Blowing up generalized Kähler 4-manifolds

Gil R. Cavalcanti* Marco Gualtieri[†]

Abstract

We show that the blow-up of a generalized Kähler 4-manifold in a non-degenerate complex point admits a generalized Kähler metric. As with the blow-up of complex surfaces, this metric may be chosen to coincide with the original outside a tubular neighbourhood of the exceptional divisor. To accomplish this, we develop a blow-up operation for bi-Hermitian manifolds.

Contents

	5.3	Positivity	13
	5.2	Deformation of degenerate bi-Hermitian structure	10
	5.1	Simultaneous blow-up	8
5	Ger	neralized Kähler blow-up	8
4	Flow construction		7
3	Bi-H	Hermitian approach	5
2	Ger	neralized complex blow-up	3
1	Intr	oduction	2

^{*}Utrecht University; g.r.cavalcanti@uu.nl

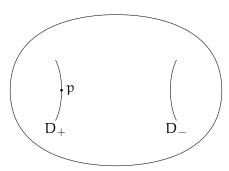
Supported by a Marie Curie grant from the European Research Council.

[†]University of Toronto; mgualt@math.toronto.edu

Supported by a NSERC Discovery grant and an Ontario ERA.

1 Introduction

Let $(M, \mathbb{J}_+, \mathbb{J}_-)$ be a generalized Kähler 4-manifold such that both generalized complex structures $\mathbb{J}_+, \mathbb{J}_-$ have even type, meaning that they are equivalent to either a complex or symplectic structure at every point. In other words, their underlying real Poisson structures P_+, P_- have either rank 0 (at complex points) or 4 (at symplectic points). The structure \mathbb{J}_\pm is equipped with a canonical section s_\pm of its anticanonical line bundle, vanishing on the locus D_\pm of complex points, where P_\pm has rank zero. From [6], it follows that the symplectic leaves of P_+ and P_- must be everywhere transverse, so that D_+, D_- are disjoint.

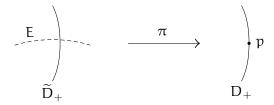


It was shown in [2] that in a neighbourhood of a complex point $p \in D_+$ which is nondegenerate, in the sense of being a nondegenerate zero of s_+ , there are complex coordinates (w, z) such that the generalized complex structure \mathbb{J}_+ is equivalent to that defined by the differential form

$$\rho_+ = w + dw \wedge dz. \tag{1.1}$$

Note that $D_+ = w^{-1}(0)$, along which $\rho_+|_{D_+} = dw \wedge dz$ defines a complex structure, whereas for $w \neq 0$, we have $\rho_+ = w \exp(B + i\omega)$, for $B + i\omega = d \log w \wedge dz$, defining a symplectic form ω away from D_+ , as required.

It was then shown [2, Theorem 3.3] that the complex blow-up at p using the coordinates (z, w) inherits a generalized complex structure. We detail in Section 2 why this structure is independent of the chosen coordinates. Thus we obtain a canonical blow-up $(\widetilde{M}, \widetilde{\mathbb{J}}_+)$ of (M, \mathbb{J}_+) at p, equipped with a generalized holomorphic map $\pi: \widetilde{M} \longrightarrow M$ which is an isomorphism outside the exceptional divisor $E = \pi^{-1}(p)$. The complex locus \widetilde{D}_+ of the blow-up is the proper transform of D_+ , and the exceptional divisor E is a 2-sphere which intersects \widetilde{D}_+ transversely at one point and is Lagrangian with respect to ω elsewhere; this makes E a generalized complex brane [2].



In Section 5.1, we use the bi-Hermitian tools developed in Section 3 to construct a *degenerate* generalized Kähler structure on the blow-up, in the sense that the metric degenerates along the exceptional divisor E. Finally, in Section 5.2, we use a deformation procedure detailed in Section 4 to obtain a positive-definite metric, defining a generalized Kähler structure such that π is an isomorphism away from a tubular neighbourhood of the exceptional divisor E. The generalized complex structure \mathbb{J}_- does not lift uniquely to the blow-up, as there is no preferred choice of symplectic area for E; this degree of freedom inherent in the generalized Kähler blow-up is familiar from the usual Kähler blow-up operation.

2 Generalized complex blow-up

Let (w, z) be standard coordinates for $M = \mathbb{C}^2$, and consider the generalized complex structure \mathbb{J} defined by the form ρ_+ given in (1.1). This structure extends uniquely to a generalized complex structure $\widetilde{\mathbb{J}}$ the blow-up $\widetilde{M} = [\mathbb{C}^2 : 0]$ of the plane in the origin, simply because the anticanonical section $\sigma = w \partial_w \wedge \partial_z$ does. That is, the line generated by ρ_+ may be written

$$\langle \rho_+ \rangle = e^{\sigma} \Omega^{2,0}(M),$$

and in the two blow-up charts $(w_0, z_0) = (w/z, z)$ and $(w_1, z_1) = (w, z/w)$, this pulls back to the line $e^{\widetilde{\sigma}}\Omega^{2,0}(\widetilde{M})$, where

$$\widetilde{\sigma} = w_0 \partial_{w_0} \wedge \partial_{z_0} = \partial_{w_1} \wedge \partial_{z_1}.$$

Clearly, $\widetilde{\sigma}$ drops rank along the proper transform of $w^{-1}(0)$, namely $w_0^{-1}(0)$.

The above construction of $\widetilde{\mathbb{J}}$ uses the complex structure defined by (w,z), but this complex structure is not determined canonically by \mathbb{J} . That is, there are automorphisms $\Phi = (\varphi,B) \in \mathrm{Diff}(M) \ltimes \Omega^{2,\mathrm{cl}}(M,\mathbb{R})$ of \mathbb{J} for which φ is not a holomorphic automorphism of \mathbb{C}^2 . To show that $\widetilde{\mathbb{J}}$ is independent of the particular complex structure used to perform the blow-up, we must show that any such automorphism $\Phi \in \mathrm{Aut}(\mathbb{J})$ with $\varphi(0) = 0$ lifts to the blow-up $[\mathbb{C}^2:0]$.

Theorem 2.1. Any automorphism of \mathbb{J} on $M = \mathbb{C}^2$ fixing the origin lifts to the blow-up \widetilde{M} of M in the origin.

Proof. Let $\Phi = (\varphi, B) \in Aut(\mathbb{J})$, meaning that

$$e^{B} \varphi^{*}(w + dw \wedge dz) = e^{\lambda}(w + dw \wedge dz), \tag{2.1}$$

for some $\lambda \in C^{\infty}(M,\mathbb{C})$. Also, assume $\varphi(0) = 0$. Let $\mathfrak{p} : \widetilde{M} \to M$ be the blowdown map. We will show that φ lifts to $\widetilde{\varphi} \in \operatorname{Diff}(\widetilde{M})$ such that $\mathfrak{p} \circ \widetilde{\varphi} = \varphi \circ \mathfrak{p}$, and then $(\widetilde{\varphi},\mathfrak{p}^*B) \in \operatorname{Aut}(\widetilde{\mathbb{J}})$ is the required lift of the automorphism. The lift $\widetilde{\varphi}$ exists if and only if the functions $\widetilde{w} = \varphi^*w$, $\widetilde{z} = \varphi^*z$ are in the ideal generated by w and z in $C^{\infty}(M,\mathbb{C})$. By a theorem of Malgrange [10], this is equivalent to the following constraints: $\widetilde{w}(0) = 0$, $\widetilde{z}(0) = 0$, and

$$\frac{\partial^{p+q}\widetilde{w}}{\partial^{p}\overline{w}\,\partial^{q}\overline{z}}\bigg|_{(0,0)} = 0 \quad \text{and} \quad \frac{\partial^{p+q}\widetilde{z}}{\partial^{p}\overline{w}\,\partial^{q}\overline{z}}\bigg|_{(0,0)} = 0, \text{ for all } p, q \in \mathbb{N}.$$
 (2.2)

To verify (2.2), we rewrite (2.1) as follows:

$$\widetilde{w} + d\widetilde{w} \wedge d\widetilde{z} = e^{\lambda} e^{-B} (w + dw \wedge dz) = e^{\lambda} (w + dw \wedge dz - wB),$$
 (2.3)

where the summand of degree four is omitted from the last term since it vanishes. From this we immediately conclude that $\widetilde{w} = e^{\lambda} w$, so that \widetilde{w} satisfies (2.2). But then

$$\begin{split} d\widetilde{w} \wedge d\widetilde{z} &= d(e^{\lambda}w) \wedge d\widetilde{z} \\ &= e^{\lambda} (dw + wd\lambda) \wedge (\frac{\partial \widetilde{z}}{\partial \overline{w}} d\overline{w} + \frac{\partial \widetilde{z}}{\partial w} dw + \frac{\partial \widetilde{z}}{\partial \overline{z}} d\overline{z} + \frac{\partial \widetilde{z}}{\partial z} dz). \end{split}$$

By (2.3), this coincides with $e^{\lambda}(dw \wedge dz - wB)$, and equating $dw \wedge d\overline{z}$ components we obtain

$$(1+w\frac{\partial\lambda}{\partial w})\frac{\partial\tilde{z}}{\partial\bar{z}}-w\frac{\partial\lambda}{\partial\bar{z}}\frac{\partial\tilde{z}}{\partial w}=-wB_{w\bar{z}}.$$

Solving for $\frac{\partial \tilde{z}}{\partial z}$ we obtain, near (0,0),

$$\frac{\partial \widetilde{z}}{\partial \overline{z}} = \frac{w(\frac{\partial \lambda}{\partial \overline{z}} \frac{\partial \widetilde{z}}{\partial w} - B_{w\overline{z}})}{1 + w \frac{\partial \lambda}{\partial w}}.$$
 (2.4)

Similarly, equating $dw \wedge d\overline{w}$ components yields, near (0,0),

$$\frac{\partial \widetilde{z}}{\partial \overline{w}} = \frac{w(\frac{\partial \lambda}{\partial \overline{w}} \frac{\partial \widetilde{z}}{\partial w} - B_{w\overline{w}})}{1 + w \frac{\partial \lambda}{\partial w}}.$$
 (2.5)

Finally, (2.4), (2.5) imply that (2.2) holds for \tilde{z} , as required.

3 Bi-Hermitian approach

Our main tool for describing the geometry of the blow-up will be the bi-Hermitian approach to generalized Kähler geometry [6], which we describe briefly here. Since we are interested in a neighbourhood of a point, we may assume that the torsion 3-form H of our generalized Kähler structure is cohomologically trivial. Such a generalized Kähler structure determines and is determined by a Riemannian metric g, a 2-form b, and a pair of complex structures I_+ , I_- which are compatible with g and satisfy the condition

$$\pm d_+^c \omega_{\pm} = db, \tag{3.1}$$

where $\omega_{\pm} = gI_{\pm}$ are the usual Hermitian 2-forms and $d_{\pm}^{c} = [d, I_{\pm}^{*}]$ are the real Dolbeault operators associated to I_{\pm} . The correspondence between the generalized Kähler pair $\mathbb{J}_{+}, \mathbb{J}_{-}$ and the above bi-Hermitian data is as follows:

$$\mathbb{J}_{\pm} = \frac{1}{2} \begin{pmatrix} 1 \\ -b & 1 \end{pmatrix} \begin{pmatrix} I_{+} \pm I_{-} & -(\omega_{+}^{-1} \mp \omega_{-}^{-1}) \\ \omega_{+} \mp \omega_{-} & -(I_{+}^{*} \pm I_{-}^{*}) \end{pmatrix} \begin{pmatrix} 1 \\ b & 1 \end{pmatrix}. \tag{3.2}$$

It was observed in [7] that the bi-Hermitian condition endows the complex structure I_{\pm} with a holomorphic Poisson structure σ_{\pm} with real part

$$Q = Re(\sigma_{+}) = Re(\sigma_{-}) = \frac{1}{8}[I_{+}, I_{-}]g^{-1}.$$
 (3.3)

Indeed, σ_{\pm} derives from a pair of transverse holomorphic Dirac structures as described in [6], though we shall not make use of this here.

Any pair of complex structures satisfies the following identity for the commutator:

$$[I_{+}, I_{-}] = (I_{+} - I_{-})(I_{-} + I_{+}). \tag{3.4}$$

Therefore, the zeros of Q coincide with the loci where $I_+ = I_-$ or $I_+ = -I_-$. From (3.2), we see that the real Poisson structures P_\pm underlying \mathbb{J}_\pm are given by

$$P_{\pm} = -\frac{1}{2}(\omega_{+}^{-1} \mp \omega_{-}^{-1}) = \frac{1}{2}(I_{+} \mp I_{-})g^{-1}.$$
 (3.5)

Therefore, we conclude that the zero locus of Q, and hence σ_{\pm} , is the union of the zero loci for P_+ , P_- , namely the subsets D_+ , D_- discussed in section 1.

The holomorphic Poisson structure (I_{\pm}, σ_{\pm}) provides an economical means to describe the full generalized Kähler structure, as observed in [5].

Theorem 3.1 ([5], Theorem 6.2). Let (I_0, σ_0) be a holomorphic Poisson structure with Re $(\sigma_0) = Q$. Any closed 2-form F satisfying the equation

$$FI_0 + I_0^*F + FQF = 0 (3.6)$$

defines an integrable complex structure $I_1=I_0+QF$, a symmetric tensor $g=-\frac{1}{2}F(I_0+I_1)$, and a 2-form $b=-\frac{1}{2}F(-I_0+I_1)$ such that

$$d_{I_0}^c \omega_{I_0} = -d_{I_1}^c \omega_{I_1} = db.$$

If g is positive-definite, then (g, I_0, I_1) defines a bi-Hermitian structure satisfying (3.1), and hence a generalized Kähler structure, where \mathbb{J}_- is the symplectic structure F.

As is hinted at in Theorem 3.1, in which g need not be positive-definite, it will be useful in studying the blowup for us to relax the generalized Kähler condition, allowing degenerations of the Riemannian metric while maintaining the remaining constraints.

Definition 3.2. A degenerate bi-Hermitian structure (g, b, I_+, I_-) consists of a possibly degenerate tensor $g \in \Gamma^{\infty}(\operatorname{Sym}^2T^*)$, a 2-form $b \in \Omega^2$, and two integrable complex structures I_+, I_- , such that $gI_{\pm} + I_{\pm}^*g = 0$ and

$$d_+^c \omega_+ = -d_-^c \omega_- = db,$$

where $\omega_{\pm}=gI_{\pm}$. Informally, it is a generalized Kähler structure where g may be degenerate.

Degenerate bi-Hermitian structures arising from the construction in Theorem 3.1 as solutions to (3.6) enjoy a composition operation which we now review (see [5] for details).

If F_{01} is a closed 2-form solving

$$F_{01}I_0 + I_0^*F_{01} + F_{01}QF_{01} = 0, (3.7)$$

for a holomorphic Poisson structure (I_0,σ_0) with $Re(\sigma_0)=Q$, then it determines a second holomorphic Poisson structure (I_1,σ_1) with $Re(\sigma_1)=Q$, via $I_1=I_0+QF_{01}$. If we then have another closed 2-form F_{12} , such that

$$F_{12}I_1 + I_1^*F_{12} + F_{12}QF_{12} = 0, (3.8)$$

then it determines a third holomorphic Poisson structure (I_2 , σ_2) with $Re(\sigma_2) = Q$, via $I_2 = I_1 + QF_{12}$. Rewriting (3.7) and (3.8) as the pair

$$F_{01}I_0 + I_1^*F_{01} = 0,$$
 $F_{12}I_1 + I_2^*F_{12} = 0,$

we see that the closed 2-form $F_{02} = F_{01} + F_{12}$ satisfies

$$\begin{split} F_{02}I_0 + I_0^*F_{02} + F_{02}QF_{02} &= F_{02}I_0 + I_2^*F_{02} \\ &= F_{01}(I_2 - I_1) - (I_1^* - I_0^*)F_{12} \\ &= F_{01}QF_{12} - F_{01}QF_{12} = 0. \end{split}$$

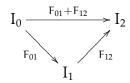


Figure 1: The composition of solutions to (3.7), (3.8).

We may interpret this in the following way: a solution to (3.7) defines a degenerate bi-Hermitian structure with constitutent complex structures (I_0 , I_1), and a solution to (3.8) does the same, but with complex structures (I_1 , I_2). These two degenerate bi-Hermitian structures may be composed in the sense that the sum $F_{02} = F_{01} + F_{12}$ defines a new degenerate bi-Hermitian structure with constituent complex structures (I_0 , I_2). This composition may be viewed as a groupoid (see Figure 1).

Definition 3.3 ([5]). Fix a real manifold M with real Poisson structure Q. Then we may define a groupoid whose objects are holomorphic Poisson structures (I_i, σ_i) on M with $Re(\sigma_i) = Q$ and whose morphisms Hom(i, j) are real closed 2-forms F_{ij} such that the following two equations hold.

$$I_{j} - I_{i} = QF_{ij}$$
$$F_{ij}I_{j} + I_{i}^{*}F_{ij} = 0.$$

The composition of morphisms is then simply addition of 2-forms $F_{ij} + F_{jk}$.

Remark 3.4. Combined with Theorem 3.1, this definition provides a composition operation for the degenerate bi-Hermitian structures determined by the 2-forms F_{ij} .

4 Flow construction

We now review a method, introduced in [8] and developed in [5], for modifying a bi-Hermitian structure of the kind studied in the previous section using a smooth real-valued function. The method proceeds essentially by solving (3.8) using the flow of a suitably-chosen vector field, and then composing this solution with the given bi-Hermitian structure viewed as a solution to (3.7). This is a direct analog of the well-known modification of a Kähler form by adding f to the Kähler potential.

Theorem 4.1 ([8, 5]). Let (I_0, σ_0) be a holomorphic Poisson structure with $Q = \text{Re}(\sigma_0)$, and let f be a smooth real-valued function. Let φ_t be the time-t flow of the

Hamiltonian vector field X = Q(df). Then, so far as the flow is well-defined, the closed 2-form

$$F_{t} = \int_{0}^{t} \phi_{s}^{*}(dd_{I_{0}}^{c}f)ds \tag{4.1}$$

satisfies Equation 3.6, i.e.

$$F_{t}I_{0} + I_{0}^{*}F_{t} + F_{t}QF_{t} = 0.$$

Remark 4.2. The above flow generates a family of integrable complex structures $I_t = I_0 + QF_t$, which are all equivalent, since $I_t = \phi_t(I_0)$. If f is strictly plurisubharmonic for I_0 , i.e. defines a Riemannian metric $h = -(dd_{I_0}^c f)I_0$, then from (4.1) we have

$$\lim_{t\to 0} t^{-1} F_t = dd^c_{I_0} f,$$

implying that the symmetric tensor

$$g_t = -\frac{1}{2}F_t(I_0 + I_t)$$

satisfies $\lim_{t\to 0} t^{-1}g_t = h$, so that g_t defines a Riemannian metric for sufficiently small $t \neq 0$, and so by Theorem 4.1, we obtain a generalized Kähler structure (g_t, I_0, I_t, b_t) .

5 Generalized Kähler blow-up

We now apply the machinery of the preceding sections to the problem of blowing up the generalized Kähler 4-manifold $(M, \mathbb{J}_+, \mathbb{J}_-)$ introduced in Section 1 at a nondegenerate point $\mathfrak{p} \in D_+$ in the complex locus of \mathbb{J}_+ . The first step (§ 5.1) is to blow up the generalized complex structure \mathbb{J}_+ and obtain a degenerate bi-Hermitian structure. In the second step (§ 5.2) we deform the degenerate bi-Hermitian structure by composing it with another degenerate bi-Hermitian structure obtained from the flow construction (§ 4). Finally (§ 5.3), we prove that the resulting deformation is positive-definite, defining a generalized Kähler structure on the blow-up.

5.1 Simultaneous blow-up

Lemma 5.1. In a neighbourhood of the nondegenerate point $p \in D_+$, there exist complex coordinates (u_\pm, v_\pm) such that the holomorphic Poisson structure (I_\pm, σ_\pm) is given by $u_\pm \partial_{u_\pm} \wedge \partial_{v_\pm}$.

Proof. From the normal form for \mathbb{J}_+ near \mathfrak{p} given by Equation 1.1, it follows that P_+ is isomorphic to $\text{Im}(w\mathfrak{d}_w \wedge \mathfrak{d}_z)$. In particular, P_+ vanishes linearly

along D_+ . By Equations 3.3, 3.4, and 3.5, and since D_- is disjoint from D_+ , it follows that $Q=-\frac{1}{2}[I_+,I_-]g^{-1}$ has linear vanishing along D_- as well. This means that the holomorphic Poisson structure σ_\pm is a section of a holomorphic line bundle $\wedge^2 T_{1,0}$ with a nondegenerate zero at p. Hence we may choose I_\pm -complex coordinates (u_\pm, v_\pm) near p such that $\sigma_\pm = u_\pm \partial_{u_\pm} \wedge \partial_{v_\pm}$, as required.

We now demonstrate that the coordinates (u_{\pm}, v_{\pm}) placing σ_{\pm} into standard form are closely related to the coordinates (w, z) placing \mathbb{J}_{+} into the standard form 1.1.

Lemma 5.2. In a sufficiently small neighbourhood U of p where the following coordinates are defined, the functions u_{\pm}, v_{\pm} lie in the ideal of $C^{\infty}(U, \mathbb{C})$ generated by w, z.

Proof. Let ρ_+ be the generator (1.1) defined by \mathbb{J}_+ in U, and let $\rho_- = e^{\beta}$ be the generator defined by \mathbb{J}_- , which has symplectic type in U, so that $\beta = B + i\omega$ is a complex 2-form such that ω is symplectic.

The holomorphic Poisson structures $\sigma_{\pm}=u_{\pm}\partial_{u_{\pm}}\wedge\partial_{v_{\pm}}$ define generalized complex structures in U via the differential forms

$$u_\pm + du_\pm \wedge d\nu_\pm \in e^{\sigma_\pm} \Omega_\pm^{\text{2,0}}.$$

In [6], it is shown that these holomorphic Poisson structures may be expressed as a certain "wedge product" of the underlying generalized complex structures (\mathbb{J}_+ , \mathbb{J}_-). Explicitly, this provides the following identities¹:

$$e^{\overline{\beta}}(w - dw \wedge dz) = e^{\lambda_{-}}(u_{-} + du_{-} \wedge dv_{-})$$

$$e^{\beta}(w - dw \wedge dz) = e^{\lambda_{+}}(u_{+} + du_{+} \wedge dv_{+}),$$

for smooth functions $\lambda_+, \lambda_- \in C^{\infty}(U, \mathbb{C})$. Comparing these equations to (2.3), we see that the argument in the proof of Theorem 2.1 implies the required constraint on u_{\pm}, v_{\pm} .

Theorem 5.3. The complex structures I_- , I_+ underlying a generalized Kähler 4-manifold $(M, \mathbb{J}_+, \mathbb{J}_-)$ both lift to the blow-up of (M, \mathbb{J}_+) at a nondegenerate complex point $p \in D_+$.

Proof. Let $\psi: U \to \mathbb{C}^2$ be the chart defined by (w,z) in the normal form (1.1) and let $\varphi_{\pm}: U \to \mathbb{C}^2$ be the chart defined by (u_{\pm}, v_{\pm}) in the normal form given by Lemma 5.1 . Then $\chi_{\pm} = \psi \circ \varphi_{\pm}^{-1}$ is a diffeomorphism and $\chi_{\pm}(0) = 0$.

In general, if ρ_{\pm} generate the canonical line bundles of \mathbb{J}_{\pm} , then $\rho_{+}^{\top} \wedge \rho_{-}$ generates $e^{\sigma_{+}}\Omega^{n,0}(M,I_{+})$ and $\rho_{+}^{\top} \wedge \overline{\rho}_{-}$ generates $e^{\sigma_{-}}\Omega^{n,0}(M,I_{-})$. Here ρ^{\top} is the reversal antiautomorphism of forms.

The complex structure I_{\pm} lifts to the blow-up \widetilde{M} precisely when the diffeomorphism χ_{\pm} lifts to a diffeomorphism of blow-ups $\widetilde{\chi}_{\pm}: [\phi_{\pm}(U):0] \rightarrow [\psi(U):0]$. This occurs if and only if u_{\pm} and v_{\pm} are contained in the ideal generated by w,z, which is itself guaranteed by Lemma 5.2.

Remark 5.4. It follows from the theorem that the complex structure \widetilde{I}_{\pm} we obtain on the blow-up of (M, \mathbb{J}_{+}) may be identified with the usual complex blow-up of (M, I_{\pm}) at p. Furthermore, since the holomorphic Poisson structure σ_{\pm} vanishes at p, it follows that σ_{\pm} lifts to a holomorphic Poisson structure on the blow-up.

We now apply Theorem 5.3 to obtain a degenerate bi-Hermitian structure on the blow-up of $(M, \mathbb{J}_+, \mathbb{J}_-)$ at $\mathfrak{p} \in D_+$. Let $(\mathfrak{g}, I_+, I_-, \mathfrak{b})$ be the bi-Hermitian structure on M defined by the generalized Kähler structure.

Corollary 5.5. Let $(\widetilde{M}, \widetilde{\mathbb{J}}_+)$ be the blow-up of the generalized complex 4-manifold (M, \mathbb{J}_+) at the nondegenerate point $\mathfrak{p} \in D_+$, with blow-down map π . Then \widetilde{M} inherits a degenerate bi-Hermitian structure $(\widetilde{\mathfrak{g}}, \widetilde{\mathfrak{b}}, \widetilde{I}_+, \widetilde{I}_-)$ such that $\pi : (\widetilde{M}, \widetilde{I}_\pm) \to (M, I_\pm)$ is a usual holomorphic blow-down and $\widetilde{\mathfrak{g}} + \widetilde{\mathfrak{b}} = \pi^*(\mathfrak{g} + \mathfrak{b})$.

5.2 Deformation of degenerate bi-Hermitian structure

The degenerate bi-Hermitian structure on \widetilde{M} obtained in Corollary 5.5 fails to define a generalized Kähler structure because \widetilde{g} is not positive-definite along the exceptional divisor E. We now apply Theorem 4.1 to obtain² a second degenerate bi-Hermitian structure, which we use to modify $(\widetilde{g}, \widetilde{b}, \widetilde{I}_+, \widetilde{I}_-)$. The modification will leave the structures on \widetilde{M} unchanged outside a tubular neighbourhood V_E of E which blows down to a neighbourhood of p in which \mathbb{J}_- has symplectic type and is given by a complex 2-form with imaginary part ω . Let $\pi: \widetilde{M} \to M$ denote the blow-down map, and write $\widetilde{\omega} = \pi^* \omega$ for the pull-back of the symplectic form to V_E .

First we describe the degenerate bi-Hermitian structure using the formalism of Theorem 3.1. The complex structure \widetilde{I}_{-} and the 2-form $\widetilde{\omega}$ satisfy (3.6), and so in V_E we have

$$\widetilde{I}_{+} = \widetilde{I}_{-} + \widetilde{Q}\widetilde{\omega},$$

where $\widetilde{Q}=Re(\widetilde{\sigma}_{-})=Re(\widetilde{\sigma}_{+})$, as in (3.3), and $\widetilde{\sigma}_{\pm}$ is the blown up holomorphic Poisson structure. In the following, we construct a closed 2-form F_t in a possibly smaller tubular neighbourhood such that

$$\widetilde{I}_+^t = \widetilde{I}_+ + \widetilde{Q} F_t$$

²The flow construction may be applied equally well to degenerate bi-Hermitian structures.

defines a new complex structure \tilde{I}_{+}^{t} . The final task, completed in Section 5.3, will be to show that the composition (5.1), in the sense of Definition 3.3, defines a generalized Kähler structure.

$$\widetilde{I}_{-} \xrightarrow{\widetilde{\omega}} \widetilde{I}_{+} \xrightarrow{F_{t}} \widetilde{I}_{+}^{t}$$
 (5.1)

We now construct F_t . Let (u,v) be I_+ -holomorphic coordinates near p such that $\sigma_+ = u \partial_u \wedge \partial_v$, and let $(u_0, v_0) = (u/v, v)$ and $(u_1, v_1) = (u, v/u)$ be the two affine charts covering a tubular neighbourhood V_E of the exceptional divisor $E = u_1^{-1}(0) \cup v_0^{-1}(0)$. Using u_0, v_1 as affine coordinates on $E \cong \mathbb{C}P^1$, we may describe the Fubini-Study metric ω_E in terms of the Kähler potential

$$f_0 = \log(\frac{u_0\overline{u}_0}{1 + u_0\overline{u}_0}) = \log(\frac{1}{1 + \nu_1\overline{\nu}_1}),$$

which is smooth away from $u_0 = 0$ and satisfies $i\partial \overline{\partial} f_0 = \omega_E$. Although f_0 is singular, we observe that its Hamiltonian vector field is smooth:

$$\begin{split} Q(df_0) &= Re(u_0 \vartheta_{u_0} \wedge \vartheta_{\nu_0}) d \, log(\tfrac{u_0 \overline{u}_0}{1 + u_0 \overline{u}_0}) \\ &= \tfrac{1}{1 + u_0 \overline{u}_0} Re(\vartheta_{\nu_0}). \end{split}$$

Hence $Q(df_0)$ defines a smooth Poisson vector field on V_E .

Now choose a bump function $\varepsilon \in C^\infty(V_E,[0,1])$ which vanishes on a smaller tubular neighbourhood $U_E \subset V_E$ and is such that $1-\varepsilon$ has compact support in a closed disc bundle K over E, with $U_E \subset K \subset V_E$. Consider the smooth function $f_\varepsilon \in C^\infty(V_E,\mathbb{R})$ given by

$$f_{\epsilon} = \epsilon \log(u\overline{u} + v\overline{v}) = \epsilon \log(v_0\overline{v}_0(1 + u_0\overline{u}_0)).$$

Since $i\partial\overline{\partial}\log(\nu_0\overline{\nu}_0(1+u_0\overline{u}_0))=i\partial\overline{\partial}\log(1+u_0\overline{u}_0)=-i\partial\overline{\partial}f_0$, it follows that

$$f = c(f_0 + f_{\epsilon}), c \in \mathbb{R}_{>0}$$
 (5.2)

has the property that X = Q(df) is a smooth Poisson vector field in V_E and

$$i\partial\overline{\partial}f = \begin{cases} c\omega_E & \text{in } U_E \\ 0 & \text{outside } K \end{cases}$$
 (5.3)

For sufficiently small $\delta>0$, there exists an open neighbourhood V_E' , with $K\subset V_E'\subset V_E$, on which the flow ϕ_t of X is well-defined for all $t\in (-\delta,\delta)$. Also, choose δ small enough so that there is a neighbourhood V_E'' with $\overline{V_E''}\subset V_E'$, with $\phi_t(K)\subset V_E''$ for $t\in (-\delta,\delta)$. Using (5.3), we see that $\phi_t^*(i\partial\overline{\partial}f)$ is smooth on V_E' , with compact support contained in V_E'' , for all $t\in (-\delta,\delta)$.

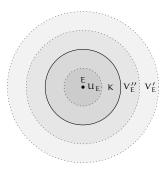


Figure 2: Normal cross-section of neighbourhoods of E contained in V_E

We now apply Theorem 4.1^3 to the flow ϕ_{t} on $V_{\text{E}}^{\prime}.$ This provides a solution

$$F_{t} = \int_{0}^{t} \varphi_{s}^{*}(dd_{\tilde{I}_{+}}^{c}f)ds$$

to Equation 3.6 for all $t \in (-\delta, \delta)$, with compact support in V_E' . Therefore, we obtain a family of complex structures on V_E' given by

$$\widetilde{I}_{+}^{t} = \widetilde{I}_{+} + QF_{t}. \tag{5.4}$$

Since F_t has compact support contained in V'_E , the complex structure \widetilde{I}^t_+ may be extended to all of \widetilde{M} by setting it equal to \widetilde{I}_+ outside V'_E . We summarize the above procedure in the following result.

Proposition 5.6. The flow construction of Theorem 4.1, applied to the singular function f given in (5.2), produces a smooth family of solutions $(F_t)_{t \in (-\delta, \delta)}$ to (3.6) with compact support in a tubular neighbourhood of the exceptional divisor, and hence we obtain a degenerate bi-Hermitian structure

$$(\widetilde{\mathfrak{g}}'_{\mathsf{t}},\widetilde{\mathfrak{b}}'_{\mathsf{t}},\widetilde{\mathfrak{I}}^{\mathsf{t}}_{+},\widetilde{\mathfrak{I}}_{+})$$

on \widetilde{M} , where \widetilde{I}_+^t is given by (5.4) and $\widetilde{\mathfrak{g}}_t', \widetilde{\mathfrak{b}}_t'$ are as in Theorem 3.1, yielding

$$\widetilde{\mathfrak{g}}_{\mathsf{t}}' = -\frac{1}{2} \mathsf{F}_{\mathsf{t}}(\widetilde{\mathsf{I}}_{+} + \widetilde{\mathsf{I}}_{+}^{\mathsf{t}}). \tag{5.5}$$

In Section 5.3, we compose the above degenerate bi-Hermitian structure with that from Corollary 5.5 and show the resulting structure is positive-definite.

³The fact that f is not smooth does not affect the validity of Theorem 4.1 in this case, as the vector field X = Q(df) is a smooth Poisson vector field, and hence locally Hamiltonian.

Remark 5.7. The family of complex structures \widetilde{I}_+^t on \widetilde{M} constructed above defines a deformation of the blow-up complex structure \widetilde{I}_+ in the direction given by the class in $H^1(\mathfrak{T})$ defined by the vector field Z = Q(df), which is a holomorphic vector field on the annular neighbourhood of E defined by $V_E \setminus K$. The (1,0) part of Z in this annular neighbourhood is (in the (u_0, v_0) chart)

$$\begin{split} Z^{1,0} &= c \widetilde{\sigma}_+(d(log(\frac{u_0\overline{u}_0}{1+u_0\overline{u}_0}) + log(\nu_0\overline{\nu}_0(1+u_0\overline{u}_0))) \\ &= c(u_0\partial_{u_0} \wedge \partial_{\nu_0})(u_0^{-1}du_0 + \nu_0^{-1}d\nu_0) \\ &= c(\partial_{\nu_0} - \frac{u_0}{\nu_0}\partial_{u_0}). \end{split}$$

This deformation class has a geometric interpretation: since $\mathfrak{p}\in D_+$ and $\sigma_+|_{D_+}=0$, the contraction

$$\operatorname{Tr}(d\sigma_{+}|_{D_{+}})$$

defines a holomorphic vector field χ on D_+ . The flow of $c\chi$ then provides a path p(t) of points on D_+ . The family of blow-ups of (M, I_+) at p(t) provides a deformation of complex structure with derivative $[Z^{(1,0)}]$ at t=0.

5.3 Positivity

Now that we have constructed the two degenerate bi-Hermitian structures on \widetilde{M} occurring in (5.1), we must argue that their composition in the sense of Definition 3.3 is positive-definite. The composition is the (a priori degenerate) bi-Hermitian structure $(\widetilde{g}_t, \widetilde{b}_t, \widetilde{I}_-, \widetilde{I}_+^t)$, where

$$\begin{split} \widetilde{g}_t &= -\tfrac{1}{2} (\widetilde{\omega} + F_t) (\widetilde{I}_- + \widetilde{I}_+^t) \\ \widetilde{b}_t &= -\tfrac{1}{2} (\widetilde{\omega} + F_t) (-\widetilde{I}_- + \widetilde{I}_+^t). \end{split}$$

Rewriting this, we obtain

$$\begin{split} \widetilde{g}_{t} &= -\frac{1}{2} \left(\widetilde{\omega} (\widetilde{I}_{-} + \widetilde{I}_{+}) + \widetilde{\omega} (\widetilde{I}_{+}^{t} - \widetilde{I}_{+}) + F_{t} (\widetilde{I}_{-} - \widetilde{I}_{+}) + F_{t} (\widetilde{I}_{+} + \widetilde{I}_{+}^{t}) \right) \\ &= \widetilde{g} + \widetilde{g}_{t}' - \frac{1}{2} (\widetilde{\omega} \widetilde{Q} F_{t} - F_{t} \widetilde{Q} \widetilde{\omega}), \end{split}$$
 (5.6)

where we use the fact that $\widetilde{I}_+ - \widetilde{I}_- = \widetilde{Q}\widetilde{\omega}$ and $\widetilde{I}_+^t - \widetilde{I}_+ = \widetilde{Q}\mathsf{F}_t$.

Theorem 5.8. Provided that c in (5.2) is chosen small enough, the symmetric tensor \widetilde{g}_t defined by (5.6) is positive-definite on \widetilde{M} for sufficiently small $t \neq 0$, defining a generalized Kähler structure on the blow-up.

Proof. Since $F_t \to 0$ as $t \to 0$, it follows that $\widetilde{I}_+^t \to \widetilde{I}_+$ as $t \to 0$. By Equation 5.5, therefore, we see that

$$\lim_{t\to 0} \tfrac{1}{t} \widetilde{\mathsf{g}}_t' = -(dd_{\widetilde{\mathsf{I}}_+}^c \mathsf{f})(\widetilde{\mathsf{I}}_+) = \begin{cases} c\omega_\mathsf{E} & \text{in } \mathsf{U}_\mathsf{E} \\ 0 & \text{outside } \mathsf{K} \end{cases}$$

where ω_E is the Fubini-Study metric. This implies that \widetilde{g}_t' is positive-definite when restricted to TE for sufficiently small nonzero t, and hence $\widetilde{g}+\widetilde{g}_t'$ is positive-definite in a neighbourhood of E for sufficiently small nonzero t. Also, the third summand in (5.6) is proportional to $\widetilde{\omega}$, which vanishes along E.

Fix $c = c_0 \in \mathbb{R}_{>0}$ in the definition (5.2) of f, and let $U \subset U_E$ be a tubular neighbourhood of E where the third summand in (5.6) is so small that \widetilde{g}_t is positive-definite in U for sufficiently small nonzero t. Note that \widetilde{g}_t is certainly positive-definite outside K (where it coincides with \widetilde{g}), hence it remains to show that \widetilde{g}_t is positive in the intermediate region K\U.

We have chosen U so that the third term in (5.6) is dominated there by the first two terms. This means that at each point in U and for each vector $v \neq 0$ (and for suficiently small nonzero t), we have

$$\begin{split} |\widetilde{Q}(F_{t}\nu,\widetilde{\omega}\nu)| &< \widetilde{g}(\nu,\nu) + \widetilde{g}'_{t}(\nu,\nu) \\ &= \widetilde{g}(\nu,\nu) - \frac{1}{2}F_{t}((\widetilde{I}_{+} + \widetilde{I}_{+}^{t})\nu,\nu) \\ &= \widetilde{g}(\nu,\nu) - F_{t}(\widetilde{I}_{+}\nu,\nu) - \frac{1}{2}\widetilde{Q}(F_{t}\nu,F_{t}\nu) \\ &= \widetilde{g}(\nu,\nu) - F_{t}(\widetilde{I}_{+}\nu,\nu). \end{split}$$
(5.7)

Since (5.7) holds for $c = c_0$, it will also hold in U for $c = \lambda c_0$, for any $\lambda \in (0, 1)$, since for $x, y \in \mathbb{R}_{\geq 0}$ and $z \in \mathbb{R}$, we have the implication

$$(x < y + z) \Rightarrow (\lambda x < \lambda (y + z) \leqslant y + \lambda z).$$

Therefore we have shown positivity of \tilde{g}_t in U for any $0 < c \leqslant c_0$, for sufficiently small nonzero t.

Now observe that the first term of (5.6), i.e. \widetilde{g} , is positive-definite on K\U and independent of c, whereas the second and third terms are each proportional to c. Hence by choosing $c \neq 0$ sufficiently small, we ensure that \widetilde{g}_t is positive-definite on K\U, in addition to U and outside K, for sufficiently small $t \neq 0$. This completes the proof.

6 Examples

By the work of Goto [4], we know that the choice of a holomorphic Poisson structure on a compact Kähler manifold gives rise to a family of generalized Kähler structures deforming the initial Kähler structure. In this way, one obtains nontrivial generalized Kähler structures on any compact Kähler surface with effective anti-canonical divisor D. Performing a Kähler blow-up of such a surface at a point lying on D, we obtain a new Kähler surface with effective anti-canonical divisor given by the proper transform of D. Hence we

may apply the Goto deformation and obtain a generalized Kähler structure on the blow-up. We believe that our construction gives an explicit realization of Goto's existence result in this case, as evidenced by Remark 5.7.

In the non-algebraic case, or for noncompact surfaces, our construction provides new generalized Kähler structures. For example, a result of Apostolov [1] states that for surfaces with odd first Betti number, a bi-Hermitian structure which is not strongly bi-Hermitian may only exist on blow-ups of minimal class VII surfaces with curves. If the minimal surface has a generalized Kähler structure, therefore, we may employ our result to obtain structures on the appropriate blow-ups.

Example 6.1 (Diagonal Hopf surfaces). $X = S^3 \times S^1$ admits a family of generalized Kähler structures with bi-Hermitian structure (g, I_+, I_-) given by viewing X as a Lie group, taking g to be a bi-invariant metric, and (I_+, I_-) to be left and right-invariant complex structures compatible with g (see [6] for details). In these examples, D_+ and D_- are nonempty disjoint curves which sum to the anti-canonical divisor. We may therefore blow up any number of points lying on $D_+ \cup D_-$ and obtain generalized Kähler structures on these manifolds, which are diffeomorphic to $(S^3 \times S^1) \# k \overline{\mathbb{CP}^2}$. This provides another construction of bi-Hermitian structures on non-minimal Hopf surfaces, besides those discovered in [11, 9].

In a remarkable recent work [3], Fujiki and Pontecorvo obtained bi-Hermitian structures on hyperbolic and parabolic Inoue surfaces as well as Hopf surfaces, by carefully studying the twistor space of the underlying conformal 4-manifold. They then obtained bi-Hermitian structures when these surfaces are properly blown up, meaning that the surface is blown up at nodal singularities of the anti-canonical divisor. Finally, they obtained bi-Hermitian structures on a family of deformations of such blowups. We may of course blow up their minimal examples at smooth points of the anti-canonical divisor, using our procedure. It remains to determine how the various bi-Hermitian structures now known on $(S^3 \times S^1) \# k \overline{\mathbb{CP}^2}$ are related.

References

- [1] V. Apostolov, *Bihermitian surfaces with odd first Betti number*, Math. Z. **238** (2001), no. 3, 555–568.
- [2] G. R. Cavalcanti and M. Gualtieri, *Blow-up of generalized complex 4-manifolds*, Journal of Topology **2** (2009), 840–864, arXiv:0806.0872v1.
- [3] A. Fujiki and M. Pontecorvo, *Anti-self-dual bihermitian structures on Inoue surfaces*, J. Differential Geom. **85** (2010), no. 1, 15–71.

- [4] R. Goto, Deformations of Generalized Kähler Structures and Bihermitian Structures, arXiv:0910.1651v1.
- [5] M. Gualtieri, *Branes on Poisson varieties*, The Many Facets of Geometry: A Tribute to Nigel Hitchin (J.-P. Bourguignon, O. Garcia-Prada, and S. Salamon, eds.), Oxford University Press, July 2010. arXiv:0710.2719v2.
- [6] _____, Generalized Kahler geometry, arXiv:1007.3485v1.
- [7] N. Hitchin, *Instantons*, *Poisson structures and generalized Kähler geometry*, Comm. Math. Phys. **265** (2006), no. 1, 131–164, arXiv:math/0503432v1.
- [8] _____, Bihermitian metrics on del Pezzo surfaces, J. Symplectic Geom. 5 (2007), no. 1, 1–8, arXiv:math/0608213v1.
- [9] C. LeBrun, Anti-self-dual Hermitian metrics on blown-up Hopf surfaces, Math. Ann. 289 (1991), no. 3, 383–392.
- [10] B. Malgrange, *Ideals of differentiable functions*, Tata Institute of Fundamental Research Studies in Mathematics, No. 3, Tata Institute of Fundamental Research, Bombay, 1967.
- [11] M. Pontecorvo, Complex structures on Riemannian four-manifolds, Math. Ann. **309** (1997), 159–177.