Blowing up generalized Kahler 4-manifolds
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Abstract

We show that the blow-up of a generalized Kdhler 4-manifold in a non-
degenerate complex point admits a generalized Kdhler metric. As with the
blow-up of complex surfaces, this metric may be chosen to coincide with the
original outside a tubular neighbourhood of the exceptional divisor. To ac-
complish this, we develop a blow-up operation for bi-Hermitian manifolds.
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1 Introduction

Let (M, J4,J_) be a generalized Kéhler 4-manifold such that both general-
ized complex structures J,J_ have even type, meaning that they are equiv-
alent to either a complex or symplectic structure at every point. In other
words, their underlying real Poisson structures P, P_ have either rank 0 (at
complex points) or 4 (at symplectic points). The structure J4 is equipped
with a canonical section s of its anticanonical line bundle, vanishing on the
locus D+ of complex points, where P has rank zero. From [6], it follows
that the symplectic leaves of P, and P_ must be everywhere transverse, so
that D, D_ are disjoint.

It was shown in [2] that in a neighbourhood of a complex point p € D
which is nondegenerate, in the sense of being a nondegenerate zero of s,
there are complex coordinates (w, z) such that the generalized complex struc-
ture J; is equivalent to that defined by the differential form

p+ =w+dwAdz. (1.1)

Note that Dy = w1(0), along which p;[p, = dw A dz defines a complex
structure, whereas for w # 0, we have p4 = wexp(B + iw), for B +iw =
dlogw A dz, defining a symplectic form w away from D, as required.

It was then shown [2, Theorem 3.3] that the complex blow-up at p using
the coordinates (z, w) inherits a generalized complex structure. We detail in
Section 2 why this structure is independent of the chosen coordinates. Thus
we obtain a canonical blow-up (M,J4) of (M, J4) atp, equipped with a gen-
eralized holomorphic map 7 : M — M which is an isomorphism outside
the exceptional divisor E = 7 1(p). The complex locus 15+ of the blow-up is
the proper transform of D |, and the exceptional divisor E is a 2-sphere which
intersects D | transversely at one point and is Lagrangian with respect to w

elsewhere; this makes E a generalized complex brane [2].
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In Section 5.1, we use the bi-Hermitian tools developed in Section 3 to con-
struct a degenerate generalized Kéhler structure on the blow-up, in the sense
that the metric degenerates along the exceptional divisor E. Finally, in Sec-
tion 5.2, we use a deformation procedure detailed in Section 4 to obtain a
positive-definite metric, defining a generalized Kédhler structure such that 7t
is an isomorphism away from a tubular neighbourhood of the exceptional
divisor E. The generalized complex structure J_ does not lift uniquely to the
blow-up, as there is no preferred choice of symplectic area for E; this degree
of freedom inherent in the generalized Kdhler blow-up is familiar from the
usual Kéhler blow-up operation.

2 Generalized complex blow-up

Let (w, z) be standard coordinates for M = C2, and consider the generalized
complex structure J defined by the form p given in (1 1). This structure
extends uniquely to a generalized complex structure J the blow- -up M =
[C2 : 0] of the plane in the origin, simply because the anticanonical section
0 =w0d,, A\ 0, does. That is, the line generated by p may be written

(p+) =e°Q*'(M),

and in the two blow-up charts (wo,z0) = (w/z,z) and (wy,z1) = (w,z/w),
this pulls back to the line e’ 0% O(M) where

G = Wodwy A Bzy = v, A D,

Clearly, & drops rank along the proper transform of w~1(0), namely w; ' (0).

The above construction of J uses the complex structure defined by (w, z),
but this complex structure is not determined canonically by J. That is, there
are automorphisms ® = (¢,B) € Diff(M) x Q2(M,R) of J for which ¢
is not a holomorphic automorphism of C2. To show that J is independent
of the particular complex structure used to perform the blow-up, we must
show that any such automorphism ® € Aut(J) with ¢(0) = 0 lifts to the
blow-up [C? : 0].

Theorem 2.1. Any automorphism of J on M = C? fixing the origin lifts to the
blow-up M of M in the origin.



Proof. Let ® = (@, B) € Aut(J), meaning that
eBo*(w+ dwAdz) =eMw + dw A dz), (2.1)

for some A € C*®(M, C). Also, assume ¢(0) =0. Letp : M — M be the blow-
down map. We will show that ¢ lifts to ¢ € Diff(l\N/U such thatpo @ = @op,
and then (@,p*B) € Aut(]) is the required lift of the automorphism. The
lift ¢ exists if and only if the functions w = @*w, z = @*z are in the ideal
generated by w and z in C*(M, C). By a theorem of Malgrange [10], this is

equivalent to the following constraints: w(0) =0, z(0) = 0, and

QP +ay op+azy
771/\), =0 and 7727 =0, forallp,q € N. (2.2)
0PW 09Z () OPW 09Z | )

To verify (2.2), we rewrite (2.1) as follows:
w4+ dwAdzZ=ere B(w+dwAdz) =eMw+dwAdz—wB), (2.3)

where the summand of degree four is omitted from the last term since it
vanishes. From this we immediately conclude that w = eMw, so that w satis-
fies (2.2). But then

dw A dz = d(eMw) A dz
=eMdw + wdM) A (& dw + 2Zdw + $dz + $2dz).

Z z
By (2.3), this coincides with eMdw A dz — wB), and equating dw /A dz com-
ponents we obtain

5}

(1 +w%)g—§ — W3z 5 = —WByz.

o)‘o)
n||>

z
w

Solving for g—% we obtain, near (0,0),

~ oA 9Z
373 :W(ﬁm—afwz) (2.4)
0z 1+ WW
Similarly, equating dw /A dw components yields, near (0, 0),
z Aoz g
92 _ Wlinwow — Bww) (2.5)
Finally, (2.4), (2.5) imply that (2.2) holds for z, as required. O

4



3 Bi-Hermitian approach

Our main tool for describing the geometry of the blow-up will be the bi-
Hermitian approach to generalized Kéahler geometry [6], which we describe
briefly here. Since we are interested in a neighbourhood of a point, we may
assume that the torsion 3-form H of our generalized Kéahler structure is co-
homologically trivial. Such a generalized Kéhler structure determines and
is determined by a Riemannian metric g, a 2-form b, and a pair of complex
structures I, I which are compatible with g and satisfy the condition

+dSwy = db, 3.1)

where wy = gl are the usual Hermitian 2-forms and d§ = [d, [%] are the
real Dolbeault operators associated to I4+. The correspondence between the
generalized Kéhler pair J ;,J_ and the above bi-Hermitian data is as follows:

B 1 L+ —(w'Fw ) /1
Ji_é(—b 1) <w+:Fw —(f:il*_) ><b 1)' (32)

It was observed in [7] that the bi-Hermitian condition endows the complex
structure I with a holomorphic Poisson structure o+ with real part

Q =Re(o4) =Re(o_) = £[I;,1_Jg~". (3.3)

Indeed, o+ derives from a pair of transverse holomorphic Dirac structures
as described in [6], though we shall not make use of this here.

Any pair of complex structures satisfies the following identity for the
commutator:

Ly, 1) = (14 = 1)+ I1). (3.4)

Therefore, the zeros of Q coincide with the loci where I, =1_or [, = —1_.
From (3.2), we see that the real Poisson structures P4 underlying J1 are given
by

Pr=—t{w!'Fo =31, F1)g " (3.5)
Therefore, we conclude that the zero locus of Q, and hence o4, is the union
of the zero loci for P, P_, namely the subsets D, D _ discussed in section 1.

The holomorphic Poisson structure (I, 04 ) provides an economical means

to describe the full generalized Kéhler structure, as observed in [5].

Theorem 3.1 ([5], Theorem 6.2). Let (1o, 0¢) be a holomorphic Poisson structure
with Re(op) = Q. Any closed 2-form F satisfying the equation

Flp + [(F+FQF =0 (3.6)
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defines an integrable complex structure Iy = Iy + QF, a symmetric tensor g =
—%F(Ig +1y),and a 2-form b = —%F(—Io + I1) such that

Cc Cc
dIOwIO == *dIlwh == db.

If g is positive-definite, then (g,lo,11) defines a bi-Hermitian structure satisfy-
ing (3.1), and hence a generalized Kiihler structure, where J_ is the symplectic
structure F.

As is hinted at in Theorem 3.1, in which g need not be positive-definite, it
will be useful in studying the blowup for us to relax the generalized Kahler
condition, allowing degenerations of the Riemannian metric while maintain-
ing the remaining constraints.

Definition 3.2. A degenerate bi-Hermitian structure (g, b, I,1_) consists of a
possibly degenerate tensor g € I'°(Sym?T*), a 2-form b € Q?, and two inte-
grable complex structures 1,1, such that gI+ + I g = 0 and

dSwy =—-d w_ =db,

where wi = gli. Informally, it is a generalized Kdhler structure where g
may be degenerate.

Degenerate bi-Hermitian structures arising from the construction in The-
orem 3.1 as solutions to (3.6) enjoy a composition operation which we now
review (see [5] for details).

If Fo; is a closed 2-form solving

Fo1lo + IgFo1 + Fo1QFo1 =0, (3.7)

for a holomorphic Poisson structure (Ip, 09) with Re(op) = Q, then it deter-
mines a second holomorphic Poisson structure (I, 1) with Re(o1) = Q, via
I; = Ip + QFgy. If we then have another closed 2-form Fy5, such that

FioIi + I7F12 + F12QF12 =0, (3.8)

then it determines a third holomorphic Poisson structure (I, 02) withRe(o2) =
Q, via I = I1 + QFy2. Rewriting (3.7) and (3.8) as the pair

Foilo + I{Fo1 =0, Fioli + F =0,
we see that the closed 2-form Fyp = Fy; + Fy5 satisfies

FooIo 4 IgFo2 + Fo2QFo2 = Foolo + I5Fo2
=Fn(lo—11) — (I] = I§)Fi2
= Fo1QF12 — Fo1QFy2 = 0.



Fo1+F12

[p——m=1,
Fo\{ %2
I

Figure 1: The composition of solutions to (3.7), (3.8).

We may interpret this in the following way: a solution to (3.7) defines a de-
generate bi-Hermitian structure with constitutent complex structures (I, I1),
and a solution to (3.8) does the same, but with complex structures (I, I>).
These two degenerate bi-Hermitian structures may be composed in the sense
that the sum Fp, = Fo; + F12 defines a new degenerate bi-Hermitian struc-
ture with constituent complex structures (Io,I;). This composition may be
viewed as a groupoid (see Figure 1).

Definition 3.3 ([5]). Fix a real manifold M with real Poisson structure Q.
Then we may define a groupoid whose objects are holomorphic Poisson
structures (I, 0;) on M with Re(oi) = Q and whose morphisms Hom(1,j)
are real closed 2-forms Fy; such that the following two equations hold.

Ij -1 = QFU
Fij Ij + IfFij =0.

The composition of morphisms is then simply addition of 2-forms Fi; + Fjy.

Remark 3.4. Combined with Theorem 3.1, this definition provides a com-
position operation for the degenerate bi-Hermitian structures determined by
the 2-forms F;;.

4 Flow construction

We now review a method, introduced in [8] and developed in [5], for mod-
ifying a bi-Hermitian structure of the kind studied in the previous section
using a smooth real-valued function. The method proceeds essentially by
solving (3.8) using the flow of a suitably-chosen vector field, and then com-
posing this solution with the given bi-Hermitian structure viewed as a so-
lution to (3.7). This is a direct analog of the well-known modification of a
Kéhler form by adding f to the Kéhler potential.

Theorem 4.1 ([8, 5]). Let (1o, o) be a holomorphic Poisson structure with Q =
Re(oy), and let f be a smooth real-valued function. Let @+ be the time-t flow of the
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Hamiltonian vector field X = Q(df). Then, so far as the flow is well-defined, the
closed 2-form

t
Fe :J @(dds,f)ds (4.1)
0

satisfies Equation 3.6, i.e.
FtIO + ISFt + FtQFt =0.

Remark 4.2. The above flow generates a family of integrable complex struc-
tures Iy = Ip + QF¢, which are all equivalent, since I+ = @+(lp). If f is strictly
plurisubharmonic for Iy, i.e. defines a Riemannian metric h = —(ddfof 1o,
then from (4.1) we have

lim t~'Fy = ddf f,

t—0

implying that the symmetric tensor
gt = _%Ft(IO + 1)

satisfies lim¢_,ot~!g¢ = h, so that g¢ defines a Riemannian metric for suffi-
ciently small t # 0, and so by Theorem 4.1, we obtain a generalized Kéhler
structure (g¢, Iy, I, by).

5 Generalized Kahler blow-up

We now apply the machinery of the preceding sections to the problem of
blowing up the generalized Kédhler 4-manifold (M, J;, J_) introduced in Sec-
tion 1 at a nondegenerate point p € D in the complex locus of J,. The first
step (§ 5.1) is to blow up the generalized complex structure J and obtain a
degenerate bi-Hermitian structure. In the second step (§ 5.2) we deform the
degenerate bi-Hermitian structure by composing it with another degener-
ate bi-Hermitian structure obtained from the flow construction (§ 4). Finally
(§ 5.3), we prove that the resulting deformation is positive-definite, defining
a generalized Kéahler structure on the blow-up.

5.1 Simultaneous blow-up

Lemma 5.1. In a neighbourhood of the nondegenerate point p € D, there exist
complex coordinates (uy, v+ ) such that the holomorphic Poisson structure (11, o4 )
is given by u40y, A0y, .

Proof. From the normal form for J near p given by Equation 1.1, it follows
that P, is isomorphic to Im(wd,, /A 0;). In particular, P, vanishes linearly
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along D.. By Equations 3.3, 3.4, and 3.5, and since D_ is disjoint from D,
it follows that Q = —%[h, I_]g~! has linear vanishing along D_ as well.
This means that the holomorphic Poisson structure o+ is a section of a holo-
morphic line bundle /\ZTLO with a nondegenerate zero at p. Hence we may
choose I1-complex coordinates (u,v4 ) near p such that o4 = w0, A0y,
as required. O

We now demonstrate that the coordinates (u+,v+) placing o+ into stan-
dard form are closely related to the coordinates (w,z) placing J. into the
standard form 1.1.

Lemma 5.2. In a sufficiently small neighbourhood U of p where the following coor-
dinates are defined, the functions w4, vy lie in the ideal of C*° (U, C) generated by
w,z.

Proof. Let p be the generator (1.1) defined by J in U, and let p_ = eP be the
generator defined by J_, which has symplectic type in U, so that = B +iw
is a complex 2-form such that w is symplectic.

The holomorphic Poisson structures 0+ = u49,,, /\ 0,, define general-
ized complex structures in U via the differential forms

uy +dug Advy € eGiQiO.

In [6], it is shown that these holomorphic Poisson structures may be ex-
pressed as a certain “wedge product” of the underlying generalized complex
structures (J4,J_). Explicitly, this provides the following identities':

eg(w —dwAdz) = (u_ +du_Adv_)
eP(w—dwAdz) =eM(uy +dup Advy),

for smooth functions A, A_ € C*(U, C). Comparing these equations to (2.3),
we see that the argument in the proof of Theorem 2.1 implies the required
constraint on uy,v4. O

Theorem 5.3. The complex structures 1_, 1 underlying a generalized Kihler 4-
manifold (M, J.y, J_) both lift to the blow-up of (M, I ;) at a nondegenerate complex
pointp € D4 .

Proof. Lety : U — C? be the chart defined by (w, z) in the normal form (1.1)
and let ¢4+ : U — C? be the chart defined by (u4,v4) in the normal form
givenby Lemma 5.1 . Then x+ = o (p;1 is a diffeomorphism and x+(0) = 0.

'In general, if py generate the canonical line bundles of Ji, then p] A p_ gener-
ates e+ Q™0(M,1;) and p| A p_ generates e~ Q™(M,1_). Here p' is the reversal anti-
automorphism of forms.



The complex structure I lifts to the blow-up M precisely when the diffeo-
morphism x4 lifts to a diffeomorphism of blow-ups x+ : [@+(U) : 0] —
[p(U) : 0]. This occurs if and only if uy and v4 are contained in the ideal
generated by w, z, which is itself guaranteed by Lemma 5.2. O

Remark 5.4. It follows from the theorem that the complex structure LE we
obtain on the blow-up of (M, J+) may be identified with the usual complex
blow-up of (M, 1) at p. Furthermore, since the holomorphic Poisson struc-
ture o4 vanishes at p, it follows that o lifts to a holomorphic Poisson struc-
ture on the blow-up.

We now apply Theorem 5.3 to obtain a degenerate bi-Hermitian struc-
ture on the blow-up of (M,J,,J_) atp € D,. Let (g,1;,1_,b) be the bi-
Hermitian structure on M defined by the generalized Kahler structure.

Corollary 5.5. Let (M,J ) be the blow-up of the generalized complex 4-manifold
(M, Jy) at the nondegenerate point p € D, with blow-down map m. Then M
inherits a degenerate bi-Hermitian structure (g, E,iL,T_) such that 7 : (M,Ti) —
(M, 1) is a usual holomorphic blow-down and g + b= (g+Db).

5.2 Deformation of degenerate bi-Hermitian structure

The degenerate bi-Hermitian structure on M obtained in Corollary 5.5 fails
to define a generalized Kédhler structure because g is not positive-definite
along the exceptional divisor E. We now apply Theorem 4.1 to obtain® a sec-
ond degenerate bi-Hermitian structure, which we use to modify (g, E, T+,T_ ).
The modification will leave the structures on M unchanged outside a tubular
neighbourhood VE of E which blows down to a neighbourhood of p in which
J_ has symplectic type and is given by a complex 2-form with imaginary part
w. Let w: M — M denote the blow-down map, and write ® = m*w for the
pull-back of the symplectic form to V.

First we describe the degenerate bi-Hermitian structure using the formal-
ism of Theorem 3.1. The complex structure I and the 2-form @ satisfy (3.6),
and so in Vg we have

I =1_+Q,
where C~2 = Re(0_) = Re(04), as in (3.3), and o is the blown up holomor-
phic Poisson structure. In the following, we construct a closed 2-form F; in a
possibly smaller tubular neighbourhood such that

Ti =1, + QF,

2The flow construction may be applied equally well to degenerate bi-Hermitian structures.
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defines a new complex structure T} The final task, completed in Section 5.3,
will be to show that the composition (5.1), in the sense of Definition 3.3, de-
fines a generalized Kéahler structure.

Ft ~
L1, —=T1% (5.1)

We now construct Fy. Let (u,v) be I;-holomorphic coordinates near p
such that 0, = ud, A0, and let (uy,vy) = (w/v,v) and (uq,v1) = (u,v/u) be
the two affine charts covering a tubular neighbourhood VE of the exceptional
divisor E = u; Loy u Vo L0). Using 1, v; as affine coordinates on E = CP?,
we may describe the Fubini-Study metric wg in terms of the Kéhler potential

fo = IOg( 1:&?%0) = IOg( 1+\1)171 )’

which is smooth away from ug = 0 and satisfies 100fy = we. Although fj is
singular, we observe that its Hamiltonian vector field is smooth:

Q(dfo) = Re(updy, A 9,)dlog( ugtlp_)

1+upup
Re(0y,).

_ 1
- 14+uoup

Hence Q(dfy) defines a smooth Poisson vector field on V.

Now choose a bump function € € C*(Vg,[0,1]) which vanishes on a
smaller tubular neighbourhood Ug C Vg and is such that 1 — € has compact
support in a closed disc bundle K over E, with Ug € K C Vg. Consider the
smooth function fc € C*(Vg,R) given by

fe = elog(uu 4+ v) = elog(vovo(1l + uptp)).
Since 100 log(vovo(1 + uotip)) = 100 log(1 + upl) = —iddfy, it follows that
f=c(fo+fc), c€Ryyg (5.2)

has the property that X = Q(df) is a smooth Poisson vector field in Vg and

_ in U
ipof— J CVE MEE (5.3)
0 outside K

For sufficiently small 5 > 0, there exists an open neighbourhood V{, with
K C V{ C Vg, on which the flow ¢ of X is well-defined for all t € (-9, 0).
Also, choose 4 small enough so that there is a neighbourhood V{' with V{' C
VL, with @¢(K) C V¥ for t € (—5,8). Using (5.3), we see that ¢} (i00f) is
smooth on V{, with compact support contained in V{, for all t € (-9, ).
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Ve
V' VE

Figure 2: Normal cross-section of neighbourhoods of E contained in V¢

We now apply Theorem 4.1° to the flow ¢ on V{. This provides a solu-
tion

t
Fy :J @¢(dd; f)ds
0 +

to Equation 3.6 for all t € (-5, ), with compact support in V{. Therefore, we
obtain a family of complex structures on V{ given by

Tt =1, + QF.. (5.4)

Since F¢ has compact support contained in V/{ /| the complex structure It may
be extended to all of M by setting it equal to I+ outside V{. We summarize
the above procedure in the following result.

Proposition 5.6. The flow construction of Theorem 4.1, applied to the singular
function f given in (5.2), produces a smooth family of solutions (Fi)ic(—s,5) to (3.6)
with compact support in a tubular neighbourhood of the exceptional divisor, and
hence we obtain a degenerate bi-Hermitian structure

(gt/ bt/ I I+ )
on M, where Tﬁr is given by (5.4) and gy, b are as in Theorem 3.1, yielding
gi = —R (I +T4). (5.5)

In Section 5.3, we compose the above degenerate bi-Hermitian structure
with that from Corollary 5.5 and show the resulting structure is positive-
definite.

3The fact that f is not smooth does not affect the validity of Theorem 4.1 in this case, as the
vector field X = Q(df) is a smooth Poisson vector field, and hence locally Hamiltonian.
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Remark 5.7. The family of complex structures It on M constructed above
defines a deformation of the blow-up complex structure 1, in the direction
given by the class in H'(7) defined by the vector field Z = Q(df), which is
a holomorphic vector field on the annular neighbourhood of E defined by
Ve\K. The (1,0) part of Z in this annular neighbourhood is (in the (ug, vo)
chart)

7' = ¢6 4 (d(log(125%-) + log(vovo(1 + uglip) )
= ¢(upduy A dyy) (1 *dug + vy tdvg)

c
c(0y, — %gauo).

This deformation class has a geometric interpretation: since p € Dy and
o4|p, =0, the contraction

Tr(d0+|D+)

defines a holomorphic vector field x on D4. The flow of cx then provides a
path p(t) of points on D_. The family of blow-ups of (M, 1) at p(t) provides
a deformation of complex structure with derivative [Z(10)] at t = 0.

5.3 Positivity

Now that we have constructed the two degenerate bi-Hermitian structures
on M occurring in (5.1), we must argue that their composition in the sense of
Definition 3.3 is positive-definite. The composition is the (a priori degener-
ate) bi-Hermitian structure (g, Bt,f,,fi ), where

(@+F)(I+14)
(@4 Fo) (=L +14).

G = —
B —

Nj= N=

Rewriting this, we obtain
G =—1 (a)(i +T)+ @I T+ Fe(lo —T) + Fe(1s +ﬁ))
=g+ 0i — 3(®QF — FQa), (5.6)
where we use the fact that ir —1. =Q and T’Sr —ir = QF,.

Theorem 5.8. Provided that ¢ in (5.2) is chosen small enough, the symmetric tensor
g defined by (5.6) is positive-definite on M for sufficiently small t # 0, defining a
generalized Kihler structure on the blow-up.

Proof. Since Fx — 0 as t — 0, it follows that Tjr — 1, ast — 0. By Equa-
tion 5.5, therefore, we see that

CWE in UE

t—0 0 outside K

Mﬁa=m¢jmg={
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where wg is the Fubini-Study metric. This implies that g; is positive-definite
when restricted to TE for sufficiently small nonzero t, and hence g + g is
positive-definite in a neighbourhood of E for sufficiently small nonzero t.
Also, the third summand in (5.6) is proportional to w, which vanishes along
E.

Fix ¢ = ¢y € R in the definition (5.2) of f, and let U C Ug be a tubu-
lar neighbourhood of E where the third summand in (5.6) is so small that
gt is positive-definite in U for sufficiently small nonzero t. Note that g; is
certainly positive-definite outside K (where it coincides with g), hence it re-
mains to show that gy is positive in the intermediate region K\U.

We have chosen U so that the third term in (5.6) is dominated there by the
first two terms. This means that at each point in U and for each vector v # 0
(and for suficiently small nonzero t), we have

IQ(Fv, av)| < g
(@ + T v, v)

(%W+@de

=g(v,v) -

=g(v,v) — F(uvw 1Q(Fev, Fyv)

=gv,v) — Ft(I+v,v). (5.7)

Since (5.7) holds for ¢ = ¢y, it will also hold in U for ¢ = Acy, forany A € (0,1),
since for x,y € R>p and z € R, we have the implication

(x<y+z)= M<Ay+z)<y+Arz).

Therefore we have shown positivity of g¢ in U for any 0 < ¢ < ¢y, for suffi-
ciently small nonzero t.

Now observe that the first term of (5.6), i.e. g, is positive-definite on K\U
and independent of c, whereas the second and third terms are each propor-
tional to c. Hence by choosing ¢ # 0 sufficiently small, we ensure that g¢
is positive-definite on K\U, in addition to U and outside K, for sufficiently
small t # 0. This completes the proof. O

6 Examples

By the work of Goto [4], we know that the choice of a holomorphic Poisson
structure on a compact Kdhler manifold gives rise to a family of generalized
Kéhler structures deforming the initial Kéhler structure. In this way, one ob-
tains nontrivial generalized Kahler structures on any compact Kéhler surface
with effective anti-canonical divisor D. Performing a Kiahler blow-up of such
a surface at a point lying on D, we obtain a new Kéhler surface with effec-
tive anti-canonical divisor given by the proper transform of D. Hence we
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may apply the Goto deformation and obtain a generalized Kéhler structure
on the blow-up. We believe that our construction gives an explicit realization
of Goto’s existence result in this case, as evidenced by Remark 5.7.

In the non-algebraic case, or for noncompact surfaces, our construction
provides new generalized Kahler structures. For example, a result of Apos-
tolov [1] states that for surfaces with odd first Betti number, a bi-Hermitian
structure which is not strongly bi-Hermitian may only exist on blow-ups of
minimal class VII surfaces with curves. If the minimal surface has a gener-
alized Kéhler structure, therefore, we may employ our result to obtain struc-
tures on the appropriate blow-ups.

Example 6.1 (Diagonal Hopf surfaces). X = S x S! admits a family of gen-
eralized Kahler structures with bi-Hermitian structure (g,I,I_) given by
viewing X as a Lie group, taking g to be a bi-invariant metric, and (I;,1_) to
be left and right-invariant complex structures compatible with g (see [6] for
details). In these examples, D ; and D_ are nonempty disjoint curves which
sum to the anti-canonical divisor. We may therefore blow up any number of
points lying on Dy U D_ and obtain generalized K&hler structures on these
manifolds, which are diffeomorphic to (S® x S1)#KCP2. This provides an-
other construction of bi-Hermitian structures on non-minimal Hopf surfaces,
besides those discovered in [11, 9].

In a remarkable recent work [3], Fujiki and Pontecorvo obtained bi-Hermitian
structures on hyperbolic and parabolic Inoue surfaces as well as Hopf sur-
faces, by carefully studying the twistor space of the underlying conformal
4-manifold. They then obtained bi-Hermitian structures when these surfaces
are properly blown up, meaning that the surface is blown up at nodal sin-
gularities of the anti-canonical divisor. Finally, they obtained bi-Hermitian
structures on a family of deformations of such blowups. We may of course
blow up their minimal examples at smooth points of the anti-canonical di-
visor, using our procedure. It remains to determine how the various bi-
Hermitian structures now known on (S x S1)#kCP2 are related.
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