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Abstract. We consider the problem of computing a weighted edge match-
ing in a large graph using a parallel algorithm. This problem has applica-
tion in several areas of combinatorial scientific computing. Since an exact
algorithm for the weighted matching problem is both fairly expensive to
compute and hard to parallelise we instead consider fast approximation
algorithms.

We analyse a distributed algorithm due to Hoepman [8] and show how
this can be turned into a parallel algorithm. Through experiments using
both complete as well as sparse graphs we show that our new parallel
algorithm scales well using up to 32 processors.

1 Introduction

A matching in an undirected graph G = (V, E) is a pairing of adjacent vertices
such that each vertex is matched with at most one other vertex, the objective
being to match as many vertices as possible or to maximise the sum of the
weights of the matched edges.

One application of matchings in scientific computation is when using pivoting
in the direct solution of a system of equations Az = b. Once a pivot element a;;
has been chosen no other element in row ¢ or column j can be used as a pivot
again. The typical strategy is then to choose pivots in a greedy fashion. But as
was shown by Duff and Koster [5,6], this can lead to sub-optimal results and
they demonstrate that better results can be achieved by modelling the pivoting
problem as computing a weighted matching in a bipartite graph. This is done
by viewing A as a bipartite graph G(V1, Va2, E) where there is one vertex in V}
for each row of A, one vertex in V5 for each column of A, and the weight of edge
(4,7) is equal to |a;j|. Then any selection of pivots is equivalent to computing a
perfect matching in G (i.e., with all vertices matched). The matching objective
of Duff and Koster is to maximise the product of the edge weights; in contrast,
in the present work we try to maximise their sum.
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Even though a maximum-weight matching can be computed in polynomial
time, the time complexity of doing this is still high. For this reason, fast ap-
proximation algorithms are attractive for the matching problem. The sequential
greedy matching (GM) algorithm where eligible edges are chosen by declining
weight, obtains an approximation ratio of % but requires a global sorting of the
edges, thus resulting in a running time of O(|E|log |E|) [1]. Preis [12] has shown
how one can avoid the sorting in the GM algorithm, thus getting the time com-
plexity down to O(|E|). The algorithm by Preis depends on finding dominating
edges, i.e., edges that are heavier than their incident edges, and adding these
to the matching. Since the work of Preis, linear-time algorithms that get the
approximation ratio up to % — € have been introduced [4, 11].

Common to these algorithms is that they are inherently sequential. Thus,
they are unpractical to use if the graph is distributed, as is often the case for
scientific applications running on parallel computers. In the current paper, we
present a new parallel matching algorithm that lends itself well to distributed-
memory computers. Our algorithm is based on a distributed matching algorithm
due to Hoepman [8]. This algorithm builds on the work by Preis and returns the
same solution as this algorithm.

We present and analyse the algorithm by Hoepman and show that this can
in fact be phrased as a variant of Luby’s parallel algorithm [10] for finding an
independent set in a graph. Next, we explain how it is possible to turn Hoepmans
algorithm into an efficient parallel algorithm suitable for distributed-memory
computers. This algorithm has been implemented and extensive tests on both
complete and sparse graphs show that the algorithm scales well using up to 32
Processors.

The remainder of the paper is organised as follows. In Section 2, we present
and analyse the Hoepman algorithm. In Section 3, we describe how this can be
parallelised. We present results from experiments in Section 4 and conclude in
Section 5.

2 Distributed Matching

We will throughout this presentation assume that there exists a global ordering
on the weights of the edges. If this is not the case to begin with, we can impose
such an ordering by using the relative numbering of the involved vertices to break
ties. As an example, if w(u,v) = w(w, x) then we rank (u, v) before (w, x) if and
only if max{u,v} > max{w,z} or max{u,v} = max{w,z} and min{u,v} >
min{w, z}. The purpose of this ordering is to ensure that two edges of the same
weight, incident on the same vertex, can always be ordered.

Let Ng(v) denote all vertices in the set S that are adjacent to the vertex
vin G. If S =V we will just write N(v). Let further Hg(v) be the vertex in
Ng(v) such that the edge (v, Hg(v)) is of maximum weight among all edges
(v,w) where w € Ng(v). We say that an edge (u,v) is dominating if Hg(u) = v
and Hg(v) = u. Let 6(v) be the degree of v in G and A = max,ey 6(v).



2.1 The Hoepman Algorithm

We now present the distributed algorithm due to Hoepman [8]. This algorithm
assumes that each vertex has associated with it a computing entity with its own
memory and the ability to communicate with its neighbours through message
passing. Algorithm 1 gives the algorithm that is run on each vertex. The main
idea of the algorithm is to locate dominating edges and add these to the match-
ing. Once a dominating edge has been found, all adjacent edges are discarded
from use in the matching and the process continues.

The set S in Algorithm 1 is used to maintain the possible candidates that a
vertex v can match with. It is initially set to N(v). Also, the variable ¢ is used
to store the prime candidate that v wants to match with. It is set to Hg(v) at
the start of the algorithm and a (req) (request) message is sent to ¢ to indicate
that v wants to match with c. When the algorithm terminates, the c-values of
all the vertices define the matching.

For the rest of the algorithm, v will be processing incoming messages. All
(req) messages are stored in a set R. If v receives a (req) message from ¢ (meaning
that ¢ and v mutually prefer each other), then v will send (drop) messages to
all other vertices in S to indicate that it is now matched with c. If v receives a
(drop) message from w, then u will be removed from S since u has now matched
with another vertex. Furthermore, if u = ¢ then v must pick a new candidate in
S to match with. Thus, v sets ¢ = Hg(v) and if ¢ # null sends a (req) message
to c.

It is shown in [8] that when the algorithm terminates the c-values of the
vertices define the same matching as produced by the GM algorithm. Note that
this is under the assumption that ties are broken in the same manner in both
algorithms. If this is not the case, then it is easy to show that Algorithm 1 will
still produce a matching of weight at least 0.5 of the optimal one.

Also, note the importance of having a deterministic tie breaking scheme for
edges incident on the same vertex. Without such a scheme, Algorithm 1 could
easily deadlock as the following example shows. Consider a graph with three
vertices z, y, and z and edges (x,y), (y,2), and (2, ) where each edge is of the
same weight. If each vertex individually chooses which of its incident edges it
wants to use for a matching then = could send a (req) message to y, while y
sends a (req) message to z, and z sends a (req) message to z. The algorithm
would then be deadlocked with each vertex waiting for a response message.

2.2 Running Time

Next, we consider efficiency issues in implementing Algorithm 1. In [8] it is shown
that at most two messages will be sent along any edge of the graph. That is, a
vertex v will at most send one (req) message along any incident edge (v, w) and
after this at most one more message will be sent from w to v. If this is a (req)
message, then v and w both know that they prefer to match with each other. If
this message is a (drop) message then w has matched and v will not consider w



Algorithm 1 The algorithm by Hoepman [8].

procedure DISTRIBUTEDMATCHING (v, N (v))
R—10
S «— N(v)
¢ «— Hg(v)
if ¢ # null then
send (req) to ¢
while S # () do
receive m from some u € N(v)
if m = (req) then
R — RU{u}
else if m = (drop) then
S — S\ {u}
if u = c then
¢+ Hg(v)
if ¢ # null then
send (req) to c
if ¢ # null and ¢ € R then
forall w € S\ {c}
send (drop) to w
S—0

return c

as a candidate for the rest of the algorithm. Thus, the total number of messages
sent is at most 2|E|.

We first note an interesting relationship between Algorithm 1 and one of the
classical algorithms in parallel and distributed computing, namely the algorithm
by Luby for computing an independent set [10].

To do so, we first need to introduce the notion of a line graph. A line graph
L(G) is a graph where each vertex of L(G) represents an edge of G; two vertices
of L(G) are adjacent if and only if their corresponding edges in G share a common
endpoint. It is well known, and not hard to see, that a matching in a graph G is
equivalent to an independent set in its line graph L(G).

If we construct L(G) from G assigning the same weights to the vertices of
L(G) as are assigned to the corresponding edges of G, we can interpret Algorithm
1 as being run on L(G) to find an independent set. Instead of locating dominating
edges we now locate dominating vertices (i.e., vertices that are heavier than their
remaining neighbours) and for each such vertex we add it to the independent set
and remove its neighbours from further consideration. The resulting independent
set in L(G) is then equivalent to the matching found in G by Algorithm 1.
The algorithm on L(G) is a variant of the well-known Luby algorithm [10] for
computing independent sets in parallel.

The Luby algorithm is best viewed as operating in synchronous rounds, where
a round starts with each remaining vertex v determining if it is dominating. If
S0, v is entered as a member of the independent set and a message is sent to
any remaining neighbor of v before v exits the algorithm. These neighbors will



in turn send a message to each of their remaining neighbors that they are also
exiting the algorithm before the algorithm continues with the next round. If
the weights are assigned in a random fashion to the vertices of L(G) then the
expected number of rounds of Luby’s algorithm is O(log |V ()l) [7, 10].

Algorithm 1 can also be viewed as executing in synchronous rounds with
communication only taking place once in each iteration of the main while-loop
and with all remaining vertices participating. Doing so, we get the following
observation.

Lemma 1. If the edge weights are assigned randomly then Algorithm 1 is ex-
pected to terminate in O(log |E|) rounds.

We next consider the time spent on each vertex in running Algorithm 1. The
only non-trivial decision that has to be made in Algorithm 1 is how to maintain
the set S and how to implement the Hg(v) function efficiently. The easiest way
of doing this is to initially presort the edges incident on each vertex by decreas-
ing weight. One can then find Hg(v) in O(1) time. Also, when removing a vertex
from S one can maintain this list by an O(1) update. The total time spent com-
puting on a vertex v will then be dominated by the sorting: O(d(v)logd(v)) =
O(Alog A) where A is the maximum degree in the graph. The accumulated work
performed on all vertices is given by > O(6(vi)logd(vi)) = O(|E|log A).
Comparing this with the GM algorithm we see that the work has decreased
from O(|E|log|F|) although it is still not linear.

We next show that if the probability of each edge incident on a vertex being
removed is uniform then it is not difficult to get the expected accumulated cost of
the algorithm down to linear. The way to do this is by keeping S as an unordered
linked list for each vertex v € V. In this list, we also store the weight w(v, x)
with the vertex = € S. In addition, we maintain a pointer r, that points to the
vertex in S such that w(v,r,) is the maximum over all vertices in S. Then we
can determine Hg(v) in O(1) time but whenever the vertex pointed to by r, is
deleted from S we must perform a linear scan of the remaining vertices in S to
find the new value of r,. But as the following result shows this is not expected
to happen too often.

Lemma 2. Letv be a vertex in G. If in each round of Algorithm 1 the probability
is uniform that a particular element of S will be removed next, then the expected
amount of time needed to maintain the value of r, throughout the algorithm is

O(6()))-

Proof. Note first that if v associates a local numbering from 1 through |N(v)]
with the nodes in N(v), then given a vertex u € N(v) it is possible to locate its
position in S in time O(1), since the linked list representing S can be stored in
an array of length |N(v)].

In the worst-case scenario, either a vertex v will not be matched until it
has only one incident edge remaining or it will not be matched at all. Before
this happens, every time the vertex pointed to by r, is removed from S, a cost
proportional to the current size of S is incurred; if a different vertex is removed,



the cost is only O(1). Let Cj be the expected cost of maintaining the value of
r, for a vertex of degree k. Since at any point we are equally likely to delete any
of the remaining edges, the value of C}, is given by the recursion

k—1
Cr==(k+Cro1)+ T(l + Ci-1)

> =

where k = §(v) and C; = 1. Rearranging and expanding Cy_1, we get

E—1
Cp =14 -——+Ck (1)
1
=2— 7 +Ci (2)
=2k — Hy, (3)

where Hy, is the kth harmonic number, H, =1+ 1/2+4 .-+ 1/k.

We note that Lemma 2 does not constitute a formal proof that the cost of
the algorithm is linear when the edge weights are assigned in a random fashion.
The probability that a particular vertex is removed from some set S depends
on the relative size of the associated edge. A heavier edge is less likely to be
dominated by one of its adjacent edges while a lighter edge is more likely to be
dominated. Thus, one would expect that the edge (v,r,) is in fact less likely to
be dominated than any of the other edges incident on v.

3 Parallelizing the Hoepman Algorithm

For any realistic data set and parallel computer, one would expect that the
number of processors p is far less than the number of vertices in the graph. Thus,
in a parallel algorithm each processor must handle several vertices of the graph.
It would be possible, although not very practical, to let each processor simulate
several processes such that one could keep Algorithm 1 unchanged. Instead, we
first develop a sequential version of Algorithm 1 that each processor will run on
its allocated vertices and then separately look at how to handle communication
between the processors.

3.1 A Sequential Algorithm

The sequential version is shown in Algorithm 2. The algorithm now uses an
indexed variable c¢(v) to point to the current best match of vertex v and if
¢(c(v)) = v then v and ¢(v) are considered to be matched and the edge (v, c(v))
is added to the set M of matched edges. Similarly to Algorithm 1, we use a set
Sy initialised to N (v) to hold the neighbours of v that might still be candidates
to match with. The algorithm starts by finding all the edges that are dominating
in the initial graph. The endpoints of each such edge are added to a set D while



Algorithm 2 The sequential matching algorithm.

procedure SEQUENTIALMATCHING(G = (V, E))
for each v € V do
c(v) = null
D10
M —0
for each v € V do
Sy — N(v)
(v) — Hs, (v)
if ¢(c(v)) = v then
D =DuU{v,c(v)}
M = M U{(v, c(0))}

while D # () do
v « some vertex from D
D=D\{v}
for each z € S, \ {c(v)} where (z,c¢(z)) ¢ M do
Sz — Sa \ {v}
c(z) «— Hg, ()
if ¢(c(z)) = = then
D =DuU{z,c(z)}
M = M U{(z, c(2))}
return M

the edge itself is added to M. Note that we avoid adding endpoints twice to D
because ¢(c(v)) = null the first time a dominant edge is considered for inclusion.

Now that the initial dominating edges have been found, we must for each
vertex v € D inform the unmatched neighbours of v that v is no longer a
candidate for matching. Thus we traverse the unmatched neighbours of v (stored
in S,) and for each such neighbour = which has not yet been matched, we remove
v from S, indicating that v is no longer a candidate to match with. We then
update c¢(x) and if this results in a new matching, that is, if ¢(c(z)) = z, then
we add x and ¢(z) to D.

It is fairly straightforward to see that Algorithm 2 produces exactly the
same matching as Algorithm 1; therefore, we omit a formal proof. Also, the
implementation details of Hg(v) that were discussed in Section 2 also apply to
Algorithm 2.

3.2 A Parallel Algorithm

We now outline our parallel algorithm. As stated, each processor is responsible
for a block of vertices. Each processor then holds information about its own
vertices and all edges incident on these. It also has information about on which
processors its adjacent vertices reside. We note that the incident edges of each
vertex v can be ordered based only on information from N (v).

In the case of a complete graph we use a regular block partition where each
processor gets n/p vertices and in the case of a sparse graph we use the Metis



graph partitioning library [9] to achieve an even partition where the number of
crossing edges is kept small.

In our implementation, we have used ghost-vertices to make handling of
crossing edges easier. Thus, if a vertex v is assigned to processor ¢ and has
neighbours wy, wa, .. ., wy that reside on processor j where i # j, we add a ghost
vertex v’ on processor j and edges (v',w;) also on processor j for 1 <[ < k.

Once the graph has been partitioned and distributed across the processors,
each processor will start to run Algorithm 2 on its regular vertices. This will
run until no more dominant edges can be found. At this stage, each boundary
vertex x that has become unavailable because it has matched will send a message
to its own corresponding ghost vertices {x}, 2%, ..., x}} and inform them that
it is no long available and that they should also make themselves unavailable
for matching. In the case that x has changed status and now wants to match
with a ghost vertex 3’ residing on its processor, a message will be sent to the
corresponding ghost vertex z’ residing on the same processor as y, to instruct
7' to try to match with y. If this results in a matching being discovered, the
associated vertices 2’ and y are added to D while (z/,y) is added to M. Note
that in this case the edge (z,y’) will also be added to M.

The while-loop of Algorithm 2 is then run again on each processor. This
interleaving of communication with local matching is continued until the set
D is empty on each processor. We note that this separation of computation
and communication into distinct, rather than intermingled, stages results in a
BSP-type algorithm [2].

The parallelism in the algorithm is obtained from the assumption that each
processor will have a large number of local matches to perform between the
communication rounds. However, it is not difficult to come up with examples
that would sequentialise the algorithm. For example, using two processors and a
graph that is a straight line with increasing edge weights where the even vertices
are assigned to Processor 1 and the odd vertices are assigned to Processor 2,
would require that only one edge could be matched in each round.

4 Experiments

We have performed a set of experiments on a SGI Origin 3800 using up to
32 processors. For our input data we have used complete graphs with random
weights on the edges as well as sparse graphs from the University of Florida
sparse matrix collection [3].

The top chart of Figure 1 displays the running time for a complete graph on
5000 vertices with random edge weights, as different numbers of processors are
applied. As one can see, the running time decreases evenly as more processors
are applied. The only exception that is observed is when going from one to two
processors, where the running time increases by about 50%. This is due to the
extra overhead incurred by the algorithm.

In the bottom chart of Figure 1, one can see the running time for the graph
crankseg_1 from the University of Florida sparse matrix collection [3]. This is a
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Fig. 1. Running time in seconds for a complete graph with 5000 vertices (top) and for
a sparse graph with about 50000 vertices and 5 million edges (bottom).

sparse graph of 52,804 vertices and 5,280,703 edges. For this graph we display
both the running time when the graph is partitioned using Metis and when
using a block partitioning. As one can observe, there is a significant effect when
partitioning the graph using Metis. This is due to much fewer crossing edges
when using Metis than when using block partitioning. As a consequence, the
algorithm also requires fewer rounds with Metis.

5 Conclusion

In this work, we have shown that the distributed matching algorithm by Hoep-
man [8] lends itself well to execution on a parallel computer. Moreover, we have
shown that this algorithm is closely related to Luby’s maximal independent set
algorithm.

In the future, we intend to report more detailed results from our experiments
including incorporations of our code in existing linear solvers. We will also look
more closely at extending the algorithm by using short augmenting paths to
improve the approximation ratio of the matching even further.
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