((c1, c2), (z, y))
where y2 = fc(z) (7). We now embed the second factor C2 into the complex
projective plane P2 by sending (z, y) to the projective point (z : y : 1). Denote
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the projective coordinates of P2 by (z : y : u). Then Ens can be completed to the
variety E

ns
defined by

{(
(c1, c2), (z : y : u)

)
∈ (C2\∆) × P2 y2u = 2(z2 − u2)(z − c1u) − c2

2u3
}
.

For each value of c = (c1, c2) < ∆ the curve Ec has been completed by adding the
point ((c1, c2), (0 : 1 : 0)). We denote this completion by Ec. Since c < ∆ the curve
Ec is a smooth compact 1-dimensional complex manifold and hence is an elliptic
curve.

We now complete the C∗-bundle π : Mns → Ens. Towards this goal, we
introduce the variety M

ns ⊆ (C2\∆) × P6 with coordinates
(
(c1, c2), (ξ1 : ξ2 : z :

η1 : η2 : y : u)
)

defined by the equations

ξ1ξ2 = u2 − z2

ξ1η2 = −zy − ic2u2

ξ2η1 = −zy + ic2u2

η1η2 = −y2 − 2(c1u − z)u

and the condition that at least one of the monomials ξ1ξ2, ξ1η2, ξ2η1, η1η2 is nonzero.
On M

ns
we have a C∗-action defined by

Ψ : C∗ × M
ns → M

ns
:(

λ,

(
(c1, c2), (ξ1 : ξ2 : z : η1 : η2 : y : u)

))
→

(
(c1, c2), (λξ1 : λ−1ξ2 : z : λη1 : λ−1η2 : y : u)

)
.

In a way similar to the proof of proposition 2.1 we can prove

Proposition 3.1. The map π : M
ns → E

ns
defined by

π
(
(c1, c2), (ξ1 : ξ2 : z : η1 : η2 : y : u)

)
=

(
(c1, c2), (z : y : u)

)

is the quotient map of the C∗-action Ψ on M
ns

. Since Ψ is a free and proper
C∗-action, π is the projection map of a C∗-bundle over E

ns
.

We easily check that Mns embeds in M
ns

via
(
(c1, c2), (ξ1, ξ2, z, η1, η2, y)

)
→

(
(c1, c2), (ξ1 : ξ2 : z : η1 : η2 : y : 1)

)
.

The restriction of π to Mns is the projection map π of proposition 2.1. The inverse
image of Ec under π is denoted by Mc. Thus Mc is a C∗-bundle over the elliptic
curve Ec.
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4 Action angle coordinates
In this section we obtain a complex analogue of the period lattice and action angle
coordinates for the complexified spherical pendulum.

We begin by choosing good coordinates on Mns in which to express the sym-
plectic form ω. Since ω is holomorphic on M it is holomorphic on Mns. Let V be
the Zariski open subset of Mns given by

Mns ∩
{
(ξ1, ξ2, z, η1, η2, y) ∈ C6 ξ1ξ2 , 0, y , 0

}
.

At every point p of Ens with y , 0 the variables (ξ1, z, c1, c2) can be used as local
coordinates at p. At any point p of V we have ξ1 , 0. Supposing that the values
of (ξ1, z, c1, c2) are known, then the values of ξ2, η1, η2 follow from

ξ2 =
(1 − z2)
ξ1

, η1 =

(−zy + ic2

1 − z2

)
ξ1, η2 =

−zy − ic2

ξ1

by virtue of the defining equations of Mns. Thus at every point of V the variables
(ξ1, z, c1, c2) can be used as local coordinates.

We now would like to write the symplectic form ω in terms of these coordi-
nates.

Proposition 4.1. The symplectic form ω on M restricted to V is

dz
y
∧ dc1 + i

(
zy − ic2

z2 − 1
dz
y
− dξ1

ξ1

)
∧ dc2. (10)

Proof. To see this, note that the canonical symplectic form on C6 can be written
as 1

2 (dξ1 ∧ dη2 + dξ2 ∧ dη1) + dz∧ dy. Since η1 =
−zy+ic2
ξ2

and η2 = − zy+ic2
ξ1

on V , we
obtain

dη1 =
−zy + ic2

ξ2
2

dξ2 − 1
ξ2

d(zy) + i
1
ξ2

dc2

and
dη2 =

zy + ic2

ξ2
1

dξ1 − 1
ξ1

d(zy) − i
1
ξ1

dc2.

Hence

ω
V

= dz ∧ dy − 1
2

(
dξ1

ξ1
+

dξ2

ξ2

)
∧ d(zy) + 1

2i

(
dξ1

ξ1
− dξ2

ξ2

)
∧ dc2. (11)
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Since ξ1ξ2 = 1 − z2 on V , which differentiating gives

dξ1

ξ1
+

dξ2

ξ2
= − 2z

1 − z2 dz.

Whence

ω
V

=
1

1 − z2 dz ∧ dy + i
(

z
z2 − 1

dz − dξ1

ξ1

)
∧ dc2. (12)

Differentiating y2 = 2(c1 − z)(1 − z2) − c2
2 gives

dy =
(3z2 − 2c1z − 1)

y
dz +

(1 − z2)
y

dc1 − c2

y
dc2,

which substituted into (12) yields (10). �

We now prove

Proposition 4.2. The symplectic form ω can be extended holomorphically to M
ns

.

Proof. We will use equation (10) of proposition 4.1. We must extend ω to points
of M

ns\Mns. Consider the rational functions s = z/y and t = 1/y on Ens. These
functions can be extended holomorphically to the point at infinity of each Ec. At
infinity they take the values s = 0, t = 0, where s is the local parmeter at infinity.
Also define new variables σi = ξi/y and τi = ηi/y for i = 1, 2. In terms of these
variables the defining equations of an affine part of M

ns
read

σ1σ2 = t2 − s2

σ1τ2 = −s − ic2t2

σ2τ1 = −s + ic2t2

τ1τ2 = −1 + 2(c1t2 − st).

This affine part includes the points of M
ns\Mns. Moreover, the defining equation

for Ens becomes
t = 2(s2 − t2)(s − c1t) − c2

2t3. (13)

From the above equations we see that τ1τ2 = −1 when s = t = 0. In particular, τ1

and τ2 are nonzero above the points at infinity of Mns. Hence σ1 = σ2 = 0 there.
Let us rewrite ω in terms of s, t, τ1, and τ2. A straightforward calculation gives

dz
y

= ds − s
t

dt.
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Differentiating (13) we obtain

dt =
(6s2 − 2c1st − 2t2) ds − 2t(s2 − t2) dc1 − 2c2t3 dc2

1 + 4t(s − c1t) + 2c1(s2 − t2) + 3c2
2t2

.

Thus s
t dt is holomorphic at s = t = 0 except possibly for the term 6 s3

t dt. How-
ever, using (13) we see that s3 equals t times a polynomial in s and t. Thus s3/t is
holomorphic at infinity and hence the 1-form dz

y can be holomorphically extended
to the points above s = t = 0. A similar argument holds for the 2-form dz

y ∧ dc1.

Now let us turn to the part of ω with dc2. First note that c2
z2−1

dz
y is holomorphic

at infinity. Hence we can ignore that term. Next we rewrite the 1-form zy
z2−1

dz
y − dξ1

ξ1
.

Using the relation ξ1 = −(zy + ic2)/yτ2 we obtain

dτ2

τ2
+

z dz
z2 − 1

+
dy
y
− d(zy + ic2)

zy + ic2
.

The 1-form dτ2
τ2

is holomorphic at infinity since τ2 , 0 there. The last three terms
are logarithmic derivatives which together equal

1
2

d[(1 − 1/z2)/(1 + ic2/zy)]
(1 − 1/z2)/(1 + ic2/zy)2 .

Since (1 − 1/z2)/(1 + ic2/zy)2 is holomorphic at infinity, its logarithmic derivative
is also. Hence ω is holomorphic at infinity. �

Corollary 4.3. Let c = (c1, c2) < ∆. The differential forms

ω1 =
dz
y
, ω2 = i

(zy − ic2

z2 − 1

) dz
y
− dξ1

ξ1

restricted to the Zariski open subset of Mc where y(z2 − 1) , 0 can be extended
holomorphically to all of Mc. The extension of the 1-forms ω1, ω2 to Mc will
again be denoted by ω1, ω2.

Proof. This follows from the observation that the 3-forms dz
y ∧dc1∧dc2 = ω∧dc2

and
(
i zy−ic2

z2−1
dz
y − dξ1

ξ1

)
∧ dc2 ∧ dc1 = ω ∧ dc1 are holomorphic on M

ns
. �

Motivated by the form of ω in proposition 4.1 we construct the complex ana-
logue of the period lattice on Mc as follows. Until further notice we assume that
c < ∆. Fix a base point p0 ∈ Mc and consider the Abel-Jacobi map

AJ : Mc → C2 : p→ (u1(p), u2(p)) =

(∫ p

p0

ω1,

∫ p

p0

ω2

)
, (14)
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where the integrals are taken along a path γ on Mc which joins p0 to p. Since
the 1-forms ω1 and ω2 are closed, the functions u1 and u2 depend only on the
homology class of the path on Mc joining p0 to p. The map AJ is multivalued
due to the fact that p0 and p can be joined by nonhomologous paths, say γ and γ̃.
The difference in the corresponding values ofAJ is given by a vector

(∫

Γ

ω1,

∫

Γ

ω2

)
, (15)

where Γ is the closed path beginning and ending at p0 which is formed by first
tracing out γ and then tracing out γ̃ backwards. Thus the multivaluedness ofAJ
is given by vectors of the form (15) where Γ ranges over H1(Mc,Z). Let

Lc =
{ (∫

Γ

ω1,

∫

Γ

ω2

)
∈ C2 Γ ∈ H1(Mc,Z)

}
.

Theorem 4.4. Let γ1, γ2 be a Z-basis of H1(Ec,Z). Suppose that the curves γi

avoid the points of Ec where z2 = 1 or the point at infinity. For j = 1, 2 define

λ j =

∫

γ j

dz
y
, µ j = i

∫

γ j

zy − ic2

z2 − 1
dz
y
. (16)

Then Lc is a lattice in C2 called the period lattice. Lc has Z-rank three and is
generated by the vectors

(λ1, µ1), (λ2, µ2), (0, 2π).

Proof. Let Uc = Ec\{z2 = 1,∞}. Note that the three points (1,−ic2), (−1, ic2) and
infinity are precisely the poles of the differential form Ω = i zy−ic2

z2−1
dz
y on Ec which

are all of first order. Since Ω = i
(

zy−ic2
y(z+1)

)
dz

z−1 , the residue of the pole at (1,−ic2)
is −i. Similarly the residue at (−1, ic2) is −i. Hence the residue at infinity is 2i.
Consequently, the value of

∫
γ

Ω, where γ is a closed loop in Uc, is determined by

the homology class of γ ∈ H1(Ec,Z) up to an integer multiple of 2π.
Let Γ be any closed path in Mc. Without loss of generality we can assume

that Γ lies in the open subset Vc = π−1(Uc). Since z2 , 1,∞ in Vc, it follows that
ξ1 , 0. Moreover, the map

Vc → Uc × C∗ : (ξ1, ξ2, z, η1, η2, y)→ (z, y, ξ1) (17)
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is an diffeomorphism. The image in Uc of the curve Γ under the projection π is
homologous to an integral linear combination of γ1 and γ2, say π(Γ) = m1γ1 +

m2γ2. Hence ∫

Γ

ω1 =

∫

π(Γ)

dz
y

= m1λ1 + m2λ2

and
∫

Γ

ω2 = i
∫

Γ

dξ1

ξ1
+ i

∫

π(Γ)

zy − ic2

z2 − 1
dz
y

= i
∫

Γ

dξ1

ξ1
+ (m1µ1 + m2µ2) mod 2π.

Since we can let Γ encircle ξ1 = 0 as many times as we want, the integral i
∫

Γ

dξ1
ξ1

can be any multiple of 2π. Consequently, the set of values of
∫

Γ
ω2, where π(Γ) is

homologous to m1γ1 + m2γ2, is m1µ1 + m2µ2 + 2kπ where k ∈ Z is arbitrary. This
proves the theorem. �

Another way of stating the result of theorem 4.4 is that the vectors


0

2π

,



∫

π−1(γ1)
ω1

∫

π−1(γ1)
ω2


,



∫

π−1(γ2)
ω1

∫

π−1(γ2)
ω2


(18)

generate the period lattice Lc.

Because ω1 ∧ ω2 , 0, the Abel-Jacobi map AJ is locally invertible. It will
turn out that this local inverse can be extended to all of C2, thus defining a global
holomorphic inverse. Although we could prove this at this point, we prefer to give
an explicit construction of the inverse toAJ in the next section.

Having discussed the period lattice we now prove the following complex ana-
logue of action angle coordinates.

Proposition 4.5. For each fixed c ∈ C2\∆ there is an open neighborhood U of Mc

in M
ns

and local coordinates (c1, c2, ũ1, ũ2) on U such that the symplectic form ω
is dũ1 ∧ dc1 + dũ2 ∧ dc2. The coordinates (c1, c2, ũ1, ũ2) are called complex action-
angle coordinates. In action-angle coordinates the vector fields XH and XL on Mc

are ∂
∂ũ1

and ∂
∂ũ2

, respectively.

Before proving the proposition we construct some preliminary local coordi-
nates. To construct them we need a local section of the surjective submersion

σ : M
ns → C2\∆ :

(
(ξ1 : ξ2 : z : η1 : η2 : y : u), (c1, c2)

)
→ (c1, c2).

12



Note that the map σ is the composition the surjective submersion

π : M
ns → E

ns

with the surjective submersion

ρ : E
ns → C2\∆ :

(
(z : y : u), (c1, c2)

)
→ (c1, c2).

Since the fiber ρ−1(c1, c2) is Ec, which is compact, ρ is a locally trivial bundle.
By construction the bundle π is locally trivial. Consequently, σ is a locally trivial
bundle. Fix c ∈ C2\∆. Then σ−1(c) = Mc. There is an open neighborhood W of c
in C2\∆ such that the bundle σ|U : U = σ−1(W)→ W is trivial. Let

τ : W ⊆ C2\∆→ U = σ−1(W) ⊆ M
ns

be a section of σ|U. We now prove

Lemma 4.6. The map

ψ : U = σ−1(W) ⊆ M
ns → W × C2 ⊆ W × (C2\∆) :

p→
(
σ(p),

∫ p

τ(σ(p))
ω1,

∫ p

τ(σ(p))
ω2

)
= (c1, c2, û1, û2)

(19)

is a local diffeomorphism.

Proof. Since dimσ−1(W) = dim(W × C2), it suffices to show that ψ is a submer-
sion. Let π1, π2, π3 be the projections onto the first, second and third factors of
W × (C × C). Clearly the map π1 ◦ψ is a submersion. Now

d(π2 ◦ψ)(p) = d̂u1(p) = ω1(p) − τ∗ω1(σ(p))

and
d(π3 ◦ψ)(p) = d̂u2(p) = ω2(p) − τ∗ω2(σ(p)).

But d(π2 ◦ψ)(p)∧d(π3 ◦ψ)(p) is nonzero because ω1∧ω2 = e1 dz∧dξ1 is nonzero
and

a). ω1 ∧ τ∗ω2 = f1 dz ∧ dc1 + f2 dz ∧ dc2,

b). ω2 ∧ τ∗ω1 = g1 dz ∧ dc1 + g2 dξ1 ∧ dc1 + g3 dz ∧ dc2 + g4 dξ1 ∧ dc2,

c). τ∗ω1 ∧ τ∗ω2 = h1 dc1 ∧ dc2.

13



Therefore the map (π2 × π3) ◦ψ is a submersion, which implies that ψ is a submer-
sion. �

Proof of proposition 4.5. From lemma 4.6 it follows that (c1, c2, û1, û2) are local
coordinates on U. We now compute the 2-form

d̂u1 ∧ dc1 + d̂u2 ∧ dc2 = (ω1 − τ∗ω1) ∧ dc1 + (ω2 − τ∗ω2) ∧ dc2

= ω1 ∧ dc1 − h1(c1, c2) dc1 ∧ dc2 + ω2 ∧ dc2 − h2(c1, c2) dc1 ∧ dc2,

since τ∗ω1 and τ∗ω2 are 1-forms on W × C2

= ω1 ∧ dc1 + ω2 ∧ dc2 − h(c1, c2) dc1 ∧ dc2. (20)

The 2-form h(c1, c2) dc1 ∧ dc2 is closed. Choosing the neighborhood W to be
simply connected and star shaped, it follows that there is a 1-form θ(c1, c2) =

θ1 dc1 + θ2 dc2 such that

−h(c1, c2) dc1 ∧ dc2 = dθ(c1, c2). (21)

Adjust the local section τ of the trivial bundle σ|U so as to define new angle
coordinates

ũ1 = û1 − θ1 ũ2 = û2 − θ2.

In action-angle coordinates (c1, c2, ũ1, ũ2) we have

dũ1 ∧ dc1 + dũ2 ∧ dc2 = (d̂u1 − dθ1) ∧ dc1 + (d̂u2 − dθ2) ∧ dc2

= d̂u1 ∧ dc1 + d̂u2 ∧ dc2 − dθ(c1, c2)
= ω1 ∧ dc1 + ω2 ∧ dc2, (22)

using (21) and (20). But the right hand side of (22) is the symplectic form ω on
U = σ−1(W).

In action-angle coordinates on U, the Hamiltonian function H (6) is c1. Thus

dc1 = XH (dũ1 ∧ dc1 + dũ2 ∧ dc2),

which implies that XH = ∂
∂ũ1

. Similarly the momentum function L (6) is c2, which
implies that XL = ∂

∂ũ2
. This completes the proof of proposition 4.5. �

An immediate consequence of proposition 4.5 is the fact that the complex
spherical pendulum is Mumford-Jacobi completely integrable.
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5 The inverse of the Abel-Jacobi map
In this section we show that the local inverse of the Abel-Jacobi map AJ (14)
constructed in preceeding section extends to a global inverse defined on all of C2.

We use the same notation as in theorem 4.4. We now recall the basic properties
of the Weierstrass elliptic functions ℘, ζ, and σ. For more details see [10, chpt.
XX, pp. 429–446]. Let Λc be the lattice in C generated by the complex numbers
λ1 and λ2 (16). Corresponding to Λc there is the Weierstrass ℘-function. There
is also the ζ-function which is characterized by the properties: 1). ζ′(u) = −℘(u)
and 2). ζ(u) = 1

u + O(u) about u = 0. The ζ function is not periodic. In fact there
are two complex numbers η1 and η2, called quasi-periods of Ec, such that

ζ(u + λ1) = ζ(u) + η1, ζ(u + λ2) = ζ(u) + η2.

More generally, corresponding to every λ ∈ Λc there is a unique quasi-period
η(λ) such that ζ(u + λ) = ζ(u) + η(λ). When λ = m1λ1 + m2λ2, we see that
η(λ) = m1η1 + m2η2. Finally, the Weierstrass σ-function is defined by

σ(u) = u
∏

λ∈Λc−{0}

(
1 − u

λ

)
eu/λ+(u/λ)2/2,

which satisfies σ′(u)/σ(u) = ζ(u). Furthermore, σ has the property that

σ(u + λ) = eλ/2+η(λ)u σ(u)

for every λ ∈ Λc.

To construct the inverse of the Abel-Jacobi mapAJ (14) we will need a prod-
uct of σ-functions. Why the choices are made will become clear in the proof of
theorem 5.1 below. Choose a, b ∈ C so that

2℘(a) + 1
3 c1 = 1, 2℘′(a) = −ic2, 2℘(b) + 1

3 c1 = −1, 2℘′(b) = ic2.

Then define the function

Σ(u) = e(ζ(a)+ζ(b))u σ(u − a)σ(u − b)
σ(a)σ(b)σ(u)2 .

As a consequence of the properties of the σ-function we obtain

Σ(u + λ) = exp
(
− (a + b)η(λ) + (ζ(a) + ζ(b))λ

)
Σ(u).
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Moreover, the principal part of Σ at u = 0 is 1
u2 .

Theorem 5.1. For the point p0 ∈ Mc in the definition of the Abel-Jacobi mapAJ
(14) we take (s, t, σ1, σ2, τ1, τ2) = (0, 0, 0, 0, 1,−1). Then the map

W : C2 → Mc : (u1, u2)→ (z, y, ξ1) =

(
2℘(u1) + 1

3 c1, 2℘′(u1), ei u2Σ(u1)
)

(23)

is a global inverse of the Abel-Jacobi map. Since every fiber ofW is the lattice
Lc, it follows that Mc = C2/Lc.

Proof. First we note that the inverse of the map

κ : Ec → C : π(p)→ u1(π(p)) =

∫ π(p)

π(p0)
ω1 =

∫ π(p)

π(p0)

dz
y

is given by

ρ : C→ Ec : u1 → (2℘(u1) + 1
3 c1, 2℘′(u1)) = (z, y). (24)

To see this replace the variables z and y in ω1 by their Weierstrass parametriza-
tions. Then du1 = dz

y and ρ(0) = ∞ ∈ Ec.
We now consider

∫ p

p0
ω2. First we replace the variables z, y in ω2 by their

Weierstrass parametrizations. Then zy−ic2
z2−1 becomes an elliptic function on Ec with

poles only at a + Λc, b + Λc and 0 + Λc, which are of first order with residues 1, 1,
and −2, respectively. Observe that the elliptic function

Z(u1) = ζ(u1 − a) + ζ(u1 − b) − 2ζ(u1)

on Ec has the same poles and residues as zy−ic2
z2−1 . Thus the difference of zy−ic2

z2−1 −Z(u1)
is a holomorphic elliptic function and hence is a bounded entire function on C,
which is constant by Liouville’s theorem. To compute this constant we evaluate
the difference at u1 = 0. We note that zy−ic2

z2−1 = − 2
u1

+ O(u1) and Z(u1) = − 2
u1
−

ζ(a) − ζ(b) + O(u1). Thus the constant is ζ(a) + ζ(b), that is,

zy − ic2

z2 − 1
= ζ(u1 − a) + ζ(u1 − b) − 2ζ(u1) + ζ(a) + ζ(b) =

Σ′(u1)
Σ(u1)

.

The second equality in the equation above explains why the function Σ was con-
structed. For the moment let p1 be a point in Mc. Then

u2 =

∫ p

p1

ω2 = i
∫ p

p1

z(u1)y(u1) − ic2

z2(u1) − 1
du1 − i

∫ p

p1

dξ1

ξ1
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= i
∫ p

p1

Σ′(u1)
Σ(u1)

du1 − i
∫ p

p1

dξ1

ξ1

= i log
( Σ(u1)
Σ(u1(p1))

)
− i log

( ξ1

ξ(p1)

)

= i log(Σ(u1)) − i log ξ1 + i log
( ξ(p1)
Σ(u1(p1))

)
.

We now let p1 converge to the point p0 given in the statement of the theorem.
Recall that Σ(u1) has principal part 1

u2
1

at u = 0. Observe that

ξ1 = −zy + ic2

yτ2
= − 1

τ2

(
1
u2

1

+ · · ·
)
,

using (8) and the fact that yτ2 = η2. Since τ2 converges to −1 as p1 converges to
p0, we see that limp1→p0

(
ξ(p1)

Σ(u1(p1))

)
= 1. Hence

u2 = i log Σ(u1) − i log ξ1,

which implies that ξ1 = ei u2Σ(u1).

Since (ξ1, z, y) are coordinates for points p in a Zariski open subset Vc of Mc

(see (17)) and (W ◦AJ)(p) = p, it follows that this equality holds for all points
in Mc. ThusW (23) is a global inverse of the Abel-Jacobi mapAJ .

In order to show that each fiber of W is the lattice Lc, we first compute an
explicit expression for the period

µ j = i
∫

γ j

zy − ic2

z2 − 1
dz
y
,

see (16). Using the Weierstrass parametrization of Ec and choosing the curve

[0, 1]→ C : t → tλ j + (1 − t)u0
1, u0

1 , 0, a, b + Λc,

whose image under the map ρ (24) is γ j, we find that

µ j = i
∫ u0

1+λ j

u0
1

z(u1)y(u1) − ic2

z2(u1) − 1
du1 = i

∫ u0
1+λ j

u0
1

d log Σ(u1)

= i log
(
Σ(u0

1 + λ j)

Σ(u0
1)

)
= −i

[
(a + b)η j − (ζ(a) + ζ(b))λ j

]
.
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In other words,
µ(λ) = −i

[
(a + b)η(λ) − (ζ(a) + ζ(b))λ

]
.

Now suppose that (u1, u2), (u′1, u
′
2) ∈ W−1(z, y, ξ1). Then u1 and u′1 correspond

to the point (z, y) = (2℘(u1) + 1
3 c1, 2℘′(u1)) on Ec. Hence there is a λ ∈ Λc such

that u′1 = u1 + λ. Since u2 and u′2 correspond to

ξ1 = eiu2Σ(u1) = eiu′2Σ(u′1) = eiu′2Σ(u1 + λ),

it follows that

u2 − u′2 = −i log
(
Σ(u1 + λ)

Σ(u1)

)

= i
[
(a + b)η(λ) − (ζ(a) + ζ(b))λ

]
+ 2πi k, for some k ∈ Z

= −µ(λ) + 2πi k.

Thus (u1, u2) and (u′1, u
′
2) differ by some element of Lc. Consequently, each fiber

ofW is the lattice Lc, which shows that Mc is holomorphically diffeomorphic to
C2/Lc. �

6 Monodromy
In this section we show that the complexified spherical pendulum has monodromy.
More precisely, we show that there is a noncontractible loop Γ in C2\∆ such that
the bundle of period lattices

ν :
∐

c∈γ
Lc → Γ

over Γ has classifying map given by


1 −1 0
0 1 0
0 0 1

.

For the moment, consider the classical spherical pendulum. Let c lie in the
set of regular values R of its energy momentum mapping em. Then the motion
of the spherical pendulum takes place on a smooth 2-dimensional torus T 2

c in
phase space TS 2. The image of T 2

c under the tangent bundle projection map is an
annular region A on S 2 bounded by two small circles lying in planes parallel to
the equatorial plane. There are two important quantities associated to the motion
on T 2

c : one is the time T (c) it takes starting on the upper boundary of A to the
motion to return to this boundary for the first time and the other is the angle Θ(c)
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measured along the upper boundary from starting point to first return point. As is
well known

T (c) = 2
∫ z1

z0

dz
y

and Θ(c) = 2
∫ z1

z0

c2

1 − z2

dz
y
, (25)

where y2 = fc(z) = 2(c1−z)(1−z2)−c2
2 and the discriminant of fc is positive. Here

−1 < z0 < z1 < 1 < z2 are the three distinct real roots of fc. Observe that T (c)
is the period of a holomorphic 1-form on Ec and Θ(c) is a period of a differential
form of the third kind on Ec. In [5], [4, chpt. IV] it was shown that the real analytic
function Θ on R is multivalued – decreasing by 2π along any positively oriented
closed curve Γ in R which encircles the point (1, 0). Another way to say this is to
use the real period lattice Lc defined by the 2-torus T 2

c . The lattice Lc is spanned
by the vectors

XL(p) and T (em(p)) · XH(p) +
Θ(em(p))

2π
· XL(p),

where p ∈ T 2(c) and XH and XL are the Hamiltonian vector fields corresponding
to the energy and angular momentum of the spherical pendulum. Then the bundle
of real period lattices

ν̃ :
∐

c∈Γ
Lc → Γ

over Γ has classifying map
(

1 −1
0 1

)
.

The following lemma describes the relation between the differential form Θ of
the third kind on Ec with the holomorphic 1-form ω2 on Mc.

Lemma 6.1. The period
∫
γ
ω2 modulo π is minus the period

∫
π ◦ γ Θ for any closed

loop γ on Mc which avoids the points with z2 = 1.

Proof. First note that
∫

γ

Θ =

∫

γ

c2

1 − z2

dz
y

= −i
∫

γ

(zy − ic2)
z2 − 1

dz
y

+ i
∫

γ

zy
z2 − 1

dz
y
.

By theorem 4.4 the periods of i zy−ic2
(z2−1)y

dz
y , taken over Ec, are, modulo 2π, equal to

the periods of the form ω2. The periods of i zy
z2−1

dz
y are multiples of π, since this

1-form is equal to i
2 times the logarithmic derivative d(z2−1)

z2−1 . �

The main goal of this section is to prove the following
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Theorem 6.2. Consider the periods of the differential forms ω1 = dz
y and Θ =

c2
1−z2

dz
y on Ec as analytic functions of c = (c1, c2). Then there is a closed path Γ in

the c-space C2 \ ∆ such that after analytic continuation along one circuit of Γ, the
periods of ω1 do not change and at least one period of Θ changes by 2π.

The idea of the proof is that we take a point c0 in c-space close to the locus ∆.
Through c0 we consider the complex curve C of all parameter values c such that
Ec is isomorphic to Ec0 . For every c ∈ C we normalise the curve Ec to a single
curve E in the Legendre form v2 = 2u(u−1)(u− t), where t is a fixed large number.
However, the poles of the 1-form Θ still depend on the choice of c ∈ C. We let
one of these poles, called s, run over a path which encloses the points 0, 1 in C.
Then one of the periods of Θ changes by 2π.

To carry out the proof we need a few lemmata.

Lemma 6.3. Suppose s, t ∈ C satisfy |s| < 2 and |t| > R, where R > 0 is sufficiently
large (R = 100 will do).

1. Define a ∈ C by

a = 1
4

(
−1 − t + 3s −

√
t2 + 2st − 2t − 3s2 + 2s + 1

)
, (26)

where the square root is chosen so that it lies close to t. Then a lies in − t
2 +C[[s, 1

t ]]
and the power series converges when |s| < 2, |t| > R.
2. The substitution

z = 1 + (u − s)/a, y = v/a3/2 (27)

transforms the defining equation y2 = fc(z) of Ec into the defining equation v2 =

2u(u − 1)(u − t) of E.
3.

c1 = (t − 3s + 3a + 1)/a, −c2
2 = 2s(s − 1)(s − t)/a3.

4. The points on Ec with z = 1 correspond to points on E with u = s, while the
points with z = −1 correspond to those on E with u = −2a + s.

Proof of lemma 6.3.
1. The statement about the analytic nature and the region of convergence of a as
function of s, t is an elementary exercise.
2. We apply the inverse substitution u = a(z − 1) + s, v = a3/2y to the curve
v2 = 2u(u − 1)(u − t). We get

y2 = 2(z3 + b2z2 + b1z + b0), (28)
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where

b0 =
1
a3 (s − a) ((s − a)2 − (1 + t)(s − a) + t) (29)

b1 = (3s2 + 2at + t − 2s + 3a2 + 2a − 6as − 2st)/a2, (30)
b2 = (−t + 3s − 3a − 1)/a. (31)

Choose a in equation (26) so that b1 = −1. Then the transformed equation (28)
reads

y2 = 2(z2 − 1)(z + b2) + 2(1 + b2 + b1 + b0).

3. We can now identify c1 with −b2 and −c2
2 with 2(b0 + b2). From the fact that

− 1
2 c2

2a3 = a3(b0 + b2) and the definition of a a calculation using (30) shows that
−c2

2 = 2s(s − 1)(s − t)/a3.
4. From u = a(z − 1) + s we easily see that z = ±1 implies that u = s and
u = −2a + s, respectively. �

Lemma 6.4. Using the transformation (30), the 1-forms dz
y and Θ can be rewritten

as
dz
y

= a1/2 du
v
, Θ =

v(s)
2i

(
1

u − s
− 1

u + 2a − s

)
du
v
. (32)

Here v(s) denotes a suitable choice of branch of the function
√

2s(s − 1)(s − t).

Proof. The transformation of dz
y is immediate. For Θ we note that

c2

1 − z2

dz
y

=
y(s)
2i

(
1

z + 1
− 1

z − 1

)
dz
y
,

where y(s) =
√

fc(s). Carrying out the transformation (30) is now straightforward.
�

From the lemma 6.3 and 6.4 we see that it suffices to study the variation of the
periods of the 1-forms in (32).

We now assume that t has a fixed value and we let s run over a closed path
Γ which encircles the points 0, 1 exactly once. Since a (26) is close to − t

2 and is
analytic in s, the value of a1/2 returns to its original value after letting s trace out
Γ once. Therefore the periods of a1/2 du

v return to their original values. It remains
to study the variation of the periods of Θ. For this we need the additional

Lemma 6.5. Consider the elliptic curve E defined by

v2 = g(u) = 2u(u − 1)(u − t).
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Let s be a complex number , 0, 1, t and let γ be a closed path on E avoiding the
points where u = s. Define

p(s) =

∫

γ

v(s)
u − s

du
v
.

Then
p′(s) =

s
v(s)

∫

γ

du
v
− 1

v(s)

∫

γ

u
du
v
, (33)

where ′ denotes differentiation with respect to s.

Proof. Differentating p under the integral sign gives

p′(s) =

∫

γ

d
ds

(
v(s)
u − s

)
du
v
.

But
d

ds

(
v(s)
u − s

)
=

v′(s)
u − s

+
v(s)

(u − s)2 =

(
1
2

g′(s)
u − s

+
g(s)

(u − s)2

)
1

v(s)
,

using v(s)2 = g(s) and 2v(s)v′(s) = g′(s). Hence

p′(s) =
1

v(s)

∫

γ

(
1
2

g′(s)
u − s

+
g(s)

(u − s)2

)
du
v
.

A straightforward computation, using the fact that g(u) is a cubic polynomial with
leading coefficient 2, gives

d
( v
u − s

)
= 1

2

g′(s)
u − s

du
v

+
g(s)

(u − s)2

du
v

+ (u − s)
du
v
.

Hence,

p′(s) =
1

v(s)

[∫

γ

d
( v
u − s

)
−

∫

γ

(u − s)
du
v

]
.

Since a period of an exact form is zero we obtain (33). �

Proof of theorem 6.2. We use the same notation as in the discussion above. The
variation ∆Γ p of p(s) along the path Γ is given by

∫
Γ

p′(s) ds. Hence, by lemma
6.5

∆Γ p =

∫

Γ

s ds
v(s)

∫

γ

du
v
−

∫

Γ

ds
v(s)

∫

γ

u du
v
.
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The Weierstrass parametrisation of the curve E is given by

u = 2℘(τ) − 1
3 (t + 1), v = 2℘′(τ).

Let τγ, τΓ be the elements in the period lattice L o ℘ such that E = C/L which
correspond to the curves γ and Γ. Let ηγ and ηΓ be the quasi-periods of the Weier-
strass ζ-function for L. Then

∆Γ p = −2(ηΓτγ − ηγτΓ).

From the Legendre relations for elliptic functions it follows that

∆Γ p = 4nπi,

where n is the negative of the intersection number of Γ and γ. By choosing γ such
that it intersects Γ exactly once with intersection number 1, we can see to it that
p(s) changes by 4πi as s runs over Γ once.

To prove the theorem we show that p(−2a + s) does not change value if we let
s run over Γ. To that end we write s′ = −2a + s and note that it depends on s, t via
s′ = t + s−s2

t + O( 1
t2 ). Since s − s2 encircles the origin twice if we let s run over Γ,

we see that s′ encircles the point t twice. Denote this path by Γ′. Since Γ′ lifts to
a closed path in the τ-plane, we get ∆Γ′ p = 0.

As a consequence of the preceding argument we see that

v(s)
v(−2a + s)

p(−2a + s) =

∫

γ

v(s)
u + 2a − s

du
v

does not change value.

In lemma 6.4 we saw that

Θ =
1
2i

(
v(s)
u − s

du
v
− v(s)

u + 2a − s

)
du
v
.

Thus we conclude that there is a least one period of Θ which change by 1
2i 4πi = 2π

when we make a circuit of Γ. �

We are now in a position to prove

Corollary 6.6 (to theorem 6.2). Running over the curve Γ once, the period of ω1

does not change, whereas one of the periods of ω2 decreases by 2π.
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Proof. This follows immediately from lemma 6.1. �

Another way to state the result of corollary 6.6 is that after making a circuit of
Γ, the basis


0

2π

,



∫

π−1(γ1)
ω1

∫

π−1(γ1)
ω2


,



∫

π−1(γ2)
ω1

∫

π−1(γ2)
ω2



of the period lattice Lc0 for c0 ∈ Γ becomes either the basis


0

2π

,



∫

π−1(γ1)
ω1

∫

π−1(γ1)
ω2 − 2π


,



∫

π−1(γ2)
ω1

∫

π−1(γ2)
ω2


,

in which case the bundle of period lattices over Γ has classifying map M1 =
1 −1 0
0 1 0
0 0 1

 or the basis


0

2π

 ,



∫

π−1(γ1)
ω1

∫

π−1(γ1)
ω2


,



∫

π−1(γ2)
ω1

∫

π−1(γ2)
ω2 − 2π



for which the classifying map is M2 =


1 0 −1
0 1 0
0 0 1

. Since


−1 0 0
0 0 −1
0 −1 0

 M2


−1 0 0
0 0 −1
0 −1 0

 = M1,

the period lattice bundles over Γ with classifying maps M1 and M2 are isomorphic.
This completes our treatment of monodromy in the complex spherical pendulum.
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