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Asymptotically exponential hitting times and
metastability: a pathwise approach

without reversibility
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Abstract

We study the hitting times of Markov processes to target set G, starting from a
reference configuration x0 or its basin of attraction and we discuss its relation to
metastability.

Three types of results are reported: (1) A general theory is developed, based on
the path-wise approach to metastability, which is general in that it does not assume
reversibility of the process, does not focus only on hitting times to rare events and does
not assume a particular starting measure. We consider only the natural hypothesis that
the mean hitting time to G is asymptotically longer than the mean recurrence time to
the refernce configuration x0 or G. Despite its mathematical simplicity, the approach
yields precise and explicit bounds on the corrections to exponentiality. (2) We compare
and relate different metastability conditions proposed in the literature. This is specially
relevant for evolutions of infinite-volume systems. (3) We introduce the notion of early
asymptotic exponential behavior to control time scales asymptotically smaller than
the mean-time scale. This control is particularly relevant for systems with unbounded
state space where nucleations leading to exit from metastability can happen anywhere
in the volume. We provide natural sufficient conditions on recurrence times for this
early exponentiality to hold and show that it leads to estimations of probability density
functions.
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1 Introduction

Hitting times to rare sets, and related metastability issues, have been studied both in
the framework of probability theory and statistical mechanics.

A short review of first hitting results is given in sect. 1.1. As far as metastability
results are concerned, the story is much more involved due to the fact that metastability
can be defined in different ways.
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Asymptotically exponential hitting times and metastability

The phenomenon of metastability is given by the following scenario: (i) A system
remains “trapped” for an abnormally long time in a state —the metastable phase— differ-
ent from the eventual equilibrium state consistent with the thermodynamical potentials.
(ii) Subsequently, the system undergoes a sudden transition from the metastable to the
stable state at a random time.

The mathematical study of this phenomenon has been a standing issue since the
foundation of the field of rigorous statistical mechanics. This long history resulted in a
number of different approaches, based on non-equivalent assumptions.

The common feature of these mathematical descriptions is a stochastic framework
involving a Markovian evolution and two disjoint distinguished sets of configurations,
respectively representing metastable and stable states. Rigorously speaking, a statistical
mechanical “state” corresponds to a probability measure. The association to sets of
configurations corresponds, therefore, to identifying supports of relevant measures.
This is a crucial step in which both probabilistic and physical information must be
incorporated. Within such framework, the central mathematical issue is the description
of the first-exit trajectories leading from an initial metastable configuration to a final
stable one. The exit path can be decomposed into two parts:

• an escape path —taking the system to the boundary of the metastable set, which
can be thought of as a saddle or a bottleneck: a set with small equilibrium measure
which is difficult for the system to reach. —

• and a downhill path —bringing the system into the next stable state. —

Metastable behavior occurs when the time spent in downhill paths is negligible with
respect to the escape time. In such a scenario, the overall exponential character of
the time to reach stability is, therefore, purely due to the escape part of the trajectory.
This implies that the set of metastable states can be considered as a single state in the
sense that the first escape turns out to be exponentially distributed as in the case of
a single state. Actually this exponential law can be considered as the main feature of
metastability.

As noted above, the escape time from a metastable set can be determined from
the first hitting time to the rare set of saddle configurations. This fact establishes an
association between metastability and hitting times to rare events. Nevertheless, the
physical quantity in metastability studies is the transition time from the metastable
phase to the stable one. The reduction of this issue to the study of hitting times to rare
sets requires a detailed investigation of the state space in order to determine the saddle
set.

In metastability literature, the main used tools are renormalization [61, 62], cycle
decomposition and large deviations [21, 22, 23, 20, 55, 56, 57, 47, 63] and, lately,
potential theoretic techniques [9, 10, 12, 13, 5, 6]. Generally speaking, the focus is more
on the exit path and on the mean exit time, while the results on the distribution of the
escape time are usually asymptotical and not quantitative as in [2].

At any rate, metastability involves a relaxation from an initial measure to a metastable
state, from which the systems undergoes a final transition into stability. To put this
two-step process in evidence, the theory must apply to sufficiently general initial states.
Furthermore, the phenomenon is particularly relevant for evolutions out of equilibrium,
thus a comprehensive theory must not assume reversibility.

This paper is based on the path-wise approach to metastability developed in[20, 55,
56, 57, 47]. This approach has led to a detailed description of exit paths in terms of
relevant physical quantities, such as energy, entropy, temperature, etc. In this paper we
show how the same approach provides simple and effective estimations of the laws of
hitting times for rather general, not necessarily reversible dynamics. This makes our
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treatment applicable to many interesting models in the framework of non-equilibrium
statistical mechanics. Examples of non-reversible dynamics can be found in cases of
non symmetric models, like TASEP (totally asymmetric simple exclusion process ) or of
parallel dynamics, like PCA (probabilistic cellular automata). As showed in [30] these
kind of dynamics can be much more efficient from an algorithmic point of view.

Moreover we can consider hitting to more general goals, not necessarily rare sets,
so, in metastability language, we do not need to determine the saddle configurations in
order to prove the exponentially of the decay time since we can directly consider as goal
the stable state. This can be an important point to apply the theory in very complicated
physical contexts where a detailed control of the state space is too difficult.

1.1 First hitting times: known results

The stochastic treatment was initially developed in the framework of reliability theory,
in which the reference states are called good states and the escaped states are the bad
states. The exponential character of good-to-bad transitions —well known from quite
some time— is due to the existence of two different time scales: Long times are needed
to go from good to bad states, while the return to good states from anywhere —except,
perhaps, the bad states— is much shorter. As a result, a system in a good state can
arrive to the bad state only through a large fluctuation that takes it all the way to the bad
state. Any intermediate fluctuation will be followed by an unavoidable return to the good
states, where, by Markovianness, the process starts afresh independently of previous
attempts. The escape time is formed, hence, by a large number of independent returns
to the good states followed by a final successful excursion to badness that must happen
without hesitations, in a much shorter time. The exit time is, therefore, a geometric
random variable with extremely small success probability; in the limit, exponentiality
follows.

A good reference to this classical account is the short book [44] which, in fact, collects
also the main tools subsequently used in the field: reversibility, spectral decomposition,
capacity, complete monotonicity. Exponentiality of hitting times to rare events is analyzed,
in particular, in Chapter 8 of this book, where regenerative processes are considered.

The tools given in [44] where exploited in [17, 18, 19, 1, 2, 3] to provide sharp and
explicit estimates on the exponential behavior of hitting times with means larger than
the relaxation time of the chain. For future reference, let us review some results of these
papers.

Let Xt; t ≥ 0 be an irreducible, finite-state, reversible Markov chain in continuous
time, with transition rate matrix Q and stationary distribution π. The relaxation time of
the chain is R = 1/λ1, where λ1 is the smallest non-zero eigenvalue of −Q. Let τA denote
the hitting time of a given subset A of the state space and Pπ the law of the process
started at π. Then, for all t > 0 (Theorem 1 in [2]):∣∣∣Pπ(τA/EπτA > t

)
− e−t

∣∣∣ ≤ R/EπτA
1 +R/EπτA

. (1.1)

Moreover in the regime R� t� EπτA, the distribution of τA rescaled by its mean value,
can be controlled with explicit bounds on its density function (Sect. 7 of [2]). These
bounds, together with (1.1), constitute quantitative estimates that are precise and useful
when R/EπτA � 1 and the starting distribution is the equilibrium measure.

Further insight is provided by the quasi-stationary distribution

α := lim
t→∞

Pπ(Xt ∈ · | τA > t) .

This distribution is stationary for the conditional process

α = Pα(Xt ∈ · | τA > t) ,
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and starting from α the hitting time to A is exponential with rate 1/EατA. If the set A is
such that R/EπτA is small, then the distance between the stationary and quasi-stationary
measures is small and, as shown in Theorem 3 of [2],

Pπ
(
τA > t

)
≥
(

1− R

EατA

)
exp
{
− t

EατA

}
. (1.2)

The proofs of these results are based on the property of complete monotonicity
derived from the spectral decomposition of the transition matrix restricted to the com-
plement of A.

While reversibility has been crucially exploited in all these proofs, there exist another
representation for first hitting times, always due to [19], based on the famous interlacing
eigenvalues theorem of linear algebra. This representation has been very recently
re-derived, using a different approach, [34] who use it to the generalize the results to
non reversible chains.

While the previous formulas are very revealing, they are restricted to the situations
in which the “good” reference state is the actual equilibrium measure.

The common feature of these approaches is their central use of the invariant measure
both as a reference and to compute the corrections to exponential laws. As this object is
generally unknown and hard to control, the resulting theories lead to hypotheses and
criteria not easy to verify.

An higher level of generality is achieved by the martingale approach recently applied
in [7] to obtain results comparable to those in theorem 2.7 below. In this reference,
however, exponential laws are derived for visits to rare sets —that is, sets with asymptot-
ically small probability. In metastability or reliability theory this corresponds to visits to
the saddles mediating between good and bad or between stable and metastable states.
As mentioned above, we recall that the approach proposed in the present paper does
not require the determination of these saddle states, and exponential laws are derived
also for visit to sets G including the stable state. Moreover, in this work we concentrate
on recurrence hypotheses defined purely in terms of the stochastic evolution with no
reference to an eventual invariant state.

1.2 Metastability: A few key settings.

Having in mind different asymptotic regimes, many different definitions of metastable
states have been given in the literature. These notions, however, are not completely
equivalent as they rely on different properties of hitting and escape times. This state of af-
fairs makes direct comparisons difficult and may lead to confusion regarding applicability
of the different theories to new problems.

Since metastability is always associated with a particular asymptotic regime, the
results given in the literature are always given in asymptotic form.

In order to understand the reasons behind the different notions of metastability, it is
useful to survey the main situations where metastability has been studied.

The simplest case is when the system recurs in a single point. The main asymptotic
regimes that fall into this class are:

• Finite state space in the limit of vanishing transition probabilities. Typical examples
are lattice systems, with short range interaction, Glauber [4, 16, 25, 27, 29, 45,
46, 50, 53, 54, 58, 59](or Kawasaki [14, 38, 39, 40, 41, 42, 43, 51], or parallel
[8, 23, 26, 28, 27, 52, 63, 64]) dynamics, in the limit of vanishing temperature. In
this regime, the transition probabilities between neighbour points x and y have
the form P (x, y) = exp(−β∆H(x, y)), where β →∞ is the inverse temperature and
∆H(x, y) is the energy barrier between x and y.
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In this regime, the escape pattern can be understood in terms of the energy
landscape (more generally, in terms of the equilibrium measure). The mean exit
time scales as exp(−βΓ), where Γ is the energy barrier between the metastable
and the stable configurations.

• Finite transition probabilities in the limit of diverging number of steps to attain
stability. The typical example of this regime regards mean field models [11, 20].
Indeed, these systems can be mapped into a low-dimensional Markov process
recurring in a single point and where metastability can be described in terms of
free–energy landscape. The mean exit time scales as exp(−n∆), where n→∞ is
the volume and ∆ is the free-energy barrier divided by the temperature.

The kinetic Ising model at finite temperature in the limit of vanishing magnetic
field h in a box of side-length 1/h is another example of this class (see [60]), since
the critical droplet becomes larger and larger as h tends to 0.

Many toy models, including the one–dimensional model discussed in section 5.2.2,
pertain to this regime.

In the rest of the subsection we will discuss some cases where metastability can be
described in terms of entropic corrections of the regimes above.

For instance, suppose to have many independent copies of a system in the regime of
finite state space and vanishing transition probabilities, and that the target event is the
hitting to a particular set in any of the copies. Physical phenomena of this kind are bolts
(discharge of supercharged condensers) and “homogeneous nucleation" in short range
thermodynamic systems (i.e. the formation of the first critical nucleus in a large volume)
[15, 43, 36, 32, 60] Since the target event can take place in any of the subsystems, the
hitting time is shortened with respect to a single subsystem and, in general, its law
changes. This regime is the physical motivation behind our notion of “early behavior"
(see definition 2.9 below).

A wonderful example where the entropic correction is related to fine details of the
dynamics is given by the “nucleation and growth models" (see e.g. [31, 32, 24, 48,
49, 60]), where the transition to stability is driven by the formation, the growth and
eventually the coalescence of critical droplets. In these systems the mean relaxation time
is the sum of the “nucleation time" in a “critical volume", which is often exponentially
distributed, and the “travel time" needed for two neighbor droplets to grow and coalesce
(which, at least in some systems, is believed to have a cut-off behavior).

For general Markov chains, however, metastability cannot be understood in terms of
the invariant measure landscape. The system is trapped in the metastable state both
because of the height of the saddles and the presence of bottlenecks, and there is not a
general recipe to analyze this situation. The results given in this paper allow dealing
with the cases where the system recurs to a single point. In a forthcoming paper, we will
deal with the general case, where recurrence to the “quasi–stationary measure" (or to a
sufficiently close measure) is used.

In section 2.3, we compare the different definitions of metastability that have been
given in the literature for different asymptotic regimes.

1.3 Goal of the paper

The goal of this paper is twofold. First, we develop an overall approach to the study
of exponential hitting times which, we believe, is at the same time general, natural
and computationally precise. It is general because it does not assume reversibility of
the process, does not assume that the hitting is to a rare event and does not assume
a particular starting measure. It is natural because it relies on the most universal
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hypothesis for exponential behavior —recurrence— without any further mathematical
assumptions like complete monotonicity or other delicate spectral properties of the
chain. Furthermore, the proofs are designed so to follow closely physical intuition.
Rather than resorting to powerful but abstract probabilistic or potential theoretical
theorems, each result is obtained by comparing escape and recurrence time scales
and decomposing appropriately the relevant probabilities. Despite its mathematical
simplicity, the approach yields explicit bounds on the corrections to exponentiality,
comparable to Lemma 7 of [2] but without assuming initial equilibrium measure.

A second goal of the paper is to compare and relate metastability conditions proposed
in the literature [9, 11, 47]. Indeed, different authors rely on different definitions of
metastable states involving different hypotheses on hitting and escape times. The situa-
tion is particularly delicate for evolutions of infinite-volume systems, whose treatment
depends on whether and how relevant parameters (temperature, fields) are adjusted
as the thermodynamic limit is taken. We do a comparative study of these hypotheses
to eliminate a potential source of confusion regarding applicability of the different the-
ories to new problems (Theorem 2.17 below). Furthermore, we present a number of
counterexamples (Section 5.2) explicitly showing differences between the hypotheses.

A further contribution of our paper is our notion of early asymptotic exponential
behavior (Definition 2.11) to control the exponential behavior on a time scale asymptoti-
cally smaller than the mean-time scale. This notion is particularly relevant for systems
with unbounded state space where it leads to estimations of probability density functions.
Furthermore, as discussed below, this strong control of exponentiality at small times
is important to control infinite-volume systems in which the nucleations leading to exit
from metastability can happen anywhere in the volume. We provide natural sufficient
conditions on recurrence times for this early exponentiality to hold.

The main limitation of our approach —shared with the majority of the metastability
literature— is the assumption that recurrence refers to the visit to a particular configu-
ration. Actually this particular configuration x0 can be chosen quite arbitrarily in the
"metastable well". A more general treatment, involving extended metastable measures
for which it is not possible to speak of metastable well, is the subject of a separate
publication [33].

We conclude this section with the outline of the paper. In section 2 we give main
definitions, results on the exponential behavior and compare different hypothesis used
in the literature with the ones used in this paper. In section 3 we give some key lemmas
that are used in section 4 to prove the main theorems about the exponential behavior. In
section 5 we prove the results about the comparison of different hypothesis and we give
an example that depending on the values of parameters fulfills different hypothesis to
show that in general they are not all equivalent. The appendix contains computations of
quantities needed in the example.

2 Results

2.1 Models and notation

We consider a family of discrete time irreducible Markov chains with transition
matrices P (n) and invariant measures (π(n), n ≥ 1) on finite state spaces (X (n), n ≥ 1).
A particular interesting case is the infinite volume asymptotics limn→∞ |X (n)| =∞.

We use scriptless symbols P(·) and E(·) for probabilities and expectations while
keeping the parameter n and initial conditions as labels of events and random variables.
In particular X(n),x =

(
X

(n),x
t

)
t∈N denotes the chain starting at x ∈ X (n), and the hitting
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time of a set F (n) ⊂ X (n) is denoted by

τ
(n),x

F (n) = inf
{
t ≥ 0 : X

(n),x
t ∈ F (n)

}
(2.1)

For guidance we use uppercase latin letters for sequences of diverging positive
constants, and lowercase latin letters for numerical sequences converging to zero when
n→∞. The small-o notation on(1) indicates a sequence of functions going uniformly to
0 as n→∞. The symbol An � Bn indicates, Bn/An = on(1).

The notation X =
(
Xt

)
t∈N is used for a generic chain on X . Quantitave results will

be given for such a generic chain, while asymptotical results are given for the sequence
X(n). The shorter notation without superindex (n) is also used in proofs where result
are discussed for a single choice of n.

2.2 General results on exponential behavior

The general setup in the sequel comprises some ingredients. First, a point x0 thought
of as a(meta)stable state. In reversible chains, such a point corresponds to the bottom of
an “energy well" or, more generally, to a given state in the energy well. In our treatment,
it is irrelevant whether it corresponds to an absolute (stable) or local (metastable) energy
minimum. The second ingredient is a non empty set G of points marking the exit from
the “well”. Depending on the application, this set can be formed by exit points, by saddle
points, by the basin of attraction of the stable points or by the target stable points. The
random time τx0

G , i.e., the first hitting time to G starting from x0, corresponds therefore
to the exit time or transition time in the metastable setting. We call (x0, G) a reference
pair.

We characterize the scale of return times (renewal times) by means of two parameters:

Definition 2.1. Let R > 0 and r ∈ (0, 1), we say that a reference pair (x0, G) satisfies
Rec(R, r) if

sup
x∈X

P
(
τx{x0,G} > R

)
≤ r . (2.2)

We will refer to R and r as the recurrence time and recurrence error respectively.
The hitting time to {x0, G} is one of the key ingredients of our renewal approach.

Definition 2.2. Given a reference pair (x0, G) and r0 ∈ (0, 1), we define the basin of
attraction of x0 of confidence level r0 the set

B(x0, r0) := {x ∈ X ; P(τx{x0,G} = τxx0
) > 1− r0} (2.3)

Theorem 2.3. Consider a reference pair (x0, G), with x0 ∈ X , G ⊂ X , such that Rec(R, r)
holds withR < T := Eτx0

G , with ε := R
T and r sufficiently small. Then, there exist functions

C(ε, r) and λ(ε, r) with

C(ε, r) , λ(ε, r) −→ 0 as ε, r → 0 , (2.4)

such that ∣∣∣P(τx0

G

T
> t
)
− e−t

∣∣∣ ≤ C e−(1−λ) t (2.5)

for any t > 0. Furthermore, there exist a function C̃(ε, r, r0) with

C̃(ε, r, r0)→ 0 as ε, r, r0 → 0 , (2.6)

such that, for any z ∈ B(x0, r0),∣∣∣P(τzG
T

> t
)
− e−t

∣∣∣ ≤ C̃ e−(1−λ) t (2.7)
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Remark 2.4. As already discussed in the Introduction, similar results are given in the
literature both in the field of first hitting to rare events and in the field of escape from
metastability. We have to stress here that we are not assuming reversibility and we have
quite general assumptions on starting condition.

Metastability studies involve sequences of Markov chains on a sequence of state
spaces X (n).

Definition 2.5. Consider a sequence of reference pairs
(
x

(n)
0 , G(n)

)
, with x

(n)
0 ∈ X (n),

∅ 6= G(n) ⊂ X (n).

(i) The sequence satisfies the recurrence property Rec(Rn, rn), for given sequences
(rn) and (Rn) if

sup
x∈X (n)

P
(
τ

(n),x

{x(n)
0 ,G(n)}

> Rn

)
≤ rn . (2.8)

(ii) The sequence satisfies hypothesis Hp.G(Tn) for some increasing positive sequence
(Tn) if there exist sequences rn = on(1) and Rn ≺ Tn such that the recurrence
property Rec(Rn, rn) holds.

Definition 2.6. Given a sequence of reference pairs (x
(n)
0 , G(n)) and a sequence r(n)

0 → 0,

we define the basin of attraction of x(n)
0 of confidence level r(n)

0 the set

B
(
x

(n)
0 , r

(n)
0

)
:=
{
x ∈ X (n); P

(
τx
{x(n)

0 ,G}
= τx

x
(n)
0

)
> 1− r(n)

0

}
(2.9)

We have the following exponential behaviour for the first hitting time to G(n):

Theorem 2.7. Consider a sequence of reference pairs
(
x

(n)
0 , G(n)

)
with mean exit times

TEn := E
(
τ

(n),x
(n)
0

G(n)

)
(2.10)

and ζ-quantiles information time

Qn(ζ) := inf
{
k ≥ 1 : P

(
τ

(n),x
(n)
0

G(n) ≤ k
)
≥ 1− ζ

}
. (2.11)

Then,

(I) If Hp.G(TEn ) holds:

(i) τ
(n),x

(n)
0

G(n) /TEn converges in law to an exp(1) random variable, that is,

lim
n→∞

P
(
τ

(n),x
(n)
0

G(n) > tTEn

)
= e−t . (2.12)

ii) Furthermore,

lim
n→∞

sup
x∈B(x

(n)
0 ,r

(n)
0 )

∣∣∣P(τ (n),x

G(n) > tTEn

)
− e−t

∣∣∣ = 0 . (2.13)

(II) If Hp.G(Qn(ζ)) holds:

(i) τ
(n),x

(n)
0

G(n) /Qn(ζ) converges in law to an exp(− ln ζ) random variable, that is,

lim
n→∞

P
(
τ

(n),x
(n)
0

G(n) > tQn(ζ)
)

= ζt . (2.14)

(ii) The rates converge,

lim
n→∞

Qn(ζ)

TEn
= − ln ζ . (2.15)
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A popular choice for the parameter ζ in the quantile is e−1. In this case all rates are
equal to 1.

Under weaker hypotheses on Tn, we can prove exponential behavior in a weaker
form:

Corollary 2.8. If Tn is a sequence of times such that

∃ ζ < 1 : P
(
τ

(n),x
(n)
0

G(n) > Tn

)
≥ ζ uniformly in n

and if Hp.G(Tn) holds, then the sequence τ
(n),x

(n)
0

G(n) /E
(
τ

(n),x
(n)
0

G(n)

)
converges in law to an

exp(1) random variable. Indeed in this case we have Tn ≤ Qn(ζ) so that Hp.G(Tn) implies
Hp.G(Qn(ζ)).

Notice that recurrence to a single point is not necessary to get exponential behavior
of the hitting time. A simple example where we get exact exponential behavior inde-
pendently of the initial distribution is when the one-step transition probability Px,G is
constant for x ∈ Gc.

As explained in the introduction there are situations, e.g., when treating metastability
in large volumes, that call for more detailed information on a short time scale on hitting
times.

Definition 2.9. A random variable θ has early exponential behaviour at scale S ≤ Eθ
with rate α, if for each k such that kS ≤ Eθ we have∣∣∣P(θ ∈ (kS, (k + 1)S]

)
P(θ > S)k P(θ ≤ S)

− 1
∣∣∣ < α. (2.16)

We denote this behavior by EE(S, α).

Remark 2.10. A remark on the difference between the notion of early exponential
behaviour and the exponential behaviour given by Theorem 2.3 is necessary. Early
exponential behaviour controls the distribution only on short times, kS < Eθ, while
equation (2.5) holds for any t. However on the first part of the distribution EE(S, α) can
give a more detailed control on the density of the distribution. More precisely if τx0

G is
EE(S, α) with α small, we can obtain estimates on the density f(t) of θ

Eθ , equivalent to
the results obtained in [2], Lemma 13, (a),(b). Indeed

P
(
τx0

G ∈ (kS, (k + 1)S]
)

= e−λk(1− e−λ)(1 + ak)

where λ := − lnP(τx0

G > S) and

ak :=
P
(
τx0

G ∈ (kS, (k + 1)S]
)

P(τx0

G > S)k P(τx0

G ≤ S)
− 1

The absolute value of ak is bounded by α if EE(S, α) holds uniformly in k <
Eτ

x0
G

S . In the
case S � Eτx0

G , Lemma 3.3 below implies that λ ∼ S
Eτ

x0
G

. Thus, heuristically,

f
(
k

S

Eτx0

G

) S

Eτx0

G

∼ P
(
k

S

Eτx0

G

<
τx0

G

Eτx0

G

≤ (k + 1)
S

Eτx0

G

)
= e−λk(1− e−λ)(1 + a)

∼ e
− S

Eτ
x0
G

k [ S

Eτx0

G

+ o
( S

Eτx0

G

)] (
1 + a

)
(2.17)
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Asymptotically exponential hitting times and metastability

Definition 2.11. A family of random variables (θn)n with Eθn →∞ for n→∞, has an
asymptotic early exponential behaviour at scale (Sn)n if for every integer k

lim
n→∞

P
(
θn ∈ (kSn, (k + 1)Sn]

)
P(θn > Sn)k P(θn ≤ Sn)

= 1 (2.18)

Remark 2.12. The notion of EE(Sn, α) is interesting for α small and when Sn is asymp-
totically smaller than E(θn) so that P(θn ≤ Sn)→ 0 as n→∞. The sharpness condition
(2.18) controls the smallness of these probabilities. In particular it implies that

P(θn ≤ kSn)

1− P(θn > Sn)k
−−−−−→
n→∞

1 (2.19)

The following theorem determines convenient sufficient conditions for early exponen-
tial behaviour at scale.

Theorem 2.13. Given a reference pair
(
x0, G

)
, satisfying Rec(R, r) with 0 < R < T :=

Eτx0

G . Define ε := R
T and suppose ε and r sufficiently small. Then τx0

G has EE(ηT, α) for
some α with α = O(ε/η)+O(r/η), for η such that η ∈ (0, 1), ε/η and r/η are small enough.
For instance the property holds for η =

[
max{ε, r}

]γ
with γ < 1 and ε, r small enough.

The following theorem is an immediate consequence of the previous one.

Theorem 2.14. Consider a sequence
(
x

(n)
0 , G(n), Tn

)
, with x(n)

0 ∈ X (n), G(n) ⊂ X (n) and
Tn > 0 satisfying Hypothesis Hp.G(Tn), with rn → 0. Then the family of random variables

τ
(n),x

(n)
0

G(n) has asymptotic exponential behavior at every scale Sn such that

rn ≺
Sn
Tn

and
Rn
Tn
≺ Sn

Tn
≤ 1 . (2.20)

2.3 Comparison of hypotheses

Many different hypotheses have been used in the literature to prove exponential
behavior. In this section we analyze some of these hypotheses in order to clarify the
relations between them. The notation 2.5 can be used to discuss different issues, in
particular:

• the hitting problem (where x0 is the maximum of the equilibrium measure and G is
a rare set)

• the exit problem and applications to metastability(where x0 is a local maximum of
the equilibrium measure, e.g., the metastable state, and G is either the ”saddle",
the basin of attraction of the stable state or the stable state itself)

A key quantity, especially in the "potential theoretic approach" is the following:

Definition 2.15. A ⊂ X and z, x ∈ X the local time spent in x before reaching A starting
from z is

ξzA(x) :=
∣∣∣{t < τzA : Xz

t = x
}∣∣∣. (2.21)

The following hypotheses are instances of hypothesis Hp.G(Tn) (Definition 2.5) for
different sequences (Tn).

Hypotheses I

Hp.GE ≡ Hp.G(TEn ) with TEn = E
(
τ

(n),x
(n)
0

G(n)

)
(2.22)

Hp.Gζ ≡ Hp.G(TQ
ζ

n ) with TQ
ζ

n = inf
{
t : P

(
τ

(n),x
(n)
0

G(n) > t
)
≤ ζ
}

(2.23)

Hp.GLT ≡ Hp.G(TLTn ) with TLTn = E
(
ξ

(n),x
(n)
0

G(n) (x
(n)
0 )
)

(2.24)
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Asymptotically exponential hitting times and metastability

We show in Theorem 2.17 below that the first two hypotheses are equivalent for every
ζ < 1. In particular this shows the insensitivity of metastability studies to the choice
of ζ. For ζ = e−1, hypothesis Hp.G1/e is equivalent to the ones considered in previous
papers (see for instance [47] hypothesis of Theorem 4.15) to determine the distribution
of the escape times for general Metropolis Markov chains in finite volume. The last
hypotheses Hp.GLT is new and it is useful to compare the first two hypothesis with the
two hypotheses below.

The next set of hypotheses refer to the following quantity.

Definition 2.16. Let
τ̃

(n),x
A := min

{
t > 0 : X

(n),x
t ∈ A

}
(2.25)

be the first positive hitting time to A starting at x.

Given reference pairs {x(n)
0 , G(n)}, define

ρA(n) := sup
z∈X (n)\{x(n)

0 ,G(n)}

P
(
τ̃

(n),x
(n)
0

G(n) < τ̃
(n),x

(n)
0

x
(n)
0

)
P
(
τ̃

(n),z

{x(n)
0 ,G(n)}

< τ̃
(n),z
z

) (2.26)

and

ρB(n) := sup
z∈X (n)\{x(n)

0 ,G(n)}

Eτ
(n),z

{x(n)
0 ,G(n)}

Eτ
(n),x

(n)
0

G(n)

. (2.27)

Hypotheses II

Hp.A : lim
n→∞

|X (n)|ρA(n) = 0 (2.28)

Hp.B : lim
n→∞

ρB(n) = 0 (2.29)

When x0 is the metastable configuration and G is the stable configuration (more
precisely when E(ξx0

G ) < E(ξGx0
) ) Hp.A is similar to the hypotheses considered in [10]

while Hp.B is similar to those assumed in [9]. Theorem 1.3 in [12] shows that, under
hypothesis Hp.A and reversibility, τx0

G /E(τx0

G ) converges to a mean 1 exponential variable.
Our last theorem establishes the relation between the previous six hypotheses.

Theorem 2.17. The following implications hold:

Hp.A =⇒ Hp.GLT =⇒ Hp.GE ⇐⇒ Hp.Gζ ⇐⇒ Hp.B (2.30)

for any ζ < 1. Furthermore, the missing implications are false.

These relations are summarized in Figure 1.

Remark 2.18. (a) Theorem 2.7 holds with either hypothesis Hp.B of the originally
stated Hp.GE or Hp.Gζ .

(b) The first equivalence shows, in particular, that all hypotheses Hp.Gζ with ζ < 1 are
mutually equivalent.

(c) Typically, in metastable systems, for a given target set G there are many possible
choices for the point x0 to form a reference pair that verifies Hp. B.

LetMε
G :=

{
x ; supz 6∈{x,G}E(τz{x,G})/E(τxG) < ε

}
be the set of all points that toghether

with G form a reference pair according to Hp.B.
If x, y ∈Mε

G, then
1

1 + ε
≤ E(τxG)

E(τyG)
≤ 1 + ε (2.31)
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Asymptotically exponential hitting times and metastability

Figure 1: Venn diagram for the conditions in theorem 2.17. The two points correspond
to particular choices of the parameters in the "abc model" stated in section 5.2.2.

and
P (τyx < τyG) ≥ 1− 2ε ; P

(
τxy < τxG

)
≥ 1− 2ε (2.32)

Indeed, for any x, y, z ∈ X ,

E(τyz ) = E(τy{x,z}) + E(τyz − τ
y
{x,z})

= E(τy{x,z}) + E
(
(τyz − τyx )1τyx<τyz

)
= E(τy{x,z}) + E(τxz )P (τyx < τyz ) , (2.33)

where we used strong Markov property at time τyx in the last equality.
When x ∈Mε

G,
E(τyG) ≤ E(τxG) (ε+ 1) (2.34)

Hence, if both x and y are inMε
G, we get the (2.31). From (2.33), by using (2.31)

and x ∈Mε
G, we get

P (τyx < τyG) =
E(τyG)− E(τy{x,G})

E(τxG)
≥ 1

1 + ε
− ε,

by symmetry, (2.32) follows.

(d) A well-known case is that of finite state space under Metropolis dynamics in the
limit of vanishing temperature. Lemma 3.3 in [16] states that if G is the absolute
minimum of the energy function and x0 is the deepest local minimum, then the
reference pair (x0, G) verifies Hp. A.

(e) The implications in Theorem 2.17 are valid for reversible and non-reversible evolu-
tions. The counterexamples showing that the missing implications are false, given
in Section 5.2, involve reversible dynamics. This shows that the failure of the
missing implications is not associated with lack of reversibility.

3 Key Lemmas

The proofs of the theorems presented in this paper are based on some quite simple
results on the distribution of the random variable τx0

G . In fact, the central argument is
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that condition Rec(R, r) implies that renewals –that is, visits to x0– happen at a much
shorter time scale than visits to G. This is expressed through the behavior of the
following random times related to recurrence: for each deterministic time u > 0 let

τ∗(u) := inf
{
s ≥ u : Xs ∈ {x0, G}

}
(3.1)

If Y ∼ Exp(1) then the following factorization obviously holds

P(Y > t+ s) = P(Y > t)P(Y > s).

Next lemma controls –for z = x0– this factorization property on a generic time scale
S > R.

Lemma 3.1. If (x0, G) satisfies Rec(R, r), then for any z ∈ X , S > R, t > 0 and s > R
S

P
(
τzG > (t+ s)S

) ≥ [
P
(
τzG > tS +R

)
− rP

(
τzG > tS

)]
P
(
τx0

G > sS
)

≤
[
P
(
τzG > tS −R

)
+ r
]
P
(
τx0

G > sS
)
.

(3.2)

Proof. We start by decomposing according to the time τ∗(tS) to get

P
(
τzG > (t+ s)S

)
= P

(
τzG > (t+ s)S ; τ∗(tS) ≤ tS +R

)
+ P

(
τzG > (t+ s)S ; τ∗(tS) > tS +R

)
(3.3)

=

R∑
u=0

P
(
τzG > (t+ s)S ; τ∗(tS) = tS + u

)
+

∑
x∈{x0,G}c

P
(
τzG > (t+ s)S ; XtS = x ; τ∗(tS) > tS +R

)
We now use Markov property at time tS + u in the first sum, together with the fact that
τzG > τ∗(tS) implies Xτ∗(tS) = x0. In the second sum we use Markov property at instant
tS. This yields

P
(
τzG > (t+ s)S

)
=

R∑
u=0

P
(
τ∗(tS) = tS + u ; τzG > tS + u

)
P
(
τx0

G > sS − u
)

(3.4)

+
∑

x∈{x0,G}c
P
(
τzG > tS ; XtS = x

)
P
(
τxG > sS ; τx{x0,G} > R

)
.

This identity will be combined with the elementary monotonicity bound with respect to

inclusion
{τx0

G > t1} ⊇ {τx0

G > t2} for t1 ≤ t2 , (3.5)

To get the lower bound we disregard the second sum in the right-hand side of (3.4)
and bound the first line through the monotonicity bound (3.5) for t1 = tS + u and
t2 = tS +R. By condition (2.2) we obtain:

P
(
τzG > (t+ s)S

)
≥ P

(
τzG > tS +R ; τ∗(tS) ≤ tS +R

)
P
(
τx0

G > sS
)

=
[
P
(
τzG > tS +R

)
− P

(
τzG > tS +R ; τ∗(tS) > tS +R

)]
P
(
τx0

G > sS
)

(3.6)

≥
[
P
(
τzG > tS +R

)
− rP

(
τzG > tS

)]
P
(
τx0

G > sS
)
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To get the upper bound in (3.2) exchange s with t in (3.4) and use again the monotonic-
ity (3.5) to bound P(τx0

G > tS − u) ≤ P(τx0

G > tS −R) in the first sum in the right-hand
side. For second sum we use condition (2.2). This yields

P
(
τzG > (t+ s)S

)
≤ P

(
τ∗(sS) ≤ sS +R ; τzG > sS

)
P
(
τx0

G > tS −R
)

+ P
(
τzG > sS

)
r (3.7)

≤ P
(
τzG > sS

)[
P
(
τx0

G > tS −R
)

+ r
]
.

�

From this “almost factorization”, we can control the distribution of τx0

G on time scale
R. Indeed the following two results are easy consequences of this factorization.

Corollary 3.2. If (x0, G) satisfies Rec(R, r) and S is such that R < S < T := Eτx0

G , then,

P(τx0

G > Sk) ≤
[
P(τx0

G > S −R) + r
]k

(3.8)

P(τx0

G > Sk) ≥
[
P(τx0

G > S +R)− r
]k

(3.9)

for any integer k > 1.

This Corollary immediately follows by an iterative application of Lemma 3.1 with
t = 1 and s = k − 1.

Lemma 3.3. If (x0, G) satisfies Rec(R, r), and S is such that R < S < T := Eτx0

G , then

P
(
τx0

G ≤ S
)
≤ S +R

T
+ r (3.10)

and
1

1 + T
S−2R

− r ≤ P
(
τx0

G ≤ S
)
. (3.11)

As a consequence, ∣∣∣P(τx0

G ≤ S
)
− S

T

∣∣∣ < 2
R

T
+
(S
T

)2

+ r . (3.12)

Proof. Let us denote m the integer part of S/R, that is the integer number such that

S −R < mR ≤ S . (3.13)

Proof of the upper bound. We bound the mean time in the form

Eτx0

G =

∞∑
t=0

P(τx0

G > t) =

∞∑
k=0

(m+1)R(k+1)∑
i=(m+1)Rk

P
(
τx0

G > i
)

(3.14)

≤ (m+ 1)R

∞∑
k=0

P
(
τx0

G > (m+ 1)Rk
)
.

The last line is due to the monotonicity property (3.5). Therefore, by (3.8),

Eτx0

G ≤ (m+ 1)R

∞∑
k=0

[
P
(
τx0

G > mR
)

+ r
]k

= (m+ 1)R

∞∑
k=0

[
1− P

(
τx0

G ≤ mR
)

+ r
]k
. (3.15)
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If P
(
τx0

G ≤ mR
)
≤ r the bound (3.10) is trivially satisfied. Otherwise the power series

converges yielding

Eτx0

G ≤ (m+ 1)R

P
(
τx0

G ≤ mR
)
− r

and, thus, by (3.13),

P
(
τx0

G ≤ S
)
≤ P

(
τx0

G ≤ mR
)
≤ (m+ 1)R

Eτx0

G

+ r ≤ S +R

T
+ r . (3.16)

Proof of the lower bound. The argument is very similar, but resorting to the bound

Eτx0

G =

∞∑
k=0

(m−1)R(k+1)∑
i=(m−1)Rk

P
(
τx0

G > i
)
≥ (m− 1)R

∞∑
k=0

P
(
τx0

G > (m− 1)R(k + 1)
)

≥ (m− 1)R

∞∑
k=0

P
(
τx0

G > (S −R)(k + 1)
)
≥ (m− 1)R

∞∑
k=1

[
P
(
τx0

G > S
)
− r
]k
.

The second and third inequalities follow from monotonicity, while the last one is due
to the lower bound (3.9). The power series is converging because

∣∣P(τx0

G > S
)
− r
∣∣ < 1

since r ∈ (0, 1). Its sums yields

Eτx0

G

(m− 1)R
≥ 1

P
(
τx0

G ≤ S
)

+ r
− 1 ,

so that

P
(
τx0

G ≤ S
)
≥ 1

1 + T
S−2R

− r (3.17)

in agreement with (3.11)s. �

Remark 3.4. The error term r becomes exponentially small as the recurrence parameter
R is increased linearly. More precisely, if Rec(R, r) holds then

sup
x∈X

P
(
τx{x0,G} > NR

∣∣∣ τx{x0,G} > (N − 1)R
)
≤ r , (3.18)

which implies,

sup
x∈X

P
(
τx{x0,G} > NR

)
≤ rN . (3.19)

In particular, for T � R we can replace R by R+ := NR. For this reason we can assume
in what follows r < ε.

The bounds given in the preceding lemmas, however, are not enough for our purposes.
To control large values of S with respect to T (tail of the distribution), we need to
pass from additive to multiplicative errors, that is from bounds on

∣∣P(τx0

G > S +R
)
−

P
(
τx0

G > S
)∣∣ to bounds on P

(
τx0

G > S +R
) /

P
(
τx0

G > S
)
. Our bounds will be in terms of

the following parameters.

Definition 3.5. Let c, c̄ be

c := P(τx0

G ≤ 2R) + r (3.20)

and

c̄ :=

 1
2 −

√
1
4 − c if c ≤ 1

4

1 if c > 1
4

(3.21)
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We shall work in regimes where these parameters are small. Note that, by Lemma
3.3, hypothesis Rec(R, r) implies that

c < 3
R

T
+ 2r . (3.22)

Moreover, in the case c < 1/4 definition (3.21) is equivalent to

c = c̄(1− c̄) < c̄ . (3.23)

Our bounds rely on the following lemma, which yields control on the tail density of
τx0

G .

Lemma 3.6. Let (x0, G) be a reference pair satisfying Rec(R, r) and S > R, then, for
any z ∈ X ,

P
(
τzG ≤ S +R

)
≤ P

(
τzG ≤ S

) [
1 +

c

P
(
τzG ≤ S

)] (3.24)

Furthermore, if z ∈ B(x0, c̄− c),

P
(
τzG > S +R

)
≥ P

(
τzG > S

)
[1− c− c̄] . (3.25)

Proof.
Proof of (3.24). We decompose

P
(
τzG ≤ S +R

)
= P

(
τzG ≤ S

)
+ P

(
τzG ∈ (S, S +R)

)
= P

(
τzG ≤ S

)
+ P

(
τzG ∈ (S, S +R), τ∗(S −R) ≤ S

)
+ P

(
τzG ∈ (S, S +R), τ∗(S −R) > S

)
. (3.26)

The event
{
τzG ∈ (S, S + R), τ∗(S − R) < S

}
corresponds to having a visit to x0 in

the interval [S − R,S] followed by a first visit to G is in the interval (S, S + R). By
Markovianness,

P
(
τzG ∈ (S, S +R), τ∗(S −R) ≤ S

)
=

∑
u∈[S−R,S]
v∈(S,S+R]

P
(
Xu = x0 ; τzG ≥ u ; Xi 6∈ G, u < i < v ; Xv ∈ G

)
(3.27)

=
∑

u∈[S−R,S]
v∈(S,S+R]

P
(
Xu = x0 , τ

z
G ≥ u

)
P
(
τx0

G = v − u
)
.

Hence, by monotonicity,

P
(
τzG ∈ (S, S +R), τ∗(S −R) ≤ S

)
≤ P

(
τzG > S −R

)
P
(
τx0

G ≤ 2R
)
. (3.28)

Analogously, Markovianness and monotonicity yield

P
(
τzG ∈ (S, S +R), τ∗(S −R) > S

)
=

∑
x 6∈{x0,G}

P
(
τzG ∈ (S, S +R) ; XS = x ; Xi 6∈ {x0, G}, S −R < i ≤ S

)
(3.29)

≤ P
(
τzG > S −R

)
sup

x 6∈{x0,G}
P
(
τx{x0,G} > R

)
.
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Hence, by condition Rec(R, r) and monotonicity,

P
(
τzG ∈ (S, S +R), τ∗(S −R) > S

)
< P

(
τzG > S −R

)
r . (3.30)

Inserting (3.28) and (3.30) in (3.26) we obtain

P
(
τzG ≤ S +R

)
≤ P

(
τzG ≤ S

)
+
[
P
(
τx0

G ≤ 2R
)

+ r
]
P
(
τzG > S −R

)
. (3.31)

The bound (3.24) is obtained by recalling (3.20) and by neglecting the last term.

Proof of (3.25). If c > 1/4 there is nothing to prove. For c ≤ 1/4 we perform, for each z,
a decomposition similar to (3.26):

P
(
τzG > S +R

)
= P

(
τzG > S

)
− P

(
τzG ∈ (S, S +R)

)
= P

(
τzG > S

)
− P

(
τzG ∈ (S, S +R), τ∗(S −R) < S

)
(3.32)

− P
(
τzG ∈ (S, S +R), τ∗(S −R) ≥ S

)
.

The bounds (3.28) and (3.30) yield

P
(
τxG > S +R

)
≥ P

(
τzG > S

)
− P

(
τzG > S −R

)[
P
(
τx0

G ≤ 2R
)

+ r
]

which can be written as

P
(
τzG > S +R

)
P
(
τzG > S

) ≥ 1− c
P
(
τzG > S −R

)
P
(
τzG > S

) . (3.33)

Let us first consider the case in which S = iR for an integer i. Denote

yi =
P
(
τzG > (i+ 1)R

)
P
(
τzG > iR

) , (3.34)

so condition (3.33) becomes
yi ≥ 1− c

yi−1
(3.35)

The proposed inequality (3.25) follows from the following
Claim:

yi > 1− c̄ (3.36)

We prove this by induction. For i = 0, we first notice that

P
(
τzG ≤ 2R

)
= P

(
τzG ≤ 2R , τzx0

≥ R
)

+ P
(
τzG ≤ 2R , τzx0

< R
)
≤ P

(
τz{x0,G} 6= τzx0

)
+P
(
τz{x0,G} = τzx0

≥ R, τzG ≤ 2R
)

+

R−1∑
u=0

P
(
τzG > u , τzx0

= u
)
P
(
τx0

G ≤ 2R− u
)
.

The last inequality results from Markovianness and monotonicity. Hence, if z ∈ B(x0, r0)

P
(
τzG ≤ 2R

)
≤ r0 + r + P

(
τx0

G ≤ 2R
)
. (3.37)

where we used (2.9). As a consequence, using the definition of c, if r0 < c− c̄,

y0 = 1− P
(
τzG ≤ R

)
≥ 1− P

(
τzG ≤ 2R

)
≥ 1− c− r0 > 1− c̄ .
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and the claim holds. Assume now that the claim is true for i, then, by (3.35) and the
inductive hypothesis,

yi+1 ≥ 1− c

yi
> 1− c

1− c̄
= 1− c̄. (3.38)

The last identity follows from the equality in (3.23). The claim is proven.

To conclude we consider the case in which kR ≤ S ≤ (k + 1)R, with k = b SRc. By
monotonicity,

P
(
τzG > S +R

)
≥ P

(
τzG > (k + 2)R

)
, P

(
τzG > kR

)
≥ P

(
τzG > S

)
Then, by the previous claim and the definition of c̄,

P
(
τzG > S +R

)
P
(
τzG > S

) ≥
P
(
τzG > (k + 2)R

)
P
(
τzG > kR

) = yk+1 yk > (1− c̄)2 = 1− c̄− c . (3.39)

This conclude the proof of (3.25). �

Remark 3.7. When c is small Lemma 3.6 implies that the distribution of τx0

G does not
change very much passing from S to S + R. We have to note that the control here

is given by estimating near to one the ratios
P

(
τ
x0
G >S+R

)
P

(
τ
x0
G >S

) and
P

(
τ
x0
G ≤S+R

)
P

(
τ
x0
G ≤S

) , providing

in this way a “multiplicative error" on the distribution function. In general such an
estimate is different and more difficult w.r.t. an estimate with an “additive error", i.e.,

which amounts to show that the difference |P
(
τx0

G > S +R
)
− P

(
τx0

G > S
)
| is near to

zero. The estimate with a multiplicative error is crucial when considering the tail of
the distribution, since in Lemma 3.6 there are no upper restriction on S. Similarly in

(3.24) the estimate on
P

(
τ
x0
G ≤S+R

)
P

(
τ
x0
G ≤S

) is relevant for S not too small when we can prove, by

Lemma 3.3, that c
P(τ

x0
G ≤S)

is small. Note also that the last term in (3.24) is small due to

Lemma 3.3.

We use this lemma to prove a multiplicative-error strengthening of Lemma 3.1.

Lemma 3.8. Let (x0, G) be a reference pair satisfying Rec(R, r), S > R and r and c so
that

r + c+ c̄ < 1 . (3.40)

Then, for any z ∈ B(x0, r),

P
(
τzG > (t+ s)S

)
P
(
τzG > tS

)
P
(
τx0

G > sS
) ≥ 1− (c+ c̄+ r) . (3.41)

and, for any z ∈ X

P
(
τzG > (t+ s)S

)
P
(
τzG > tS

)
P
(
τx0

G > sS
) ≤ 1 +

c+ c̄+ r

1− (c+ c̄+ r)
(3.42)

Proof. Inequality (3.41) is a consequence of the top inequality in Lemma 3.1 and
inequality (3.25) of Lemma 3.6.

To prove (3.42) we resort to the decomposition (3.4) which we further decompose by
writing {

τxG > sS ; τxx0,G > R
}

=

bsS/Rc⋃
n=1

{
τxG > sS ; τxx0,G ∈ Vn

}
, (3.43)
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with

Vn =

{ (
nR, (n+ 1)R

]
1 ≤ n ≤ bsS/Rc − 1

(nR,∞) n = bsS/Rc
We obtain,

P
(
τzG > (t+ s)S

)
=

R∑
u=0

P
(
τ∗(tS) = tS + u ; τzG > tS + u

)
P
(
τx0

G > sS − u
)

(3.44)

+
∑

x∈{x0,G}c
P
(
τzG > tS ; XtS = x

) bsS/Rc∑
n=1

P
(
τxG > sS ; τxx0,G ∈ Vn

)
and, by monotonicity,

P
(
τzG > (t+ s)S

)
≤ P

(
τzG > tS

)
P
(
τx0

G > sS −R
)

(3.45)

+ P
(
τzG > tS

) bsS/Rc∑
n=1

sup
x∈{x0,G}c

P
(
τxG > sS ; τxx0,G ∈ Vn

)
.

Markovianness and monotonicity imply the following bounds,

P
(
τxG > sS, τxx0,G ∈ Vn

)
≤

∑
u∈Vn

P
(
τxx0

= u ; τx0

G ≥ sS − u
)

≤
∑
u∈Vn

P
(
τxx0

= u
)
P
(
τx0

G ≥ sS − u
)
≤ P

(
τx{x0,G} > nR

)
P
(
τx0

G ≥ sS − nR
)
.(3.46)

Hence, using bounds (3.19) and (3.25),

P
(
τxG > sS, τxx0,G ∈ Vn

)
≤ rn

P
(
τx0

G ≥ sS
)

(1− c− c̄)n
. (3.47)

Replacing this into (3.45) yields

P
(
τzG > (t+ s)S

)
≤ P

(
τzG > sS

)
P
(
τx0

G > tS −R
)

+ P
(
τzG > sS

)
P
(
τx0

G > tS
) ∞∑
n=1

( r

1− c− c̄

)n
≤ P

(
τzG > sS

)
P
(
τx0

G > tS
)[ 1

1− c− c̄
+

a

1− a

]
(3.48)

with a = r/(1− c− c̄). [We used (3.25) in the first summand.] Equation (3.41) follows by
noting that[ 1

1− c− c̄
+

a

1− a

]
= 1 +

c+ c̄

1− c− c̄
+

r

1− c− c̄− r
≤ 1 +

c+ c̄+ r

1− c− c̄− r
. �

The preceding lemma implies the following improvement of Corollary 3.2:

Corollary 3.9. Let (x0, G) be a reference pair satisfying Rec(R, r), and let r and c be
sufficiently small so that r + c+ c̄ < 1

2 and define

δ0 := ln
[
1 +

c+ c̄+ r

1− (c+ c̄+ r)

]
(3.49)

Then, for S > R and k = 1, 2, . . .

e−δ0 k ≤
P
(
τx0

G > kS
)

P
(
τx0

G > S
)k ≤ eδ0 k . (3.50)
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The inequalities are just an iteration of (3.41) and (3.42). In fact, the left inequality
can be extended to any z ∈ B(x0, r) and the right inequality to any z ∈ X . We will not
need, however, such generality.

The multiplicative bounds of Lemma 3.8 can be transformed into bounds for z in
B(x0, r) with the help of the following lemma.

Lemma 3.10. Consider a reference pair (x0, G), with x0 ∈ X , such that Rec(R, r) holds
with R < T := Eτx0

G .For all z ∈ B(x0, r0)

P
(
τzG > tT

)
≥ P

(
τx0

G > tT
)

(1− r − r0) . (3.51)

Proof. This is proven with a decomposition similar to those used in the proof of Lemma
3.8. We have:

P
(
τzG > tT

)
≥ P

(
τzG > tT, τz{x0,G} < R

)
=

R∑
u=0

P
(
τzG > tT, τz{x0} = u

)
=

R∑
u=0

P
(
τzG > u, τz{x0} = u

)
P
(
τx0

G > tT − u
)

The last identity is due to Markovianness at u. By monotonicity, we conclude

P
(
τzG > tT

)
≥ P

(
τx0

G > tT
)
P
(
τz{x0,G} ≤ R, τ

z
{x0,G} = τz{x0}

)
= P

(
τx0

G > tT
) [

1− P
({
τz{x0,G} > R

}
∪
{
τz{x0,G} 6= τz{x0}

})]
which implies (3.51).�

The bound (3.51) is complemented by the bound

P
(
τzG > tT

)
≤ P

(
τx0

G > tT
)

(1 + r) (3.52)

implied by the bottom inequality in (3.2). Combined with Lemma 3.8, the bounds (3.51)
and (3.52) yield the bound

1− (c+ c̄+ r)

1 + r
≤

P
(
τzG > (t+ s)S

)
P
(
τzG > tS

)
P
(
τzG > sS

) ≤ 1 + c+c̄+r
1−(c+c̄+r)

1− r − r0
(3.53)

valid for all z ∈ B(x0, r0) when c, r and r0 are so small that c + c̄ + r < 1, r0 ≤ r and
r + r0 < 1.

4 Proofs on exponential behaviour

4.1 Proof of Theorem 2.3

We chose an intermediate time scale S, with R < S < T . While this scale will finally
be related to ε and r, for the sake of precision we introduce an additional parameter

η :=
S

T
, 0 < ε < η < 1 . (4.1)

To avoid trivialities in the sequel, we assume that η, ε and r are small enough so that

c+ c̄+ r < 1/2 and η + ε+ r < 1 . (4.2)

We decompose the proof into nine claims that may be of independent interest. The
claims provide bounds for ratios of the form P

(
τx0

G > η t
)
/e−t from which bounds for∣∣P(τx0

G > η t
)
− e−t

∣∣ can be readily deduced.
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Claim 1: Bounds for t = η.

e−η α1 ≤
P
(
τx0

G > η T
)

e−η
≤ eη α0 (4.3)

with

α0 := 1 +
1

η
log
[ 1

1 + η − 2ε
+ r
]

α1 := −1− 1

η
log
(
1− η − ε− r

)
. (4.4)

This is just a rewriting of the bounds (3.10) and (3.11) as shown by the following chain
of inequalities:

e−η[1+α1] := 1− η − ε− r ≤ P
(
τx0

G > η T
)
≤ 1− η − 2ε

η − 2ε+ 1
+ r =: e−η[1−α0] . (4.5)

Note that, as η, ε and r tend to zero,

α0 , α1 = O(ε/η) +O(r/η) . (4.6)

Claim 2: Bounds for all ε < t < η,

C
(1)
− e−t α1 ≤

P
(
τx0

G > tT
)

e−t
≤ C

(1)
+ et α0 (4.7)

with functions C(1)
± (η, ε, r) = 1 +O(η) +O(ε) +O(r) . Indeed, inequalities (4.5) hold also

with η replaced by t and yield

e−tα1 et[α1−αt1] = e−t α
t
1 ≤

P
(
τx0

G > tT
)

e−t
≤ et α

t
0 = et α0 et[α

t
0−α0] (4.8)

where αt0 and αt1 are defined as in (4.4) but with t replacing η. This is precisely (4.7) with

C
(1)
+ = sup

ε<t≤η
et[α

t
0−α0] = sup

ε<t≤η

(1 + t− 2ε)−1 + r[
(1 + η − 2ε)−1 + r

]t/η (4.9)

and

C
(1)
− = inf

ε<t≤η
et[α1−αt1] = inf

ε<t≤η

[
1− η − ε− r

]t/η
1− t− ε− r

. (4.10)

Claim 3: Bounds for all t ≤ ε,

C
(0)
− e−t α1 ≤

P
(
τx0

G > tT
)

e−t
≤ C

(0)
+ et α0 , (4.11)

with functions C(0)
± (η, ε, r) = 1+O(η)+O(ε)+O(r) . Indeed, the restriction t ≤ ε implies

that
1− (2ε+ r) ≤ P

(
τx0

G > εT
)
≤ P

(
τx0

G > tT
)
≤ 1 , (4.12)

where the leftmost inequality is a consequence of (3.10) plus the right continuity of
probabilities. The upper bound in (4.11) is a consequence of the rightmost inequality in
(4.12) and the inequalities

P
(
τx0

G > tT
)

e−t
≤ et ≤ eε ≤ eε et α0 = C

(0)
+ et α0 (4.13)
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with C(0)
+ = eε. The lower bound in (4.11), in turns, follows form the leftmost inequality

in (4.12) and the inequalities

P
(
τx0

G > tT
)

e−t
≥ et

[
1− (2ε+ r)

]
≥ e−t α1

[
1− (2ε+ r)

]
= C

(0)
− e−t α1 (4.14)

with C(0)
− = 1− (2ε+ r).

Putting the preceding three claims together we readily obtain

Claim 4: Bounds for all t ≤ η,

C− e
−t α1 ≤

P
(
τx0

G > tT
)

e−t
≤ C+ e

t α0 , (4.15)

with functions C±(η, ε, r) = 1 +O(η) +O(ε) +O(r). Indeed, this follows from the three
preceding claims, putting

C+ = max
{
C

(0)
+ , C

(1)
+

}
, C− = min

{
C

(0)
− , C

(1)
−
}
. (4.16)

Claim 5: Bounds for t = kη. Let δ0 be as in Corollary 3.9, then for any integer k ≥ 1,

e−k η λ1 ≤
P
(
τx0

G > k η T
)

e−k η
≤ ek η λ0 (4.17)

with

λ0 = α0 +
δ0
η
, λ1 = α1 +

δ0
η
. (4.18)

This result amounts to putting together (3.50) and (4.3). Notice that —by (3.21)–
(3.22)— c, c̄ = O(ε) +O(r), hence from (4.6) and the definition (3.49) of δ0,

λ0 , λ1 = O
(
ε/η
)

+O
(
r/η
)
. (4.19)

Claim 6: Bounds for any t > 0,

C− e
−t λ1 ≤

P
(
τx0

G > tT
)

e−t
≤ C+ e

t λ0 (4.20)

with

C+ = C+

[
1 +

c+ c̄+ r

1− (c+ c̄+ r)

]
, C− = C−

[
1− (c+ c̄+ r)

]
. (4.21)

Indeed, for any t > 0 there exist an integer k ≥ 0 and 0 ≤ t′ < η such that t = k η + t′.
Hence,

P
(
τx0

G > tT
)

e−t
=

P
(
τx0

G > (k η + t′)T
)

P
(
τx0

G > k η T
)
P
(
τx0

G > t′ T
) P

(
τx0

G > k η T
)

e−k η

P
(
τx0

G > t′ T
)

e−t′
(4.22)

and the claim follows from (3.41). (3.42), (4.15) and (4.17).

Claim 7: The bounds (4.20) implies the bound (2.5) for any t > 0.
Indeed, subtracting 1 and multiplying through by e−t, (4.20) implies∣∣∣P(τx0

G > tT
)
− e−t

∣∣∣ ≤ C e−t (4.23)
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with
C = max

{(
C+ e

t λ0 − 1
)
,
∣∣1− C− e−t λ1

∣∣} . (4.24)

To conclude the proof we notice that C+ , C− = 1 + O(η) + O(ε) + O(r) and, hence,
by (4.19),

C = O(η) +O(ε/η) +O(r/η) . (4.25)

At this point we choose η appropriately to satisfy the asymptotic behavior (2.4). A
democratic choice, that makes the different contributions of comparable size is

η =
√

max{ε, r} . (4.26)

Claim 8: Let r0 be such that r + r0 < 1. Then for any z ∈ B(x0, r0) and any t > 0,

C̃− e
−t λ1 ≤

P
(
τzG > tT

)
e−t

≤ C̃+ e
t λ0 (4.27)

with

C̃+ = C+

[
1 +

c+ c̄+ r

1− (c+ c̄+ r)

]
C̃− = C−

(
1− r − r0

)
. (4.28)

Indeed, the upper bound follows from the upper bound in (4.20) and (3.42) with the
substitutions S → T , t = 0 and s → t. The lower bound is a consequence of the lower
bound in (4.20) and (3.51) in Lemma 3.10 This concludes also the proof of (2.7). �

4.2 Proof of Theorem 2.7:

Part (I). The results follow from (2.5) and (2.7) by letting both εn := Rn /Eτ
(n),x

(n)
0

G(n) and
rn tend to zero.

Part (II) (i). Let

ϑn :=
τ

(n),x
(n)
0

G(n)

Qn(ζ)
. (4.29)

Combining the definition (2.11) of Qn(ζ) with Corollary 3.9 we obtain[
ζ e−δ0,n

]k ≤ P
(
ϑn > k

)
≤
[
ζ eδ0,n

]k
(4.30)

with
δ0,n −→ 0 as εn, rn → 0 . (4.31)

A simple argument based on Markov inequality [see (5.2)–(5.3) below] shows that
hypothesis Hp.G(Qn(ζ)) implies hypothesis Hp.G(Tn) [in fact, they are equivalent, as
shown in Theorem 2.17]. Hence, (4.31) holds under hypothesis Hp.G(Qn(ζ)) and (4.30)
shows that the sequence of random variables (ϑn) is exponentially tight. Therefore, the
sequence is relatively compact in the weak topology (Dunford-Pettis theorem) and every
subsequence has a sub-subsequence that converges in law. Let (ϑnk)k be one of these
convergent sequences and let ϑ be its limit. Taking limit in (3.2) we see that

P(ϑ > t+ s) = P(ϑ > t)P(ϑ > s) (4.32)

for all continuity points s, t > 0. Since these points are dense and the distribution
function is right-continuous, (4.32) holds for all s, t ≥ 0. Furthermore, the limit of (4.30)
implies that

P
(
ϑ > k

)
= ζk . (4.33)

We conclude that ϑ is an exponential variable of rate − log ζ. As every subsequence of
(θn) converges to the same exp(− log ζ) law, the whole sequence does.
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Part (II) (ii). The rightmost inequality in (4.30) implies that fixing ζ < ζ̃ < 1, we have
that for n large enough

P
(
ϑn > k

)
≤ ζ̃k

for all k ≥ 1. By monotonicity this implies that

P
(
ϑn > t

)
≤ ζ̃btc (4.34)

for n large enough. As the function in the right-hand side is integrable, we can apply
dominated convergence and conclude:

lim
n→∞

Qn(ζ)

TEn
= lim

n→∞

∫ ∞
0

P
(
ϑn > t

)
dt =

∫ ∞
0

P
(
ϑ > t

)
dt = − ln ζ . � (4.35)

4.3 Proof of Theorem 2.13

We assume ε and r small enough so that c+ c̄+ r < 1/2. We shall produce an upper
and a lower bound for the ratio

REE(S) :=
P
(
τx0

G ∈ (kS, (k + 1)S)
)

P
(
τx0

G > S
)k
P
(
τx0

G ≤ S
) (4.36)

for k < T/S. We start with the identity

P
(
τx0

G ∈ (kS, (k + 1)S)
)

= P
(
τx0

G ∈ (kS, (k + 1)S), τ∗(kS −R) ≤ kS
)

+ P
(
τx0

G ∈ (kS, (k + 1)S), τ∗(kS −R) > kS
)

(4.37)

Applying Markov property and monotonicity we obtain the upper bound

P
(
τx0

G ∈ (kS, (k + 1)S)
)
≤ P

(
τx0

G > kS −R
)
P
(
τx0

G ≤ R+ S
)

+ P
(
τx0

G > kS −R
)
r (4.38)

and the lower bound

P
(
τx0

G ∈ (kS, (k + 1)S)
)
≥ P

(
τx0

G > kS
)
P
(
τx0

G ≤ S
)
− P

(
τx0

G > kS
)
r . (4.39)

This lower bound and the leftmost inequality in (3.50) yields the lower bound

REE(S) ≥

P
(
τx0

G > kS
)
P
(
τx0

G ≤ S
)[

1− r

P

(
τ
x0
G ≤S

)]

P
(
τx0

G > S
)k
P
(
τx0

G ≤ S
)

≥ e−δ0k
[
1− r

P
(
τx0

G ≤ S
)] . (4.40)

To obtain a bound in the opposite direction we use the upper bound (4.38):

REE(S) ≤
P
(
τx0

G > kS −R
)[
P
(
τx0

G ≤ R+ S
)

+ r
]

P
(
τx0

G > S
)k
P
(
τx0

G ≤ S
) . (4.41)
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We bound the right-hand side through the rightmost inequality in (3.50) and the following
two easy consequences of (3.25):

P
(
τx0

G > kS −R
)
≤
P
(
τx0

G > kS
)

1− c− c̄
(4.42)

[obtained by replacing S → kS −R in (3.25)] and

P
(
τx0

G ≤ R+ S
)
≤ P

(
τx0

G ≤ S
)

(1 + c+ c̄) . (4.43)

The result is

REE(S) ≤ 1

1− c− c̄
eδ0k

[
1 + c+ c̄+

r

P
(
τx0

G ≤ S
)] (4.44)

Inspection shows that the dominant order in both bounds (4.40) and (4.44) is given
by the term

r

P
(
τx0

G ≤ S
) ≤ r

1− e−η(1−α0)
, (4.45)

the last inequality being a consequence of the rightmost inequality in (4.3). From (4.4)
we see that

r

1− e−η(1−α0)
=

r

O(η) +O(ε) +O(r)
= O

(
ε/η
)

+O
(
r/η
)
. (4.46)

With this observation, the bounds (4.40) and (4.44) imply∣∣REE(S)− 1
∣∣ ≤ O

(
ε/η
)

+O
(
r/η
)
. � (4.47)

5 Proof of the relation between different hypotheses for exponen-
tial behavior

In subsection 5.1 we prove Theorem 2.17 and in subsection 5.2.2 we give examples
that show that the converse of each of the first two implications in (2.30) are false.

5.1 Proof of Theorem 2.17

(i) Hp.A⇒ Hp.GLT : By Markovianness, if x 6= y ∈ X ,

P(ξxy (x) > t) = P(ξxy (x) > t− 1)P(ξxy (x) ≥ 1) = P(ξxy (x) > t− 1)P(τ̃xy > τ̃xx ) ,

thus
P(ξxy (x) > t) = P(τ̃xy > τ̃xx )t

and
E(ξxy (x)) = P(τ̃xy < τ̃xx )−1.

Therefore,

ρA(n) =
supz∈{x0,G}c E

(
ξz{x0,G}(z)

)
E
(
ξx0

G (x0)
) =

supz∈{x0,G}c E
(
ξz{x0,G}(z)

)
TLTn

. (5.1)

Furthermore, by Markov inequality

P
(
τz{x0,G} > Rn

)
= P

( ∑
x∈{x0,G}c

ξz{x0,G}(x) > Rn

)

≤

∑
x∈{x0,G}c E

(
ξx{x0,G}(x)

)
Rn

≤ |X | ρA(n)TLTn
Rn

.
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The proposed implication follows, for instance, by choosing Rn = εnT
LT
n with εn =√

|X |ρA(n).

(ii) Hp.GLT ⇒ Hp.GE: It is an immediate consequence of the obvious inequality
TEn > TLTn .

(iii) Hp.GE ⇐ Hp.GQ(ζ): By Markov inequality,

P
(
τx0

G > t
)
≤
E
(
τx0

G

)
t

. (5.2)

Thus,
TQ(ζ)
n ≤ ζ−1 TEn . (5.3)

(iv) Hp.GE ⇒ Hp.GQ(ζ): We bound:

E
(
τx0

G

)
=
∑
k≥0

∑
kTQ

ζ
n ≤t<(k+1)TQ

ζ
n

P
(
τx0

G > t
)
≤ TQ(ζ)

n

∑
k≥0

P
(
τx0

G > k TQ(ζ)
n

)
.

Hence, by Lemma 3.9,

TEn ≤ TQ(ζ)
n

[
1 +O

(
(ζ + εn + rn)

)]
. (5.4)

(v) Hp.GE ⇐ Hp.B: Apply the Markov inequality to P(τx{x0,G} > Rn) and choose

Rn =
√
TEn supz∈{x0,G}c E(τz{x0,G}).

(vi) Hp.GE ⇒ Hp.B:

sup
z∈{x0,G}c

E(τz{x0,G}) = sup
z∈{x0,G}c

∑
t≥0

P(τz{x0,G} > t) ≤ Rn +Rn sup
z∈{x0,G}c

∞∑
N=1

P(τz{x0,G} > NRn)

≤ Rn +Rn

∞∑
N=1

sup
z∈{x0,G}c

P(τz{x0,G} > Rn)N ≤ Rn +
Rn

1− rn
≤ const. Rn

As Hp.GE implies Rn ≺ TEn we obtain that ρB(n)→ 0. �

5.2 Counterexamples

5.2.1 h model (freedom of starting point)

We show that even in the finite–volume case the set of starting points that verify Hp. B is
in general bigger than the set of good starting points for Hp. A and that these are not
limited to the deepest local minima of the energy.

Let us consider a birth-and-death model with state space {0, 1, 2, G} and transition
matrix

P (0, 1) :=
1

2
ph P (1, 2) :=

1

2
p1−h P (1, 0) :=

1

2

P (2, G) :=
1

2
P (2, 1) :=

1

2
P (G, 2) :=

1

2
p2 (5.5)

and P (i, i) = 1−
∑
j 6=i P (i, j) for i ∈ {0, 1, 2, G}. This model can be seen as a Metropolis

chain with energy function H(0) = 0, H(1) = h, H(2) = 1, H(G) = −1 (see fig. 2).
By Lemma 3.3 in [16], the reference pair (0, G) always fulfils Hp. A (and thus Hp. B),

since 0 is the most stable local minimum of the energy. We focus here on the pair (1, G)
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Figure 2: The h model.

and show that for some values of the parameter h this pair verifies Hp. B or even Hp. A
although 1 is not a local minimum of the energy.

It is easy to show (see (A.5), (A.6), (A.8) for exact computations) that

E(τ2
{1,G}) � 1 E(ξ2

{1,G}) � 1 E(τ1
G) � p−1

E(ξ1
G) � p−1+h E(τ0

{1,G}) � p
−h E(ξ0

{1,G}) � p
−h, (5.6)

where the notation f � g means that for for p small the ratio f/g is bounded from above
and from below by two positive constants.

By (5.6),

ρA =
E(ξ0

{1,G})

E(ξ1
G)

� p1−2h; ρB =
E(τ0

{1,G})

E(τ1
G)

� p1−h,

so that Hp. A holds when h < 1
2 while Hp. B holds for h < 1. It is possible to show that

in this example Hp. B is optimal, since h < 1 is also a necessary condition to have the
exponential law for τ1

G/E(τ1
G) in the limit β →∞.

5.2.2 abc model (strength of recurrence properties)

When the cardinality of the configuration space diverges, condition Hp. A is in general
stronger than Hp. GLT which is stronger than Hp. B.

We show this fact with the help of a simple one-dimensional model, that provides the
counterexamples of the missing implications in theorem 2.17 (see also fig. 1):

We consider a class of birth and death models that we use to discuss the differences
among the hypotheses. The models are characterized by three positive parameters a, b,
c.

Let Γ := {0, . . . , L} be the state space. We take L = n → ∞. Let a, b, c be real
parameters, with b ≤ a, b ≤ c.

The nearest-neighbor transition probabilities are defined as:
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Figure 3: Transition dyagrams for the abc model in the general case and for the choices
(0, 0, 3

2 ) and ( 3
4 ,

1
4 ,

7
4 ).

P0,1 : =
1

2
L−a

Px,x+1 : =
1

2
for x ∈ [1, L− 3] Px,x−1 :=

1

2
for x ∈ [1, L− 3]

PL−2,L−1 : =
1

2
L−c PL−2,L−3 :=

1

2
L−b (5.7)

PL−1,L : =
1

2
PL−1,L−2 :=

1

2

PL,L−1 :=
1

2
L−2(a+b+c)

with Px,x := 1− Px,x−1 − Px,x+1and Px,y = 0 if |x− y| > 1.
The unique equilibrium measure can be obtained trough reversibility condition:

µ(0) = La/Z µ(x) = 1/Z ∀x ∈ [1, L− 3] (5.8)

µ(L− 2) = Lb/Z µ(L− 1) = Lb−c/Z µ(L) = L2a+3b+c/Z,

where Z is the normalization factor.

Example 5.1. (58 ,
1
4 ,

7
4 model )

In this example, for the reference pair (0, L), Hp.GLT holds whereas Hp.A does not.
The state space is [0, L], with all birth and death probabilities equal to 1

2 except for

P0,1 := 1
2L
− 5

8 , PL−2,L−3 := 1
2L
− 1

4 , PL−2,L−1 := 1
2L
− 7

4 and PL,L−1 := 1
2L
− 21

2 .
For rigorous computations see the appendix, here we discuss the model at heuristical

level.
In view of Markov inequality, in order to check Hp.GLT it is sufficient to show that

sup
x∈{1,L−1}

E(τx0,L)

E(ξ0
L)
−→ 0. (5.9)

Since the well in L− 2 is rather small, the maximum of the mean resistance times
can be estimated as the time needed to cross the plateau (of order L2):

max
x∈{1,L−1}

E(τx0,L) = E(τL−2
0,L ) � L2 (5.10)
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(see (A.25) for a rigorous computation).
The mean local time can be estimated by using (A.12): the probability that the

process starting from 0 visits L before returning to 0 can be estimated as the probability
of stepping out from 0 (which is P0,1 = 1

2L
− 5

8 ) times the probability of reaching L − 2

before returning (which is of order L−1) times the probability that the process starting
from L− 2 visits L before 0 (which is of order L

5
4 /L

7
4 ). The mean local time of 0 (i.e. the

time spent in 0 before the visit to L) is therefore

E(ξ0
L) = P

(
τ̃0
L < τ̃0

0

)−1

=
(
P0,1P

(
τ̃1
L−2 < τ̃1

0

)
P
(
τ̃L−2
L < τ̃L−2

0

))−1 � L 5
8 +1+ 1

2 = L
17
8 (5.11)

(as proven in (A.12)). Thus, by (5.10), (5.11) the ratio in (5.9) goes like � L−
1
8 and

condition Hp.GLT holds.
On the other hand, the maximum of the mean local time before hitting 0 or L is

reached in L− 2 and it is of the order of the inverse of PL−2,L−3 (i.e. the probability of
exiting from L− 2) times the probabily of exiting the plateau in 0 (of order L−1):

max
x∈[1,L−1]

E(ξx0,L) = E(ξL−2
0,L ) �

(
PL−2,L−3P

(
τ̃L−3
0 < τ̃L−3

L−2

))
� L 5

4 (5.12)

(see (A.14) for particulars). Thus, by (5.11), (5.12),

LρA(L) � L L
5
4

L
17
8

= L
1
8 −→∞ (5.13)

that is, condition A does not hold.

Example 5.2. (0,0, 32 model )
This choice of parameters corresponds to a birth-and-death chain where all birth and

death probabilities are set equal to 1
2 except for PL−2,L−1 := 1

2L
− 3

2 and PL,L−1 := 1
2L
−3.

We show that, for the reference pair (0, L), condition Hp.B holds whereas condition
Hp.GLT does not.

Precise computations can be found in the appendix, here we discuss the model at
heuristic level.

We start by estimating ρB(L) := supz<LE(τz0,L)/E(τ0
L):

Each time the process is in L − 2, it has a probability 1
2L
− 3

2 of reaching L in two
steps, but the probability to find the process in L − 2 before the transition is of order
L−1; hence,

E(τ0
L) � L× L 3

2 ,

see eq. (A.16) for the exact computation.
The maximum of the mean times is dominated by a diffusive contribution:

max
x∈[1,L−1]

E(τx0,L) = E(τL−2
0,L ) � L2,

as confirmed by (A.25).
Thus, ρB � L−

1
2 and condition B holds.

Next, we show that

P
(
τ
L/2
{0,L} > E(ξ0

L)
)
−→ 1, (5.14)

and, therefore, that Hp.GLT does not hold.
Equation (A.12) allows to compute the mean local time: The probability that the

process starting from 0 visits L before returning to 0 can be estimated as the probability

EJP 20 (2015), paper 122.
Page 29/37

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3656
http://ejp.ejpecp.org/


Asymptotically exponential hitting times and metastability

of reaching L− 2 before returning (which is of order L−1) times the probability that the
process starting from L− 2 visits L before 0 (which is of order L/L

3
2 ). The mean local

time of 0 (i.e. the time spent in 0 before the visit to L) is therefore

E(ξ0
L) = P

(
τ̃0
L < τ̃0

0

)−1
=
(
P
(
τ̃0
L−2 < τ̃0

0

)
P
(
τ̃L−2
L < τ̃L−2

0

))−1 � L 3
2

(see (A.12) for a rigorous derivation).

Let M(t) := maxs≤t

∣∣∣L2 −XL/2
s

∣∣∣. Since x = L/2 is in the middle of the plateau, we can

use the diffusive bound M(t) �
√
t for small t. By Markov inequality:

P
(
τ
L/2
{0,L} < L

3
2

)
< P

(
M(L

3
2 ) >

L

3

)
≤ 3

E(M(L
3
2 ))

L
� L− 1

4 ,

that implies (5.14).

A Appendix

A.1 Electric networks

A convenient language to describe the behavior of local and hitting times in the
reversible case exploits the analogy with electric networks. Here we recall some
useful relation between reversible Markov processes and electric networks. For a more
complete discussion, see [DS] and references therein.

We associate with a given reversible Markov chain with transition matrix P a resis-
tance network in the following way:

We call We call “resistance” of an edge (x, y) of the graph associated with the Markov
kernel the quantity

rx,y := (µ(x)Px,y)
−1
. (A.1)

Given two disjoint subsets A, B ⊂ Γ, we denote by the capital letter RAB the total
resistance between A and B, namely, the total electric current that flows in the network
if we put all the points in A to the voltage 1 and all the points in B to the voltage 0.

It is well-known that the total resistance is related with the mean local time (see def.
2.21) of the Markov chain, i.e. with the Green function, by

RxB =
E(ξxB)

µ(x)
. (A.2)

Resistances are reversible objects, i.e. Rxy = Ryx.

The voltage at point y ∈ Γ has a probabilistic interpretation given by

V xB (y) = P (τ̃yx < τ̃yB) .

A.2 h model

A.2.1 Computation of resistances

By reversibility, from (5.5), we easily get

µ(0) =
1

Z
µ(1) =

ph

Z
µ(2) =

p

Z
µ(G) =

p−1

Z
(A.3)

Where Z is the renormalization factor. (A.3) can be seen as the Gibbs measure of the
system once taken β = − log p.

By (A.1), (5.5) and (A.3), we get

rk := rk,k+1 =
Z
2
×

{
p−h for k = 0

p−1 for k = 1, 2
(A.4)
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A.2.2 Local times

In order to compute ρA, we need to estimate the local time spent in the metastable point
1 before the transition to G and the maximum among the local times of the points {0, 2}
before the transition to 1 or to G.

By (A.2), the computation of mean local times is the analogous of the computation of
the total resistance of a series of resistances:

E
(
ξ0
G

)
= E

(
ξ2
1,G

)
= µ(0)(r0 + r1 + r2) � p−1

E
(
ξ1
G

)
= µ(1)(r1 + r2) � p−1+h

E
(
ξ2
G

)
= µ(0)r2 � 1

E
(
ξ2
1,G

)
= µ(2)

r1r2

r1 + r2
� 1 (A.5)

A.2.3 Hitting times

Obviously,

E(τ0
1,G) = E(ξ0

1) � p−1+h

E(τ2
1,G) = E(ξ2

,G) � 1. (A.6)

More generally, local times provide a useful language to describe the model. E.g. a
relation between hitting times and mean times is

E (τxA) = E

 τxA∑
t=0

∑
y/∈A

1Xxt =y


=
∑
y/∈A

E (ξxA(y)) =
∑
y/∈A

E (ξyA)P
(
τ̃xy < τ̃xA

)
, (A.7)

where we used the strong Markov property at time τ̃0
k in the last equality. In words, the

hitting time is the sum of all local times of the points visited.
Since P

(
τ̃0
1 < τ̃G1

)
≥ P (1, 0) = 1

2 � 1, by (A.7), (A.5), we see that

E(τG1 ) � E
(
ξG0
)
� p−1. (A.8)

A.3 abc model

A.3.1 Computation of resistances

By (A.1), (5.7) and (5.8), we get for k ∈ {0, . . . , L− 1}

rk := rk,k+1 = Z ×

{
2 for k ≤ L− 3

2Lc−b for k > L− 3
(A.9)

Interesting resistances in our one-dimensional model are the total resistance Rx0
between x and 0 and the total resistance RxL between x and L.

Rx0 :=

x−1∑
k=0

rk = Z ×

{
2n for x ≤ L− 2

2(L− 2) + 2Lc−b for x = L− 1
. (A.10)

RxL :=

L−1∑
k=x

rk = Z ×

{
2(L− 2− x) + 4Lc−b for x ≤ L− 2

2Lc−b for x = L− 1
. (A.11)
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A.3.2 Local times

In order to compute ρA, we need to estimate the local time spent in the metastable point
0 before the transition to L and the maximum among the local times of the points in
{1, . . . , L− 1} before the transition to 0 or to L.

By (A.2), the computation of mean local times is the analogous of the computation of
the total resistance of a series of resistances. By (A.11) we get

E(ξ0
L) = µ(0)R0

L = 2La
(
(L− 2) + 2Lc−b

)
� La

(
L+ Lc−b

)
(1 + o(1)). (A.12)

Then, we are interested in the maximum of the local times E(ξx0,L) = µ(x)Rx0,L.
Depending on the equilibrium measure, we can have the maximum in the plateau
[1, L− 3], in the well L− 2 or (in principle) in the peak L− 1. Since the parallel between
two resistances r and R, with r ≤ R is between r/2 and r, we get, for the plateau and
the well

Rx0,L =
R0
x

(
R0
L −R0

x

)
R0
L

� Z ×

{
min

{
x, L+ Lc−b − x

}
for x ≤ L− 2

Lc−b for x = L− 1
(A.13)

The maximal local time in the plateau is where the resistance Rx0,L, the parallel between
the resistances Rx0and RxL, is maximal.

• if 1 > c − b, the resistance of the plateau is larger than that of the well and of
the peak. Depending on the depth of the well, the maximal resistance is acheived
either in the middle of the plateau or in the well. Indeed, an upper bound for
max1≤x≤L−3R

0
x,Lis obtained by maximizing the r.h.s. of the first equality in (A.13);

as a function of R0
x, this quantity has a maximum for R0

x = R0
L/2; a lower bound for

max1≤x≤L−3R
0
x,Lis RdL/2e0,L . Thus,

max
1≤x≤L−3

E(ξx0,L) � L.

The well x = L − 2 has a large invariant measure that may compensate for the
small resistance. Its local time is E(ξL−2

0,L ) = µ(L− 2)RL−2
0,L � Lc. The local time of

the peak x = L− 1 is always negligible: E(ξL−1
0,L ) = µ(L− 1)RL−1

0,L � 1. Therefore,
the maximum local time is either in the middle of the plateau or in the well and

max
1≤x≤L−1

E(ξx0,L) � L+ Lc.

• if 1 < c− b, the resistance of the plateau is negligible and the well always wins:

Rx0,L �

{
x for x ≤ L− 3

Lc−b for x ≥ L− 2

Thus,

max
1≤x≤L−3

E(ξx0,L) � µ(L− 2)RL−2
0,L .

Altogether,

max
x≤L−1

E(ξx0,L) = max
x≤L−1

µ(x)Rx0,L �


E(ξ

dL2 e
0,L ) � L for c < 1

E(ξL−2
0,L ) � Lc for 1 ≤ c ≤ b+ 1

E(ξL−2
0,L ) � Lb+1 for c > b+ 1

. (A.14)
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A.3.3 Hitting times

In the one-dimensional case, P
(
τ̃0
k < τ̃0

L

)
= 1 for all k ∈ [1, L− 1]. By (A.7), (A.9), we see

that

E(τ0
L) =

L−1∑
k=0

E
(
ξkL
)
P
(
τ̃0
k < τ̃0

L

)
=

L−1∑
k=0

µ(k)RkL

= E(ξ0
L) +

L−3∑
k=1

(
2(L− 2− k) + 2Lc−b

)
+ π(L− 2)4Lc−b + π(L− 1)2Lc−b (A.15)

by (A.12), (5.8)

E(τ0
L) �

(
La
(
L+ Lc−b

)
+ L2 + Lc−b+1 + Lc + 1

)
(1 + o(1)) =

(La + L)
(
Lc−b + L

)
(1 + o(1)), (A.16)

where we used a > b.

The computation of E(τx0,L) is slightly more intricate:

In one dimension, P
(
τ̃xk < τ̃x0,L

)
is equal to P (τ̃xk < τ̃xL) if k ≤ x and to P (τ̃xk < τ̃x0 ) if

k > x.

P
(
τ̃xk < τ̃x0,L

)
=

P (τ̃xk < τ̃xL) =
RkL
RxL

if k ≤ x

P (τ̃xk < τ̃xL) =
Rk0
RxL

if k > x

By (A.7), for x ∈ [1, L− 1],

E(τx0,L) =

x−1∑
k=1

E(ξk0,L)P (τ̃xk < τ̃xL) + E(ξx0,L) +

L−1∑
k=x+1

E(ξk0,L)P (τ̃xk < τ̃x0 )

=
RxL
∑x−1
k=1 µ(k)Rk0 + µ(x)R0

xR
x
L +R0

x

∑L−1
k=x+1 µ(k)RkL

R0
L

(A.17)

• Let us consider first the plateau x ≤ L− 3. By (A.10)

x−1∑
k=1

µ(k)Rk0 � x2, (A.18)

and by (A.11)

L−1∑
k=x+1

µ(k)RkL =

L−3∑
k=x+1

(
2(L− 2− k) + 4Lc−b

)
+ 2Lc + 2

� (L− x)2 + Lc−b+1 + Lc. (A.19)

Plugging (A.10,A.11,A.18,A.19) into (A.17), we get

E(τx0,L) � x
(
L− x+ Lc−b

)
x+ +(L− x)2 + Lc−b+1

L+ Lc−b
, (A.20)

where we used µ(L− 2)RL−2
L � LbLc−b. A little algebra shows that

E(τx0,L) �xL− Lc−b − L
Lc−b + L

x2 �

{
xL− x2 for 1 ≥ c− b
xL+ x2 for 1 < c− b

In both cases,
max

1≤x≤L−3
E(τx0,L) � L2
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• if x = L− 2, the three terms in the numerator of l.s.h. of (A.17) become:

RL−2
L

L−3∑
k=1

µ(k)Rk0 � ZL2+c−b (A.21)

µ(L− 2)R0
L−2R

L−2
L � ZLbLLc−b = ZLc+1 (A.22)

R0
L−2µ(L− 1)RL−1

L � ZLb−cLLc−b = ZL, (A.23)

where we used A.11.

By using (A.17) and A.11, we estimate

E(τL−2
0,L ) �L

c−b+2 + Lc+1

Lc−b + L
x2 �

{
Lc−b+1 + Lc for 1 ≥ c− b
L2 + Lb+1 for 1 < c− b

(A.24)

• if x = L− 1, it is easy to see that

E(τL−1
0,L ) ≤ E(τL−2

0,L ).

Putting together the three cases, we get

max
x∈{1,L−1}

E(τx0,L) �

{
Lb+1 for b > 1 and c > b+ 1

L2 otherwise.
(A.25)
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