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Abstract. Motivated by the Dobrushin uniqueness theorem in statistical me-
chanics, we consider the following situation: Let α be a nonnegative matrix
over a finite or countably infinite index set X , and define the “cleaning opera-
tors” βh = I1−h + Ihα for h: X → [0, 1] (here If denotes the diagonal matrix
with entries f). We ask: For which “cleaning sequences” h1, h2, . . . do we have
cβh1 · · ·βhn

→ 0 for a suitable class of “dirt vectors” c? We show, under a
modest condition on α, that this occurs whenever

∑
i hi = ∞ everywhere on X .

More generally, we analyze the cleaning of subsets Λ ⊆ X and the final distri-
bution of dirt on the complement of Λ. We show that when supp(hi) ⊆ Λ with∑

i hi = ∞ everywhere on Λ, the operators βh1 · · ·βhn
converge as n → ∞ to

the “balayage operator” ΠΛ =
∑∞

k=0(IΛα)kIΛc . These results are obtained in
two ways: by a fairly simple matrix formalism, and by a more powerful tree
formalism that corresponds to working with formal power series in which the
matrix elements of α are treated as noncommuting indeterminates.
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1. Introduction

Let X be a finite or countably infinite set, let T be a collection of nonnegative
real matrices indexed by X , and let C be a class of nonnegative real vectors
indexed by X . In this paper we want to ask variants of the following question:
Under what conditions does there exist a sequence of elements (Ti)

∞
i=1 in T such
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that cT1 · · ·Tn → 0 for all c ∈ C? (If X is infinite, we must of course specify the
topology in which this convergence is to be understood.)

Here is a homely but suggestive interpretation: Think of the elements of X as
the “sites” of a dirty floor, the nonnegative vectors c = (cx)x∈X as “distributions
of dirt”, and the matrices T ∈ T as the “cleaning operators” at our disposal.
Application of a cleaning operator T transforms the dirt distribution from c
to cT . (Note that we always write our dirt vectors on the left, in analogy with
probability distributions in Markov-chain theory.) It is natural to ask: Under
what conditions can the floor be completely cleaned? We will also ask: Under
what conditions can a subset Λ ⊆ X be cleaned, and in this case, where in
Λc := X \ Λ does the dirt go?

These questions arise in mathematical statistical mechanics in connection
with the Dobrushin [7, 8, 10, 11, 13, 18, 21] and Dobrushin – Shlosman [1, 9, 22]
uniqueness theorems. Indeed, the simplest proofs of these theorems employ a
“cleaning” process of precisely the form just discussed.1 This led us to investi-
gate the cleaning process in its own right.

In this paper we shall not treat the case of an arbitrary family T of cleaning
operators2, but shall focus on the special case of “single-site” cleaning operators:
for each x ∈ X we are given exactly one cleaning operator βx, which leaves
untouched the dirt on sites other than x and which distributes the dirt on x to
sites y with a weight factor αxy. In other words,

(cβx)y :=

{
cy + cxαxy if y 6= x,

cxαxx if y = x.
(1.1)

This is the case that arises in the proof of the Dobrushin uniqueness theorem.
The definition (1.1) can trivially be rewritten as

βx = I{x}c + I{x}α, (1.2)

1We learned the “cleaning” interpretation of the Dobrushin uniqueness theorem from
Michael Aizenman in the mid-1980s.

2The general case leads, in fact, to interesting issues of computational complexity and
decidability (see [5] for an excellent survey of closely related problems). Consider the following
problem:

Input: A finite set T1, . . . , Tm of n × n matrices with nonnegative rational entries.

Question: Does there exist a sequence of indices i1, . . . , ik such that the product
Ti1 · · ·Tik

has spectral radius < 1?

This problem turns out to be NP-hard, even when restricted to matrices with elements 0
and 1 [4, Remarks 2 and 3 after Theorem 2], i.e. an oracle for solving it would permit the
polynomial-time solution of any problem in the class NP (e.g. the traveling salesman problem).
Even more strikingly, it has very recently been proven [6] that this problem is algorithmically

undecidable even when restricted to m = 3, n = 46 (indeed, even when T1, T2 are stochastic
matrices and T3 is a diagonal matrix with a single nonzero element). The proof uses a simple
reduction from [3, Theorem 2.1].
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where I{x} and I{x}c are the projection operators on {x} and its complement,
respectively. This way of writing the cleaning operators brings out the close
relations between our subject and probabilistic potential theory [12, 14, 15, 19].
Indeed, probabilistic potential theory in discrete time and countable state space
can be interpreted as the theory of the algebra of operators generated by a
single nonnegative matrix α = (αxy)x,y∈X together with all the multiplication
operators If (where f is a real-valued function on X) — or more specifically,
as the theory of the multiplicative convex cone of operators generated by α
together with all the nonnegative multiplication operators If .

Our main result (Theorem 3.2) is that, under mild conditions on the matrix α
(see Section 2.2), any sequence of cleaning operations inside Λ that visits each
site of Λ infinitely many times will lead, in the limit, to the same result: the
dirt will be removed from Λ and transferred to Λc as specified by the “balayage
operator” ΠΛ.

The plan of this paper is as follows: In Section 2 we set forth the basic
definitions and state a few of our main results. In Section 3 we analyze the
cleaning operators by deriving matrix identities and inequalities in the spirit of
probabilistic potential theory [12, 14, 15, 19]; here α = (αxy)x,y∈X is considered
to be a fixed matrix of nonnegative real numbers. In Section 4 we introduce
an alternate approach that we think clarifies the combinatorial structure of
these identities and inequalities: it is based on the tree of finite sequences of
elements of X . In essence, we are now treating the matrix elements αxy as
noncommutative indeterminates; or in physical terms, we are keeping track of
the entire trajectory of each particle of dirt, and not merely its endpoint. This
approach allows a much finer analysis of the algebra of operators generated by α
and the multiplication operators If .3 In Section 5 we present some alternative
sufficient conditions that guarantee the cleanability of Λ. Finally, in Section 6
we present some converses to our results.

2. Basic set-up

Let X be a finite or countably infinite set (assumed nonempty), and let
α = (αxy)x,y∈X be a nonnegative matrix indexed by X .

2.1. Definition of operators

We shall employ the following classes of matrices. (We refer to them as
“operators”, but for now we treat them simply as matrices. Later we shall
make clear on what space of vectors they act.)

3Here our approach mirrors the spirit of modern enumerative combinatorics [20], where
generating functions are considered in the first instance as formal power series, i.e. as an
algebraic tool for efficiently manipulating collections of coefficients. Only at a second stage
might one insert specific numerical values for the indeterminates and worry about convergence.
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Multiplication operators. For each Λ ⊆ X , we denote by IΛ the projection
on Λ, i.e. the matrix

(IΛ)xy :=

{
1 if x = y ∈ Λ,

0 otherwise.
(2.1)

More generally, if f is a real-valued function on X , we denote by If the operator
of multiplication by f , i.e. the matrix

(If )xy := f(x)δxy =

{
f(x) if x = y,

0 otherwise.
(2.2)

Clearly IΛ = IχΛ , where χΛ denotes the indicator function of Λ.

Cleaning operators. For each x ∈ X , we define the cleaning operator βx by

βx := I{x}c + I{x}α. (2.3)

More generally, for each Λ ⊆ X , we define the cleaning operator βΛ by

βΛ := IΛc + IΛα, (2.4)

where Λc := X \ Λ. More generally yet, for each function f : X → [0, 1], we
define the cleaning operator βf by

βf := I1−f + If α, (2.5)

so that βΛ = βχΛ . We also introduce, for later use, the “dual” cleaning operators

β∗
f := I1−f + αIf (2.6)

(these have no obvious physical interpretation but will play an important role
in our analysis). Clearly all the operators βf and β∗

f are nonnegative (i.e. have
nonnegative matrix elements). We have β0 = β∗

0 = I and β1 = β∗
1 = α.

Remark. In the “single-site cleaning problem” as formulated in the Introduction,
the only allowed cleaning operators are the βx (x ∈ X). When

∑
x∈X f(x) = 1

(resp. ≤ 1), one can interpret βf as a convex combination of the βx (resp. of
the βx and the identity operator), hence as the expected output from a random
choice of single-site cleaning operator. When

∑
x∈X f(x) > 1, the operators βf

have no such interpretation in terms of single-site cleaning; nevertheless, their
introduction is natural from the point of view of probabilistic potential theory,
as we shall see. Indeed, the quantity

∑
x∈X f(x) plays no role whatsoever in

our analysis; the condition 0 ≤ f ≤ 1, on the other hand, is crucial. Whenever
we write βf it will be assumed tacitly that 0 ≤ f ≤ 1.
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Balayage operators. For each Λ ⊆ X and each n ≥ 0, we define Π
(n)
Λ to be

the result of cleaning n times the set Λ and then keeping only the dirt outside Λ:

Π
(n)
Λ := βn

ΛIΛc =

n∑

k=0

(IΛα)kIΛc . (2.7)

Let us note the identities

βn
Λ = Π

(n)
Λ + (IΛαIΛ)nIΛ,

Π
(n)
Λ Π

(m)
Λ = Π

(n)
Λ . (2.8)

We then define the balayage operator ΠΛ by a limiting process:

ΠΛ := lim
n→∞

↑ Π
(n)
Λ =

∞∑

k=0

(IΛα)kIΛc (2.9)

Please note that, with no hypotheses other than the nonnegativity of α, the
matrix elements of ΠΛ are well-defined (and nonnegative) but might be +∞.
However, we shall soon introduce a condition (the Fundamental Hypothesis)
under which the matrix elements of ΠΛ are finite and indeed ΠΛ is a contraction
operator on a suitable space of dirt vectors (Lemma 2.1). It furthermore follows
from (2.8) that ΠΛ is a projection operator, i.e. Π2

Λ = ΠΛ (see also Lemma 3.4).

2.2. The Fundamental Hypothesis

From now through the end of Section 4 (with the exception of Sections 3.6
and 3.7), we shall make the following

Fundamental Hypothesis. There exists a vector w = (wx)x∈X with wx > 0
for all x, such that αw ≤ w.

In potential theory, a vector w satisfying αw ≤ w is called subinvariant,
superharmonic or excessive with respect to α [12, 14, 15, 19]. Thus, the Fun-
damental Hypothesis asserts the existence of a strictly positive subinvariant
vector.

For clarity, all results in this paper that assume the Fundamental Hypothesis

will be marked “(FH)”.

Remarks. 1. The Fundamental Hypothesis implies that the operator P :=
I−1
w αIw is submarkovian, i.e. satisfies P1 ≤ 1. Our results could therefore be

given a more probabilistic flavor, reminiscent of Markov-chain theory, by rewrit-
ing them in terms of P (this is easy because Iw commutes with all the other
multiplication operators If ). We shall not need this interpretation, however, so
we leave this translation to the reader.
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2. If X is finite and α is irreducible, the Fundamental Hypothesis means
simply that the Perron– Frobenius eigenvalue (= spectral radius) of α is ≤ 1.
In this case it is natural to take w to be the Perron–Frobenius eigenvector (this
is the unique choice if the spectral radius equals 1, but is nonunique otherwise).
But if α fails to be irreducible, the Fundamental Hypothesis is stronger than
this assertion about the spectral radius: consider, for instance, α = ( 1 a

0 b ) with
a > 0 and 0 ≤ b ≤ 1, which has spectral radius 1 but does not satisfy the
Fundamental Hypothesis. It can be shown [16] that, when X is finite, the
Fundamental Hypothesis holds if and only if the spectral radius of α is ≤ 1 and

each class J for which the square submatrix αJJ has spectral radius 1 is a final
class (i.e. αjk = 0 whenever j ∈ J and k /∈ J).4

3. Example 6.2 below shows that if X is infinite, then the Fundamental
Hypothesis can fail even though each matrix IΛαIΛ for Λ finite has spectral
radius 0 (i.e. is nilpotent).

We fix once and for all a vector w > 0 satisfying αw ≤ w. For any vector
c = (cx)x∈X , we define

‖c‖w :=
∑

x∈X

|cx|wx (2.10)

and we denote by l1(w) the space of vectors c satisfying ‖c‖w < ∞.
For any matrix A = (Axy)x,y∈X , we define the operator norm

‖A‖w→w := sup
c of finite support

c6=0

‖cA‖w

‖c‖w
. (2.11)

If ‖A‖w→w < ∞, then A defines a bounded operator on l1(w) of norm ‖A‖w→w.
It is not hard to see that (2.11) is equivalent to

‖A‖w→w = sup
x∈X

w−1
x

∑

y∈X

|Axy|wy . (2.12)

In particular, when A is a nonnegative matrix, (2.11)–(2.12) reduces simply to

‖A‖w→w = sup
x∈X

(Aw)x

wx
. (2.13)

Thus, for nonnegative matrices, ‖A‖w→w ≤ 1 if and only if Aw ≤ w.
The norms of the multiplication operators are trivially given by

‖If‖w→w = ‖f‖∞ := sup
x∈X

|f(x)|. (2.14)

4We recall that the classes of a nonnegative matrix α are defined as the strongly connected
components of the directed graph with vertex set X and edge set {xy : αxy > 0}: see e.g. [2,17].
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The Fundamental Hypothesis immediately gives ‖α‖w→w ≤ 1. More generally,
for any f : X → [0, 1], the cleaning operator βf satisfies

βfw = I1−f w + Ifαw ≤ I1−fw + Ifw = w (2.15)

and hence ‖βf‖w→w ≤ 1. A similar argument shows, yet more generally, that
for any functions (fi)

n
i=1 and operators (Ai)

n
i=1, we have

∥∥∥∥
n∑

i=1

Ifi
Ai

∥∥∥∥
w→w

≤

∥∥∥∥
n∑

i=1

‖Ai‖w→w |fi|

∥∥∥∥
∞

≤

n∑

i=1

‖Ai‖w→w ‖fi‖∞. (2.16)

Finally, for the balayage operator ΠΛ we have the easy result:

Lemma 2.1. (FH) For each Λ ⊆ X , the matrix ΠΛ has finite matrix elements,

and indeed satisfies

0 ≤ ΠΛw ≤ w, (2.17)

so that ‖ΠΛ‖w→w ≤ 1. More specifically, ‖ΠΛ‖w→w equals 1 if Λ 6= X , and

equals 0 if Λ = X .

Proof. By (2.15) we have Π
(n)
Λ w = βn

ΛIΛcw ≤ βn
Λw ≤ w. Since 0 ≤ Π

(n)
Λ ↑ ΠΛ

elementwise, we have Π
(n)
Λ w ↑ ΠΛw elementwise by the monotone convergence

theorem, and hence ΠΛw ≤ w. Since ΠΛ is nonnegative, we conclude from (2.11)
or (2.12) that ‖ΠΛ‖w→w ≤ 1.

On the other hand, we have cΠΛ = c for any vector c supported on Λc;
when Λ 6= X (so that c can be chosen nonzero) this implies that ‖ΠΛ‖w→w ≥ 1.
When Λ = X , by contrast, we have ΠΛ = 0. 2

2.3. Main results

Let us now state briefly a few of our main results, just to give their flavor.
Our principal result on cleaning is the following:

Theorem 2.1 (= Theorem 3.2). (FH) Consider a region Λ ⊆ X and func-

tions 0 ≤ hi ≤ χΛ (i ≥ 1) such that

∞∑

i=1

hi(x) = ∞ ∀x ∈ Λ. (2.18)

If the nonnegative vector c ∈ l1(w) is such that ‖c(IΛαIΛ)`‖w → 0 as ` → ∞,

then

‖c(βh1 · · ·βhN
− ΠΛ)‖w −→

N→∞
0. (2.19)
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Intuitively, this says that any sequence of cleaning operations inside Λ that
covers Λ infinitely many times will lead, in the limit, to removing the dirt from Λ
and transferring it to Λc as specified by the balayage operator ΠΛ.

We also have a variant of this result (Theorem 3.1) in which the vector-norm
convergence (2.19) is strengthened to operator-norm convergence, at the price
of a stronger hypothesis on the functions hi (namely, requiring that they cover
the set Λ uniformly). Finally, we will prove some far-reaching extensions of this
result, in terms of the tree formalism, in Section 4.8.

We also have some sufficient conditions for cleanability when the Fundamen-
tal Hypothesis is not assumed. For instance:

Theorem 2.2 (= Theorem 5.2). Let Λ ⊆ X , and let c ≥ 0 and w ≥ 0 be

vectors satisfying

(a) c(IΛαIΛ)kw < ∞ for all k ≥ 0

and

(b) lim
k→∞

c(IΛαIΛ)kw = 0.

Then it is possible to find a sequence of sites x1, x2, . . . ∈ Λ and a sequence of

numbers ε1, ε2, . . . ∈ (0, 1] such that

lim
n→∞

cβε1δx1
· · ·βεnδxn

IΛw = 0. (2.20)

Although this result refers only to matrices, its proof uses the tree formalism
(see Section 5).

Finally, we have a converse result when the Fundamental Hypothesis is not
assumed:

Theorem 2.3 (= Theorem 3.3). Let X be a finite or countably infinite set,

let Λ ⊆ X , and let c ≥ 0 and w ≥ 0 be vectors that are strictly positive on Λ.

Consider the following conditions on a matrix α:

(a)
∑∞

k=0 c(IΛαIΛ)kw < ∞.

(b) For all h : X → [0, 1] with supp h = Λ such that h ≥ εχΛ for some ε > 0,

we have
∑∞

k=0 c(IΛβhIΛ)kw < ∞.

(b′) There exists h : X → [0, 1] with supp h = Λ such that
∑∞

k=0 c(IΛβh×
IΛ)kw < ∞.

(c) For every finite sequence f1, . . . , fm of functions X→ [0, 1] with supp(fi) ⊆
Λ such that

∑
i fi ≥ εχΛ for some ε > 0, we have

∑∞
k=0 c(IΛβf1 · · · ×

βfm
IΛ)kw < ∞.
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(c′) There exists a finite sequence f1, . . . , fm of functions X → [0, 1] with

supp(fi) ⊆ Λ such that
∑∞

k=0 c(IΛβf1 · · ·βfm
IΛ)kw < ∞.

Then (a)–(c) are all equivalent and imply (c′); and for matrices α satisfying the

additional hypothesis

There exists a constant C < ∞ such that IΛαIΛw ≤ Cw (2.21)

all five conditions are equivalent.

Intuitively, this says (at least if Λ is a finite set) that if the spectral radius
of IΛαIΛ is ≥ 1, then there is no way to clean the set Λ completely. In fact, we
shall prove a stronger version of this result in Section 6, using the tree formalism
(see Theorem 6.1 and Corollary 6.1).

3. Matrix approach to balayage

In this section we study the algebra of operators generated by α and the
multiplication operators If , by deriving matrix identities and inequalities in the
spirit of probabilistic potential theory [12,14,15,19]. Our main goal is to study
the convergence of a product of cleaning operators βh1 · · ·βhn

where all the hi

have support contained in Λ. We shall show that, under very general conditions,
any such product must converge to ΠΛ (see Theorems 3.1 and 3.2). We shall
also prove a converse result when the Fundamental Hypothesis is not assumed
(Theorem 3.3).

3.1. Identities for cleaning operators

Proposition 3.1 (Fundamental identities). For all h, h1, h2: X → [0, 1],
the following identities hold:

(i) Intertwining I:
(I − α)βh = β∗

h(I − α). (3.1)

(ii) Intertwining II:

(βh1 − I)Ih2 = Ih1(β
∗
h2

− I), (3.2)

βhIh = Ihβ∗
h. (3.3)

(iii) Comparison:

βh1 − βh2 = Ih2−h1(I − α), (3.4)

I − βh = Ih(I − α). (3.5)
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(iv) Collapse:

βh1βh2 = β1−(1−h1)(1−h2) − Ih1αIh2 (I − α). (3.6)

Proof. (i)

αβh − β∗
hα = αI1−h − I1−hα = Ihα − αIh = βh − β∗

h. (3.7)

(ii) Both sides of (3.2) are equal to Ih1(α− I)Ih2 . Equation (3.3) follows by
setting h1 = h2 = h.

(iii)

βh1 − βh2 = I1−h1 − I1−h2 + (Ih1 − Ih2)α = Ih2−h1(I − α). (3.8)

Equation (3.5) follows by setting h1 = 0, h2 = h.
(iv)

βh1βh2 + Ih1αIh2(I − α) = I(1−h1)(1−h2) + Ih1αI1−h2 + I1−h1Ih2α + Ih1αIh2

= I(1−h1)(1−h2) + Ih1α + I1−h1Ih2α

= β1−(1−h1)(1−h2). (3.9)

2

Corollary 3.1 (Telescoping comparison). For all g1, . . . , gn, h1, . . . , hn:

X → [0, 1], we have

βg1 · · ·βgn
− βh1 · · ·βhn

=
n∑

i=1

βg1 · · ·βgi−1Ihi−gi
(I − α)βhi+1 · · ·βhn

(3.10)

=

n∑

i=1

βg1 · · ·βgi−1Ihi−gi
β∗

hi+1
· · ·β∗

hn
(I − α).

Proof. This is an immediate consequence of the telescopic decomposition

βg1 · · ·βgn
− βh1 · · ·βhn

=

n∑

i=1

βg1 · · ·βgi−1(βgi
− βhi

)βhi+1 · · ·βhn
, (3.11)

the comparison identity (3.4), and the intertwining relation (3.1). 2

Lemma 3.1 (Cleaners with restricted support). Suppose that supp(gi)⊆
Λ for i = 1, . . . , n, and let hi : X → R be any functions satisfying hi � Λ ≡ 1 for

i = 1, . . . , n. Then

βg1 · · ·βgn
IΛ = Ih1βg1 · · · Ihn

βgn
IΛ (3.12)

and

IΛβ∗
g1
· · ·β∗

gn
= IΛβ∗

g1
Ih1 · · ·β

∗
gn

Ihn
. (3.13)

Furthermore,

IΛcβg1 · · ·βgn
= IΛc = β∗

g1
· · ·β∗

gn
IΛc . (3.14)
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Proof. Note first that if supp(g) ⊆ Λ, we have IΛcβgIΛ = 0; therefore, for any h
satisfying h � Λ ≡ 1, we have

βgIΛ = IΛβgIΛ = IhβgIΛ. (3.15)

So, starting with βg1 · · ·βgn
IΛ, we successively use the first equality in (3.15),

working from right to left in the product, to transform it into IΛβg1 · · · IΛβgn
IΛ.

We then successively use the second equality in (3.15), working from left to right
in the product, to transform it into Ih1βg1 · · · Ihn

βgn
IΛ. This proves (3.12). An

analogous argument gives (3.13). Identities (3.14) are immediately verified by
induction. 2

3.2. Inequalities for cleaning operators

We now turn our attention to proving inequalities that say, roughly speaking,
that one operator “cleans better” than another.

Lemma 3.2. (FH) Let Λ be any subset of X , and let f be any function satis-

fying χΛ ≤ f ≤ 1. Then

IΛ(I − α)If w ≥ 0. (3.16)

If, in addition, 0 ≤ hi ≤ χΛ for i = 1, . . . , n, then

IΛ(I − α)βh1 · · ·βhn
Ifw ≥ 0. (3.17)

Proof. We have

IΛ(I − α)If w = IΛfw − IΛαfw

≥ IΛfw − IΛαw [since f ≤ 1]

≥ IΛfw − IΛw [since αw ≤ w]

= IΛ(f − 1)w = 0 [since f ≡ 1 on Λ]. (3.18)

This proves (3.16). Then

IΛ(I − α)βh1 · · ·βhn
If w = IΛβ∗

h1
· · ·β∗

hn
(I − α)If w

= IΛβ∗
h1

· · ·β∗
hn

IΛ(I − α)If w

≥ 0 (3.19)

where the first equality uses the intertwining relation (3.1), the second uses the
identity (3.13), and the final inequality uses (3.16) and the nonnegativity of
β∗

h1
, . . . , β∗

hn
. 2

Proposition 3.2 (Multi-monotonicity). (FH) Suppose that 0 ≤ gi ≤ hi ≤
χΛ ≤ f ≤ 1 for i = 1, . . . , n. Then

βh1 · · ·βhn
If w ≤ βg1 · · ·βgn

Ifw. (3.20)
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Proof. We will prove (3.20) by proving separately that IΛc(LHS) ≤ IΛc(RHS)
and that IΛ(LHS) ≤ IΛ(RHS). The former is in fact equality, since IΛcβh1 · · · ×
βhn

= IΛcβg1 · · ·βgn
= IΛc . The latter follows from the telescoping comparison

identity (3.10) and the inequality (3.17), along with the nonnegativity of the
operators βg1 , . . . , βgi−1 that lie on the left in (3.10). 2

Proposition 3.3 (Collapse inequality). (FH) Suppose that 0 ≤ gi, hj ≤
χΛ ≤ f ≤ 1 for i = 1, . . . , n and j = 1, . . . , m. Then

βg1 · · ·βgn
βh1 · · ·βhm

Ifw ≤ β1−
Q

n
i=1(1−gi)βh1 · · ·βhm

If w. (3.21)

Proof. For n = 1 this is trivial. For n = 2 it follows from the collapse iden-
tity (3.6) together with the inequality (3.17). The cases n ≥ 3 are obtained by
an easy induction from the case n = 2. 2

Combining Propositions 3.2 and 3.3, we obtain the following comparison
result:

Corollary 3.2 (Multi-monotonicity + collapse). (FH) Suppose that 0 ≤
hi, gj ≤ χΛ ≤ f ≤ 1 for i = 1, . . . , N and j = 1, . . . , k. Suppose further that

there exist integers 0 ≤ n0 < n1 < . . . < nk ≤ N such that

1 −

nj∏

i=nj−1+1

(1 − hi) ≥ gj (3.22)

for all j. Then

βh1 · · ·βhN
If w ≤ βg1 · · ·βgk

If w. (3.23)

Now we develop some analogous inequalities going in the reverse direction
provided that we look only at the dirt outside Λ; moreover, these inequalities
hold pointwise.

Lemma 3.3. Let Λ be any subset of X . Then

IΛ(I − α)IΛc ≤ 0. (3.24)

If, in addition, 0 ≤ hi ≤ χΛ for i = 1, . . . , n, then

IΛ(I − α)βh1 · · ·βhn
IΛc ≤ 0. (3.25)

Proof. The inequality (3.24) is trivial since α ≥ 0. To prove (3.25), we make a
computation analogous to that in the proof of Lemma 3.2:

IΛ(I − α)βh1 · · ·βhn
IΛc = IΛβ∗

h1
· · ·β∗

hn
(I − α)IΛc

= IΛβ∗
h1

· · ·β∗
hn

IΛ(I − α)IΛc ≤ 0 (3.26)

where the final step uses (3.24). 2
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Proposition 3.4 (Reverse multi-monotonicity). Suppose that 0 ≤ hi ≤
gi ≤ χΛ for i = 1, . . . , n. Then

βg1 · · ·βgn
IΛc ≥ βh1 · · ·βhn

IΛc . (3.27)

Proof. We will prove (3.27) by proving separately that IΛc (LHS) ≤ IΛc(RHS)
and that IΛ(LHS) ≤ IΛ(RHS). The former is in fact equality because of (3.14).
The latter follows from the telescoping comparison identity (3.10) and the in-
equality (3.25), along with the nonnegativity of the operators βh1 , . . . , βhi−1 that
lie on the left in (3.10). 2

Proposition 3.5 (Reverse collapse inequality). Suppose that 0 ≤ gi, hj ≤
χΛ for i = 1, . . . , n and j = 1, . . . , m. Then

βg1 · · ·βgn
βh1 · · ·βhm

IΛc ≥ β1−
Q

n
i=1(1−gi)βh1 · · ·βhm

IΛc . (3.28)

Proof. For n = 1 this is trivial. For n = 2 it follows from the collapse iden-
tity (3.6) together with the inequality (3.24). The cases n ≥ 3 are obtained by
an easy induction from the case n = 2. 2

Combining Propositions 3.4 and 3.5, we obtain:

Corollary 3.3 (Reverse multi-monotonicity + collapse). Suppose that

0 ≤ hi, gj ≤ χΛ for i = 1, . . . , N and j = 1, . . . , k. Suppose further that

there exist integers 0 ≤ n0 < n1 < . . . < nk ≤ N such that

1 −

nj∏

i=nj−1+1

(1 − hi) ≥ gj (3.29)

for all j. Then

βh1 · · ·βhN
IΛc ≥ βg1 · · ·βgk

IΛc . (3.30)

3.3. Identities related to ΠΛ

Lemma 3.4 (Properties of ΠΛ). Let Λ ⊆ X . Then the following identities

hold:

(i) Basic properties of ΠΛ:

Π2
Λ = ΠΛ, (3.31)

IΛ(I − ΠΛ) = I − ΠΛ. (3.32)

(ii) Absorption of cleaning operators: If supp(h) ⊆ Λ, then

IhΠΛ = IhαΠΛ, (3.33)

βhΠΛ = ΠΛ, (3.34)

ΠΛβh = ΠΛ. (3.35)
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Proof. It follows immediately from the definition (2.9) of ΠΛ that ΠΛIΛc = ΠΛ

and IΛcΠΛ = IΛc , hence ΠΛΠΛ = ΠΛIΛcΠΛ = ΠΛIΛc = ΠΛ. This proves (3.31).
Equation (3.32) is trivially equivalent to IΛcΠΛ = IΛc . It also follows immedi-
ately from the definition of ΠΛ that

IΛΠΛ = ΠΛ − IΛc = IΛαΠΛ, (3.36)

and premultiplying this by Ih yields (3.33). The identity (3.34) follows imme-
diately from (3.33) and the definition of βh. The identity (3.35) follows from
ΠΛβh = ΠΛIΛc(I1−h + Ihα) = ΠΛIΛc = ΠΛ. 2

Proposition 3.6 (Convergence-to-balayage identity). Suppose that 0 ≤
hi ≤ χΛ for i = 1, . . . , n. Then

βh1 · · ·βhn
− ΠΛ = βh1 · · ·βhn

IΛ(I − ΠΛ)

= (IΛβh1IΛ) · · · (IΛβhn
IΛ)IΛ(I − ΠΛ). (3.37)

Proof. We shall prove the first line of (3.37) by induction on n. It is true for
n = 0, by (3.32). So assume it is true for n − 1, i.e. that

βh2 · · ·βhn
− ΠΛ = βh2 · · ·βhn

IΛ(I − ΠΛ). (3.38)

Left-multiplying by βh1 and using (3.34), the desired identity follows. The
alternative form (second line of (3.37)) is then an immediate consequence of
Lemma 3.1. 2

Remark. In the absence of the Fundamental Hypothesis, some of the matrix
elements of ΠΛ could be +∞, but the identities (3.31)–(3.35) and (3.37) continue
to hold (with some matrix elements possibly +∞ or −∞).

3.4. Comparison of cleaning operators with ΠΛ

Definition 3.1. Let Λ ⊆ X . We say that an operator A ≥ 0 is absorbed by ΠΛ

in case AΠΛ = ΠΛ.

By Lemma 3.4, operators βh1 · · ·βhn
with supp(hi) ⊆ Λ are absorbed by ΠΛ,

as are all convex combinations thereof.
Operators absorbed by ΠΛ obey some elementary but remarkable identities

and inequalities:

Lemma 3.5 (Comparison with ΠΛ). (FH) Let Λ ⊆ X , and let A ≥ 0 be an

operator absorbed by ΠΛ. Then:

(i) 0 ≤ ΠΛw ≤ Aw. [In particular, if Λ 6= X , we have ‖A‖w→w ≥ 1. ]
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(ii) The operator A − ΠΛ can be decomposed in the form

A − ΠΛ = (A − ΠΛ)IΛ + (A − ΠΛ)IΛc (3.39)

= AIΛ − (ΠΛ − AIΛc) (3.40)

= AIΛ(I − ΠΛ) (3.41)

where

AIΛ ≥ 0, (3.42)

ΠΛ − AIΛc = AIΛΠΛ ≥ 0, (3.43)

(ΠΛ − AIΛc )w ≤ AIΛw. (3.44)

(iii) The following norm relations hold:

‖A − ΠΛ‖w→w = ‖AIΛ(I − ΠΛ)‖w→w ≤ 2‖AIΛ‖w→w (3.45)

and, for every vector c ≥ 0,

‖c(A − ΠΛ)‖w = ‖cAIΛ‖w + ‖c(ΠΛ − AIΛc)‖w ≤ 2‖cAIΛ‖w. (3.46)

Proof. By Lemma 2.1 we have 0 ≤ ΠΛw ≤ w. Applying A on the left and using
AΠΛ = ΠΛ, we obtain (i). The remark in brackets is obtained by left-multiplying
with any vector c ≥ 0 (c 6= 0) supported on Λc.

Equalities (3.39), (3.40) are trivial, and (3.41) follows from AΠΛ = ΠΛ using
(3.32): A − ΠΛ = A(I − ΠΛ) = AIΛ(I − ΠΛ). (3.42) is trivial. The hypothesis
AΠΛ = ΠΛ yields ΠΛ − AIΛc = A(ΠΛ − IΛc) = AIΛΠΛ ≥ 0, which is (3.43).
Finally, (3.44) is a rewriting of (i).

The identity in (3.45) is an application of (3.41), and the inequality follows
from the fact that ‖I − ΠΛ‖w→w ≤ 2 (cf. Lemma 2.1).

Since cAIΛ is supported on Λ while c(ΠΛ − AIΛc) is supported on Λc, the
equality in (3.46) follows from (3.39)–(3.41). The inequality follows from (3.44)
together with the nonnegativity of the operators ΠΛ − AIΛc and AIΛ. 2

We can now compare the “efficiency of cleaning” of two operators A and B.

Corollary 3.4. (Comparison of cleaners). (FH) Let Λ ⊆ X , and let

A, B ≥ 0 be operators absorbed by ΠΛ. Suppose further that

AIΛw ≤ BIΛw, (3.47)

AIΛcw ≥ BIΛcw. (3.48)

Then

‖A − ΠΛ‖w→w ≤ ‖B − ΠΛ‖w→w (3.49)

and, for every vector c ≥ 0,

‖c(A − ΠΛ)‖w ≤ ‖c(B − ΠΛ)‖w. (3.50)
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Proof. The vector-norm inequality (3.50) is an immediate consequence of the
equality in (3.46) together with the hypotheses (3.47), (3.48).

For the operator-norm inequality (3.49), note that the decomposition (3.40)
yields

(A − ΠΛ)xy =

{
Axy for y ∈ Λ,

−(ΠΛ − A)xy for y ∈ Λc.
(3.51)

Inequalities (3.42) and (3.43) therefore imply the componentwise identity

|A − ΠΛ| = AIΛ + (ΠΛ − AIΛc). (3.52)

Inequality (3.49) is an immediate consequence of this identity and the hypothe-
ses (3.47), (3.48) together with (2.12). 2

The applications of interest to us follow from the multi-monotonicity bo-
unds (3.20) and (3.27) and the collapse inequalities (3.21) and (3.28):

Corollary 3.5. (FH) Let Λ ⊆ X .

(i) Suppose that 0 ≤ gi ≤ hi ≤ χΛ for i = 1, . . . , n. Then

‖βh1 · · ·βhn
− ΠΛ‖w→w ≤ ‖βg1 · · ·βgn

− ΠΛ‖w→w (3.53)

and, for each vector c ≥ 0,

‖c(βh1 · · ·βhn
− ΠΛ)‖w ≤ ‖c(βg1 · · ·βgn

− ΠΛ)‖w. (3.54)

(ii) Suppose that 0 ≤ hi ≤ χΛ for i = 1, . . . , N . Then, for every choice of

integers 0 ≤ n1 ≤ · · · ≤ nk ≤ N , we have

‖βh1 · · ·βhN
− ΠΛ‖w→w ≤ ‖β1−

Qn1
i=1(1−hi)

· · ·β1−
Qnk

i=nk−1+1(1−hi)
− ΠΛ‖w→w

(3.55)
and, for each vector c ≥ 0,

‖c(βh1 · · ·βhN
− ΠΛ)‖w ≤ ‖c(β1−

Qn1
i=1(1−hi)

· · ·β1−
Qnk

i=nk−1+1(1−hi)
− ΠΛ)‖w.

(3.56)

3.5. Convergence of cleaning operators to ΠΛ

We are now ready to study the convergence of cleaning operators βh1 · · ·βhn

to ΠΛ. We shall prove the main result in two versions: a uniform (operator-
norm) version, and a dust-dependent (vector-norm) version. A central role in
these analyses will be played, respectively, by the quantities

ρΛ(`) := ‖(IΛαIΛ)`‖w→w (3.57)
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and, for each vector c ≥ 0,

ρΛ(`; c) := ‖c(IΛαIΛ)`‖w. (3.58)

Clearly we have 0 ≤ ρΛ(`) ≤ 1 and 0 ≤ ρΛ(`; c) ≤ ‖c‖w. Note also that
both ρΛ(`) and [since c ≥ 0] ρΛ(`; c) are increasing functions of Λ.

For brevity let us denote
βεΛ := βεχΛ (3.59)

for 0 < ε < 1 and a set Λ ⊆ X .

Lemma 3.6. Fix a region Λ ⊆ X and a number ε > 0.

(i) If ρΛ(`) → 0 as ` → ∞, then

‖(IΛ′βεΛ′IΛ′ )N‖w→w −→
N→∞

0 (3.60)

uniformly for all regions Λ′ ⊆ Λ.

(ii) If the nonnegative vector c ∈ l1(w) is such that ρΛ(`; c) → 0 as ` → ∞,

then

‖c(IΛ′βεΛ′IΛ′ )N‖w −→
N→∞

0 (3.61)

uniformly for all regions Λ′ ⊆ Λ.

Proof. The obvious identity

(IΛ′βεΛ′IΛ′)N =
[
(1 − ε)IΛ′ + εIΛ′αIΛ′

]N
=

N∑

`=0

(
N

`

)
(1 − ε)N−`ε`(IΛ′αIΛ′ )`IΛ′

(3.62)

(valid for N ≥ 1) allows us to write

‖(IΛ′βεΛ′IΛ′ )N‖w→w

‖c(IΛ′βεΛ′IΛ′ )N‖w

}
≤ E(FΛ′ (XN )) (3.63)

where XN is a Binomial(N, ε) random variable and

FΛ′(`) =

{
ρΛ′(`) in case (i),
ρΛ′(`; c) in case (ii).

(3.64)

In both cases,
FΛ′(`) ≤ FΛ(`) −→

`→∞
0. (3.65)

Denoting
MK := sup

`≥K
FΛ(`), (3.66)
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we can decompose

E(FΛ′ (XN )) ≤ M0P (XN ≤ K) + MK , (3.67)

where M0 < ∞ [in case (ii) because c ∈ l1(w)]. By hypothesis, given δ > 0 we
can choose K so that MK ≤ δ/2. For such K,

P (XN ≤ K) ≤ (1 − ε)N−KNK
K∑

`=0

(1 − ε)K−`ε` −→
N→∞

0. (3.68)

Thus for N large enough the first term on the right-hand-side of (3.67) is also
smaller than δ/2. 2

We remark that in the situation (i), the inequality

‖(IΛ′βεΛ′IΛ′ )N1+N2‖w→w ≤ ‖(IΛ′βεΛ′IΛ′)N1‖w→w‖(IΛ′βεΛ′IΛ′ )N2‖w→w (3.69)

implies that the convergence in (3.60) is actually exponentially fast in N .

Theorem 3.1 (Uniform cleaning). (FH) Consider a region Λ ⊆ X and fun-

ctions 0 ≤ hi ≤ χΛ (i ≥ 1) such that

∞∑

i=1

hi(x) = ∞ uniformly for x ∈ Λ. (3.70)

(i) If ρΛ(`) ≡ ‖(IΛαIΛ)`‖w→w → 0 as ` → ∞, then

‖βh1 · · ·βhN
− ΠΛ‖w→w −→

N→∞
0. (3.71)

(ii) If the nonnegative vector c∈ l1(w) is such that ρΛ(`; c)≡‖c(IΛαIΛ)`‖w→0
as ` → ∞, then

‖c(βh1 · · ·βhN
− ΠΛ)‖w −→

N→∞
0. (3.72)

We remark that if Λ is a finite set, then the hypothesis (3.70) is equivalent to
the apparently weaker hypothesis that

∑∞
i=1 hi(x) = ∞ for all x ∈ Λ [cf. (3.83)

below]. But if Λ is an infinite set, then (3.70) is stronger.

Proof of Theorem 3.1. By Proposition 3.6 and the fact that ‖I − ΠΛ‖w→w ≤ 2
[or alternatively by Lemma 3.5(iii)], it is enough to show that

‖βh1 · · ·βhN
IΛ‖w→w −→

N→∞
0 in case (i), (3.73)

‖cβh1 · · ·βhN
IΛ‖w −→

N→∞
0 in case (ii). (3.74)
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Now, since the hi are bounded, (3.70) is equivalent to the existence of δ > 0
and a sequence 0 = n0 < n1 < n2 < . . . satisfying

nj∑

i=nj−1+1

hi ≥ δχΛ (3.75)

for all j. This, in turn, is equivalent to the existence of ε > 0 such that

1−

nj∏

i=nj−1+1

(1 − hi) ≥ εχΛ (3.76)

for every j (indeed, we can set ε = 1 − exp(−δ)). Therefore, by Corollary 3.2,
if N ≥ nk we have

‖βh1 · · ·βhN
IΛ‖w→w ≤ ‖βk

εΛIΛ‖w→w, (3.77)

‖cβh1 · · ·βhN
IΛ‖w ≤ ‖cβk

εΛIΛ‖w. (3.78)

The theorem then follows from Lemmas 3.1 and 3.6. 2

Remark. The standard “cleaning” proof of the Dobrushin uniqueness theo-
rem [10, 11, 13, 18, 21] proves a very special case of Theorem 3.1(ii): namely,
one assumes the very strong hypothesis αw ≤ (1− ε)w for some ε > 0, and one
takes hi = δxi

, where x1, x2, . . . is a sequence that visits each site of Λ infinitely
many times. The correlations between Λ and Λc can then be bounded in terms
of ΠΛ (see [10, 11, 18] for variants of this idea).

Let us also remark that, in the application to the Dobrushin uniqueness
theorem, it appears to be necessary to take w = 1. This choice plays no role
in the “cleaning” proof itself, but plays a role in the final step of the argument,
where the total oscillation of a function of many variables is bounded by the
sum of its single-variable oscillations — not a weighted sum.

The non-uniform (dust-dependent) version of the previous result relies on
the following decomposition:

Lemma 3.7. Fix ε > 0 and a set Λ ⊆ X . Then, for all integers N ≥ K ≥ 0,

βN
εΛ = βK

εΛIΛc + (IΛβεΛIΛ)KIΛβN−K
εΛ . (3.79)

Proof. By (3.14) we have
IΛcβN

εΛ = IΛc (3.80)

and hence
βN

εΛ = IΛc + IΛβN
εΛ. (3.81)
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It follows that

βN
εΛ = βK

εΛβN−K
εΛ

= βK
εΛ(IΛc + IΛβN−K

εΛ ) [by (3.81)]

= βK
εΛIΛc + (IΛβεΛIΛ)KIΛβN−K

εΛ [by (3.12)]. (3.82)

2

Theorem 3.2 (Dust-dependent cleaning). (FH) Consider a region Λ ⊆ X
and functions 0 ≤ hi ≤ χΛ (i ≥ 1) such that

∞∑

i=1

hi(x) = ∞ for all x ∈ Λ. (3.83)

If the nonnegative vector c ∈ l1(w) is such that ρΛ(`; c) ≡ ‖c(IΛαIΛ)`‖w → 0 as

` → ∞, then

‖c(βh1 · · ·βhN
− ΠΛ)‖w −→

N→∞
0. (3.84)

Proof. As in the proof of Theorem 3.1, it is enough to show that

‖cβh1 · · ·βhN
IΛ‖w −→

N→∞
0. (3.85)

Fix δ > 0 and 0 < ε < 1. By Lemma 3.6 we can choose K so that

‖c(IΛ′βεΛ′IΛ′)K‖w ≤ δ/2 (3.86)

uniformly for all regions Λ′ ⊆ Λ. On the other hand, since c ∈ l1(w), we can
choose a finite set Λ′ ⊆ Λ so that

‖c(IΛαIΛ)`IΛ\Λ′‖w ≤ δ/[2(K + 1)] (3.87)

for ` = 0, 1, . . . , K. Then hypothesis (3.83) guarantees that there exists a se-
quence of integers 0 = n0 < n1 < n2 < . . . such that

1 −

nj∏

i=nj−1+1

(1 − hi) ≥ εχΛ′ (3.88)

for all j. Therefore, by Corollary 3.2, if N ≥ nk we have

‖cβh1 · · ·βhN
IΛ‖w ≤ ‖cβk

εΛ′IΛ‖w. (3.89)

Now, by the decomposition (3.79), whenever k ≥ K we have

βk
εΛ′IΛ = βK

εΛ′IΛ\Λ′ + (IΛ′βεΛ′IΛ′ )KIΛ′βk−K
εΛ′ IΛ. (3.90)
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Applying this to the vector w, we deduce the vector inequalities

βk
εΛ′IΛw ≤ βK

εΛ′IΛ\Λ′w + (IΛ′βεΛ′IΛ′ )KIΛ′w [by (2.15)]

≤ βK
Λ′IΛ\Λ′w + (IΛ′βεΛ′IΛ′)KIΛ′w [by (3.27)]

=

K∑

`=0

(IΛ′α)`IΛ\Λ′w + (IΛ′βεΛ′IΛ′ )KIΛ′w

≤
K∑

`=0

(IΛαIΛ)`IΛ\Λ′w + (IΛ′βεΛ′IΛ′)KIΛ′w. (3.91)

Thus,

‖cβk
εΛ′IΛ‖w ≤

K∑

`=0

‖c(IΛαIΛ)`IΛ\Λ′‖w + ‖c(IΛ′βεΛ′IΛ′ )K‖w ≤ δ. (3.92)

2

Let us observe that, in the absence of some uniformity hypothesis on the hi

[like (3.70)], the convergence in (3.84) can be arbitrarily slow, even if ρΛ(`; c)→0
arbitrarily rapidly:

Example 3.1. Let Λ be countably infinite (say, Λ = {1, 2, 3, . . .}); let w = 1
and choose any c > 0 with c ∈ l1. Let us consider the best possible case for
cleaning, namely α = 0, so that ρΛ(`; c) = 0 for all ` ≥ 1. Then ‖c(βN

h −ΠΛ)‖w =∑∞
i=1 ci[1−h(i)]N =: εN . It is a fairly simple analysis exercise to show that the

(hi)i≥1 can be chosen so that εN decays more slowly with N than any specified
convergent-to-zero sequence (δN )N≥0.

5

3.6. Some further identities and inequalities

Let us now prove a beautiful identity for the sum of a geometric series∑∞
N=0(IΛβhIΛ)N . This identity will play a central role in the next subsection

in the proof of the converse theorem on cleaning (Theorem 3.3).

5Let (ci)i≥1 be any strictly positive sequence, and let (δN )N≥0 be any sequence of non-
negative numbers converging to zero. We claim that one can choose a sequence (hi)i≥1 of

numbers in (0, 1] such that εN :=
P∞

i=1
ci(1 − hi)N ≥ δN for all but finitely many N .

Proof. Choose N1 such that δN ≤ c1/2 for all N ≥ N1; and for i ≥ 2, inductively choose
Ni > Ni−1 such that δN ≤ ci/2 for all N ≥ Ni. Then, for each i ≥ 1, choose hi small enough
so that (1 − hi)

Ni+1 ≥ 1/2. It follows that, for Ni ≤ N ≤ Ni+1 we have

δN ≤ ci/2 ≤ ci(1 − hi)
Ni+1 ≤ ci(1 − hi)

N ≤ εN .

Since every N ≥ N1 belongs to some such interval, we are done. 2
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Lemma 3.8. Let Λ ⊆ X , and let h : X → [0, 1] be strictly positive on Λ and

zero outside Λ. (In other words, supp h = Λ.) Then

∞∑

N=0

(IΛβhIΛ)NIh =
∞∑

k=0

(IΛαIΛ)kIΛ. (3.93)

Proof. Everything occurs within Λ, so for notational simplicity let us sup-
pose that Λ = X . Write βh = I1−h + Ihα, expand out the Nth power, and
sum over N . We get a sum over all finite sequences (including the empty
sequence) of factors I1−h and Ihα. Now let us treat the matrix elements of
α as noncommuting indeterminates and extract the coefficient of a monomial
αx0x1αx1x2 · · ·αxk−1xk

with k ≥ 0 (it is easy to see that these are the only mono-
mials that arise). To the left of αx0x1 we have an arbitrary number (including
zero) of factors 1 − h(x0) followed by one factor h(x0): this gives

∞∑

n=0

[1 − h(x0)]
nh(x0) = 1

since 0 < h(x0) ≤ 1. Likewise to the immediate left of each αxi−1xi
. Finally,

to the right of αxk−1xk
we have an arbitrary number (including zero) of factors

1−h(xk): this gives
∑∞

n=0[1−h(xk)]
n = 1/h(xk), and this factor is cancelled by

the Ih on the left-hand side of (3.93). So each monomial αx0x1αx1x2 · · ·αxk−1xk

gets a coefficient 1, which corresponds exactly to the right-hand side of (3.93).
2

Important Remark. By treating the matrix elements of α as noncommuting
indeterminates, we are in essence using the tree formalism that will be described
in detail in Section 4.

If we use a product βf1 · · ·βfm
in place of the single cleaning operator βh,

then we can obtain an inequality in place of the identity (3.93):

Lemma 3.9. Let Λ ⊆ X , and let f1, . . . , fm : X → [0, 1] be supported on Λ.

Define h := 1 −
∏m

i=1(1 − fi). Then

∞∑

k=0

(IΛβf1 · · ·βfm
IΛ)kIh ≤

∞∑

k=0

(IΛαIΛ)kIΛ (3.94)

provided that the right-hand side is elementwise finite.

Proof. As in the previous lemma, everything here occurs within Λ, so we can
assume for notational simplicity that Λ = X . We apply Corollary 3.1 with
g1 = . . . = gm = 0 and hi = fi, to obtain

I − βf1 · · ·βfm
=

( m∑

i=1

Ifi
β∗

fi+1
· · ·β∗

fm

)
(I − α) := P (I − α) (3.95)
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where P is a sum of products of the operators α, Ifj
and I1−fj

(1 ≤ j ≤ m).
Furthermore, the term in P containing no factors of α is the operator of multi-
plication by

m∑

i=1

fi

m∏

j=i+1

(1 − fj) = 1 −

m∏

i=1

(1 − fi) = h. (3.96)

Since the other terms are nonnegative, we have P ≥ Ih.
Let us now abbreviate B = βf1 · · ·βfm

. Under the assumption that
∑∞

k=0 αk

is elementwise finite, we have

(I − α)

( ∞∑

k=0

αk

)
= I. (3.97)

Therefore, right-multiplying (3.95) by
∑∞

k=0 αk yields

Ih ≤ P = (I − B)

∞∑

k=0

αk . (3.98)

We now left-multiply this inequality by Bk and sum from k = 0 to N : since
Bk(I − B) = Bk − Bk+1, the sum telescopes and we have

N∑

k=0

BkIh ≤ (I − BN+1)

∞∑

k=0

αk ≤

∞∑

k=0

αk . (3.99)

Taking N → ∞ gives the result. 2

Lemma 3.9 is a special case of a result to be proven in Section 4.9 using the
tree formalism [see Lemmas 4.13(b) and 4.14(a)]. Indeed, the mysterious oper-
ator P in (3.95) will correspond to the cloud µ in Lemma 4.14(a). Furthermore,
in the tree context the summability condition on

∑∞
k=0 αk can be removed.

Finally, we have a reverse inequality:

Lemma 3.10. Let Λ ⊆ X , and let f1, . . . , fm : X → [0, 1] be supported on Λ.

Then

∞∑

k=0

(IΛαIΛ)k ≤

( ∞∑

n=0

(IΛβf1 · · ·βfm
IΛ)n

)( m−1∑

k=0

(IΛαIΛ)k

)
(3.100)

provided that
∑∞

n=0(IΛβf1 · · ·βfm
IΛ)n is elementwise finite.

The main tool in the proof is the following bound, which uses only the
nonnegativity of the matrix α:
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Lemma 3.11. Let f1, . . . , fm : X → [0, 1]. Then

0 ≤

m∑

i=1

Ifi
β∗

fi+1
· · ·β∗

fm
≤

m−1∑

k=0

αk. (3.101)

Proof. Write β∗
f = I1−f +αIf and expand out the left-hand side of (3.101). Let

us once again treat the matrix elements of α as noncommuting indeterminates
and extract the coefficient of a monomial αx0x1αx1x2 · · ·αxk−1xk

with 0 ≤ k ≤
m−1 (it is easy to see that these are the only monomials that arise). We need to
show that each such coefficient is ≤ 1 (the nonnegativity is obvious). We have
already computed in (3.96) the term with no powers of α: it is 1 −

∏m
i=1[1 −

fi(x0)] ≤ 1. Now suppose that there are k α’s, occurring at positions j1, . . . , jk

with i + 1 ≤ j1 < j2 < . . . < jk ≤ m. The coefficient of such a term will be

[fi(1 − fi+1) · · · (1 − fj1−1)](x0) × [fj1(1 − fj1+1) · · · (1 − fj2−1)](x1) (3.102)

× · · · × [fjk
(1 − fjk+1) · · · (1 − fm)](xk)

and we then need to sum over all choices of indices 1 ≤ i < j1 < j2 < . . . <
jk ≤ m. First fix j1, . . . , jk and sum over i: one gets

j1−1∑

i=1

[fi(1 − fi+1) · · · (1 − fj1−1)](x0) = 1 −

j1−1∏

i=1

[1 − fi(x0)] ≤ 1 (3.103)

[just as in (3.96)]. We then sum over j1 and so forth, each time bounding the
sum by 1. 2

Proof of Lemma 3.10. Once again, we can assume that Λ = X . Let us abbre-
viate B = βf1 · · ·βfm

. From (3.95) we have

I − B = P (I − α) (3.104)

where Lemma 3.11 gives

0 ≤ P ≤

m−1∑

k=0

αk . (3.105)

Under the assumption that
∑∞

n=0 Bn is elementwise finite, we have

( ∞∑

n=0

Bn

)
(I − B) = I, (3.106)

so we can left-multiply (3.104) by
∑∞

n=0 Bn to obtain

I =

( ∞∑

n=0

Bn

)
P (I − α). (3.107)
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Now right-multiply this inequality by αk and sum from k = 0 to N : the sum
on the right telescopes and we obtain

N∑

k=0

αk =

( ∞∑

n=0

Bn

)
P (I − αN+1) ≤

( ∞∑

n=0

Bn

)
P ≤

( ∞∑

n=0

Bn

)( m−1∑

k=0

αk

)
.

(3.108)

Taking N → ∞ gives the result. 2

Lemma 3.10 is a special case of a result to be proven in Section 4.9 us-
ing the tree formalism [see Lemma 4.14(c,d)], where moreover the summability
condition on

∑∞
n=0(IΛβf1 · · ·βfm

IΛ)n can be removed. The pair of inequali-
ties (3.94), (3.100) will play a crucial role in the proof of the converse theorem
on cleaning (Theorem 3.3), just as their tree generalizations will do in the proof
of the strong form of this result (Theorem 6.1).

3.7. Converse results

In this subsection we do not assume the Fundamental Hypothesis. Rather,
our goal is to study what happens in case the Fundamental Hypothesis fails.
Here we are entitled to use the algebraic identities that were proven in the
preceding subsections, since such identities are valid irrespective of the Funda-
mental Hypothesis. Furthermore, we are entitled to use those inequalities that

do not refer to the vector w, since they are based only on the nonnegativity of
the matrix elements of α. But we must be very careful to avoid using any result
that depends on the Fundamental Hypothesis.

Our main result is the following:

Theorem 3.3. Let X be a finite or countably infinite set, let Λ ⊆ X , and

let c ≥ 0 and w ≥ 0 be vectors that are strictly positive on Λ. Consider the

following conditions on a matrix α:

(a)
∑∞

k=0 c(IΛαIΛ)kw < ∞.

(b) For all h : X → [0, 1] with supp h = Λ such that h ≥ εχΛ for some ε > 0,

we have
∑∞

k=0 c(IΛβhIΛ)kw < ∞.

(b′) There exists h : X → [0, 1] with supp h = Λ such that
∑∞

k=0 c(IΛβh×
IΛ)kw < ∞.

(c) For every finite sequence f1, . . . , fm of functions X → [0, 1] with supp(fi)
⊆ Λ such that

∑
i fi ≥ εχΛ for some ε > 0, we have

∑∞
k=0 c(IΛβf1 · · ·βfm

×
IΛ)kw < ∞.

(c′) There exists a finite sequence f1, . . . , fm of functions X → [0, 1] with

supp(fi) ⊆ Λ such that
∑∞

k=0 c(IΛβf1 · · ·βfm
IΛ)kw < ∞.
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Then (a)–(c) are all equivalent and imply (c′); and for matrices α satisfying the

additional hypothesis

There exists a constant C < ∞ such that IΛαIΛw ≤ Cw (3.109)

all five conditions are equivalent.

Proof. (b) =⇒ (b′) is trivial, while (b′) =⇒ (a) =⇒ (b) are immediate
consequences of Lemma 3.8.

(a) =⇒ (c) is an immediate consequence of Lemma 3.9, and (c) =⇒ (b)
is trivial, as is (c) =⇒ (c′).

Finally, Lemma 3.10 entails (c′) =⇒ (a) under the hypothesis (3.109). 2

Please note that the hypothesis (3.109) is automatic whenever Λ is a finite

set. On the other hand, the following two examples show that, when Λ is infinite,
hypothesis (3.109) cannot be dispensed with in proving that (c′) =⇒ (a):

Example 3.2. Let X = {0, 1, 2, 3, . . .}; set α0j = 1 for all j ≥ 1, and set all
other matrix elements of α to 0. Set w = 1 and let c be any strictly positive
vector in l1. Now let Λ be any infinite subset of X containing 0. We have

c(IΛαIΛ)kw =





‖c‖1 ∈ (0,∞) for k = 0,

+∞ for k = 1,

0 for k ≥ 2,

(3.110)

so that
∑∞

k=0 c(IΛαIΛ)kw = +∞. On the other hand, if we take f1 = . . . =
fm = χΛ for any m ≥ 2, we have

∑∞
k=0 c(IΛβf1 · · ·βfm

IΛ)kw =
∑∞

k=0 c(IΛα×
IΛ)mkw = ‖c‖1 < ∞. Indeed, we have β`

ΛIΛ = 0 for all ` ≥ 2.

Example 3.3. In the preceding example, one of the components of the vector
IΛαIΛw was +∞. Here is a variant in which the vector IΛαIΛw is pointwise
finite but is not bounded by any multiple of w. Take Λ = X = {x1, x2, x3, . . .}∪
{y1, y2, y3, . . .}; set αxiyj

= 1 if j ≤ i, and set all other matrix elements of α
to 0. Set w = 1 and cxi

= cyi
= 1/i2. Then (αw)xi

= i, (αw)yi
= 0 and

αkw = 0 for k ≥ 2; so (3.110) again holds and the same choice of f1, . . . , fm

provides a counterexample.

We will return to these questions in Section 6, where we will prove a signif-
icant extension of Theorem 3.3 (see Theorem 6.1).

4. Tree approach to balayage

In this section we introduce an alternate approach to studying the algebra
of operators generated by α and the multiplication operators If , which brings
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out more clearly its underlying combinatorial structure and which permits a far-
reaching generalization of the results obtained in the preceding section. This
approach is based on considering the tree of finite sequences of elements of X6.
Another way of phrasing matters is to say that we are working in the algebra
of formal power series in noncommuting indeterminates {αxy}x,y∈X subject to
the relations αxyαuv = 0 whenever y 6= u.

The plan of this section is as follows: In Section 4.1 we introduce the formal-
ism of “markers” and “clouds”, and we analyze its relation with the operator
formalism of Section 3. In particular, we introduce the key operation of convolu-
tion of clouds, which corresponds to multiplication of operators. In Section 4.2
we define clouds to represent each of the special operators α, If , βf and ΠΛ. In
Section 4.3 we introduce a very important partial ordering E on clouds, which
formalizes (roughly speaking) the comparison of operators by their “efficiency
of cleaning”. We study the circumstances under which the partial ordering E

is preserved by convolution from the left or the right, and we introduce several
important subclasses of clouds (B ( P ( R ( S). In Section 4.4 we prove a
fundamental comparison inequality, which substantiates our assertion that the
partial ordering E is related to the efficiency of cleaning. In Section 4.5 we intro-
duce the notion of a cloud being “carried” by a subset Λ, and in Section 4.6 we
introduce the stricter notion of being “Λ-regular”. In Section 4.7 we show that
the cloud πΛ (which is associated to the balayage operator ΠΛ) plays a special
role among Λ-regular clouds, by virtue of its minimality with respect to E. In
Section 4.8 we put all these tools together, and study the convergence of cleaning
operators βh1 · · ·βhn

to ΠΛ. In the cloud context we can shed additional light
on this convergence, by distinguishing convergence of clouds from convergence
of the corresponding operators. In Section 4.9 we prove some further identities
and inequalities that will play a crucial role in the converse results of Section 6.

4.1. Markers, clouds and operators

A nonempty finite sequence η = (x0, x1, . . . , xk) of elements of X will be
called a marker. We denote by X [∞] =

⋃∞
k=0 Xk+1 the set of all markers.

Given a marker η = (x0, x1, . . . , xk), we define

level (η) := k, (4.1)

first (η) := x0, (4.2)

last (η) := xk, (4.3)

ηj
i := (xi, xi+1, . . . , xj). (4.4)

An ancestor (or prefix ) of η is any one of the markers ηj
0 (0 ≤ j ≤ k); we write

η′ 4 η to denote that η′ is an ancestor of η. We write η′ ≺ η to denote that η′ 4 η

6We use the word “tree” even though it turns out to be convenient, in our approach, to
suppress the root of the tree (that is, the empty sequence).
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and η′ 6= η. A child of η is any marker of the form (x0, x1, . . . , xk, xk+1) for some
xk+1 ∈ X . A suffix of η is any one of the markers ηk

j (0 ≤ j ≤ k). A subsequence

of η = (x0, x1, . . . , xk) is any marker of the form η′ = (xj0 , xj1 , . . . , xjl
) for some

choice of indices 0 ≤ j0 < j1 < . . . < jl ≤ k.
A cloud ν = (νη) is a real-valued function on the set X [∞] of markers. [We

shall sometimes write ν(η) as a synonym for νη.] We say that ν has finite support

if νη = 0 for all but finitely many markers η. We say that ν is supported on

levels ≤ N if νη = 0 whenever level(η) > N . We define

‖|ν‖| := sup
η

∑

σ4η

|νσ |, (4.5)

and we say that ν has finite norm if ‖|ν‖| < ∞. The set of clouds of finite norm
forms a Banach space with the norm ‖| · ‖|.

Clouds allow us to give an abstract combinatorial representation of the alge-
bra of operators generated by α and the multiplication operators, independently
of any particular choice of the matrix α. To see this, let us associate to the
marker η = (x0, x1, . . . , xk) the operator

Tη := I{x0}αI{x1}α · · ·αI{xk−1}αI{xk}. (4.6)

[The level of a marker thus corresponds to the number of factors α in the corre-
sponding operator. In physical terms, a marker η = (x0, x1, . . . , xk) represents a
piece of dirt that has traveled from x0 to xk via the path x0 → x1 → . . . → xk.]
More generally, to a cloud ν we associate the operator Tν defined by

Tν :=
∑

η

νηTη. (4.7)

(Initially this formula makes sense only for clouds of finite support, but we will
soon extend the definition to clouds of finite norm.) Conversely, given any finite
sum of operators of the form If0αIf1 · · · Ifk−1

αIfk
, we can expand it out as a

(possibly infinite) sum of terms I{x0}αI{x1} · · · I{xk−1}αI{xk} and thus represent
it in the form Tν for some cloud ν supported on a finite number of levels;
furthermore, ν has finite norm if the functions fi are bounded. Of course, to
make these considerations precise we will have to deal with possibly infinite
sums and specify the exact classes of clouds and operators under consideration.

Proposition 4.1 (Extension of Tν). (FH) Let ν be a cloud of finite support.

Then

‖Tν‖w→w ≤ ‖|ν‖|. (4.8)

Therefore, the definition of the operator Tν can be extended by linearity and

continuity to all clouds of finite norm, and the map ν 7→ Tν is a contraction.
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Proof. Because α has nonnegative entries, it suffices to consider the case in which
νη ≥ 0 for all η. We assume that the cloud ν is supported on levels ≤ N , and we
shall prove the proposition by induction on N . If N = 0, (4.8) is straightforward.
Suppose therefore that N > 0, and consider a vector c = (cx)x∈X . (Again, we
can suppose cx ≥ 0 for all x ∈ X .) We have

‖cTν‖w =
N∑

k=0

∑

η=(x0,...,xk)

νηcx0αx0x1αx1x2 · · ·αxk−1xk
wxk

. (4.9)

In this sum, the contribution of the markers η such that level (η)∈{N −1, N} is

∑

η=(x0,...,xN−1)

cx0αx0x1 · · ·αxN−2xN−1

(
νηwxN−1 +

∑

xN∈X

νη◦xN
αxN−1xN

wxN

)

(4.10)
where η ◦ xN denotes the marker obtained by appending the element xN to η.
Using the Fundamental Hypothesis in the form

∑

xN∈X

αxN−1xN
wxN

≤ wxN−1 , (4.11)

the contribution (4.10) can be bounded by

∑

η=(x0,...,xN−1)

cx0αx0x1 · · ·αxN−2xN−1wxN−1

(
νη + sup

xN∈X
νη◦xN

)
. (4.12)

Thus, we obtain
‖cTν‖w ≤ ‖cTν′‖w (4.13)

where ν′ is the cloud defined by

ν′
η =





0 if level (η) = N,

νη + supxN∈X νη◦xN
if level (η) = N − 1,

νη otherwise.

(4.14)

The cloud ν′ is supported on levels ≤ N − 1 and satisfies ‖|ν ′‖| = ‖|ν‖|; this
completes the proof. 2

Since our goal is to represent combinatorially the algebra of operators gen-
erated by α and the If , we need to introduce an operation on clouds that
corresponds to the multiplication of operators. We do this as follows: Given
two markers η and η′, we say that η leads to η′ (and write η → η′) in case
last (η) = first (η′). If η → η′, we define η ∗ η′ to be the concatenation of η
with η′ with the proviso that the element last (η) = first (η′) is not repeated.
That is, if η = (x0, x1, . . . , xk) and η′ = (y0, y1, . . . , yk′) with xk = y0, then
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η∗η′ := (x0, x1, . . . , xk , y1, . . . , yk′). Note that level (η∗η′) = level (η)+level (η′).
Finally, given clouds ν1 and ν2, we define the convolution ν1 ∗ ν2 by

(ν1 ∗ ν2)(η) =
∑

η1→η2
η1∗η2=η

ν1(η1)ν2(η2). (4.15)

(Note that this convolution is associative but non-commutative.) Since the
sum (4.15) is finite for each η, convolution is well-defined for arbitrary pairs of
clouds ν1, ν2. Moreover, if ν1 and ν2 are of finite support (resp. supported on
finitely many levels), then so is ν1 ∗ ν2. Furthermore, we have:

Proposition 4.2 (Norm boundedness of convolution). Let ν1 and ν2 be

clouds of finite norm. Then

‖|ν1 ∗ ν2‖| ≤ ‖|ν1‖| ‖|ν2‖|. (4.16)

Proof. For any marker η of level k, we have

∑

σ4η

|(ν1 ∗ ν2)(σ)| =

k∑

j=0

|(ν1 ∗ ν2)(η
j
0)| =

k∑

j=0

∣∣∣∣
j∑

i=0

ν1(η
i
0)ν2(η

j
i )

∣∣∣∣

≤
k∑

i=0

k∑

j=i

|ν1(η
i
0)| |ν2(η

j
i )| =

k∑

i=0

|ν1(η
i
0)|

∑

σ4ηk
i

|ν2(σ)|

≤

k∑

i=0

|ν1(η
i
0)| ‖|ν2‖| ≤ ‖|ν1‖| ‖|ν2‖|. (4.17)

2

It is now easily verified that convolution of clouds corresponds to multipli-
cation of operators, i.e.

Tν1∗ν2 = Tν1Tν2 (4.18)

whenever ν1, ν2 are clouds of finite norm. Indeed, this formula is easily seen to be
true for clouds of finite support; it then extends by continuity to clouds of finite
norm as a consequence of Propositions 4.1 and 4.2. Of course, the identity (4.18)
is no accident: we defined convolution so that (4.18) would hold! Note in
particular the importance of the “leads to” relation and the non-repetition of
last (η) = first (η′): these implement the identity I{x}I{y} = δxyI{x}.

4.2. Some special clouds

Let us now define clouds to represent each of the special operators introduced
in Section 2.1.
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Level indicators. For each k ≥ 0, we define a cloud ρk by

(ρk)η =

{
1 if level (η) = k,

0 otherwise.
(4.19)

It is immediate that ‖|ρk‖| = 1 and that Tρk = αk; in particular, Tρ0 = I . Note
also that ρ0 is the two-sided identity for convolution: ρ0 ∗ ν = ν ∗ ρ0 = ν for
every cloud ν. Furthermore, ρk ∗ ρ` = ρk+`.

For any cloud ν, we shall denote its convolution powers by ν∗n (or simply νn),
with the convention that ν∗0 = ρ0. In particular, we have (ρk)∗` = ρk` for all
k, ` ≥ 0.

Clouds associated to multiplication operators. To each function f : X → R,
we associate a cloud that we shall call (by slight abuse of notation) If :

(If )(x0,...,xk) =

{
f(x0) if k = 0,

0 if k ≥ 1.
(4.20)

We also write IΛ as a shorthand for IχΛ . It is easy to verify that ‖|If‖| = ‖f‖∞
and TIf

= If .

Clouds associated to cleaning operators. To each function f : X → [0, 1], we
associate a cloud that we shall call (by slight abuse of notation) βf :

(βf )(x0,...,xk) =





1 − f(x0) if k = 0,

f(x0) if k = 1,

0 if k ≥ 2.

(4.21)

We also write βΛ as a shorthand for βχΛ . It is easy to verify that ‖|βf‖| = 1,
βf = I1−f + If ∗ ρ1 and Tβf

= βf .

Clouds associated to balayage operators. For each Λ ⊆ X , we denote by ∂Λ
the set of markers of the form η = (x0, . . . , xk) [k ≥ 0] for which x0, . . . , xk−1 ∈ Λ
and xk ∈ Λc. We then define a cloud πΛ by

(πΛ)η =

{
1 if η ∈ ∂Λ,

0 otherwise.
(4.22)

It is easy to verify that ‖|πΛ‖| = 1 whenever Λ 6= X , πX = 0, and TπΛ = ΠΛ.
Note also that πΛ ∗ πΛ = πΛ.

Indicator clouds. We denote by 1 the cloud that takes the value 1 on all
markers. More generally, for Λ ⊆ X , we denote by 1Λ the cloud that takes the
values

(1Λ)η =

{
1 if η has all its entries in Λ,

0 otherwise.
(4.23)
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Formally we have

T1 =
∞∑

k=0

αk = (I − α)−1

and

T1Λ = IΛ

∞∑

k=0

(IΛαIΛ)kIΛ = IΛ(I − IΛαIΛ)−1IΛ;

but since ‖|1‖| = ‖|1Λ‖| = ∞ (for Λ 6= ∅), there is no guarantee that these series
converge. The advantage of the tree formalism is that it makes sense to speak
of the clouds 1 and 1Λ without worrying about convergence questions.

4.3. A partial ordering on clouds

The space of clouds is obviously endowed with the “pointwise” partial or-
dering defined by

µ ≤ ν if and only if µη ≤ νη for all η. (4.24)

(In particular, ν ≥ 0 means that a cloud is nonnegative.) We would now like
to introduce a weaker partial ordering that will play an important role in the
sequel; roughly speaking, it formalizes the comparison of operators by their
“efficiency of cleaning”.

To each cloud ν, we associate another cloud ν̃, called its cumulative distri-

bution, defined by

ν̃η =
∑

σ4η

νσ (4.25)

or in other words by
ν̃ = ν ∗ 1. (4.26)

(Note also that ‖|ν‖| = ‖ |̃ν| ‖∞.) We then introduce a partial ordering E on the
space of clouds, defined by:

Definition 4.1 (Definition of E). µ E ν if and only if µ̃ ≤ ν̃, i.e.

µ E ν if and only if µ̃η ≤ ν̃η for all η. (4.27)

Obviously µ ≤ ν implies µ E ν but not conversely.
Let us begin by proving two useful formulae for the cumulative distribution

of a convolution. If η = (x0, . . . , xk) is any marker and σ = (x0, . . . , xj) is
any ancestor of η, we denote by η \\σ the marker (xj , . . . , xk); it is the unique
marker ξ satisfying σ ∗ ξ = η. Also, if η is any marker of level k ≥ 1, we define
η− = ηk−1

0 and η− = ηk
1 . If η is a marker of level 0, we define η− = η− = ∅

(the empty sequence).
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Lemma 4.1 (Cumulative distribution of a convolution). Let µ, ν be clo-

uds. Then

(̃µ ∗ ν) = µ ∗ ν̃ (4.28)

or equivalently

(̃µ ∗ ν)(η) =
∑

σ4η

µ(σ)ν̃(η \\σ) (4.29)

=
∑

σ4η

µ̃(σ)
[
ν̃(η \\σ)− ν̃((η \\σ)−)

]
(4.30)

where in (4.30) we make the convention that ν̃(∅) = 0.

Proof. Identity (4.28) is an immediate consequence of the associativity of con-
volution:

(̃µ ∗ ν) = (µ ∗ ν) ∗ 1 = µ ∗ (ν ∗ 1) = µ ∗ ν̃. (4.31)

(4.29) is just a rewriting of this.
We now insert in (4.29) the identity µ(σ) = µ̃(σ)−µ̃(σ−) with the convention

µ̃(∅) = 0. This yields

(̃µ ∗ ν)(η) =
∑

σ4η

µ̃(σ)ν̃(η \\σ)−
∑

σ4η
level (σ)≥1

µ̃(σ−)ν̃(η \\σ). (4.32)

In the second sum on the right, we make the change of variables ξ = σ− and
observe that η \\σ = (η \\ ξ)− ; this sum therefore becomes

∑

ξ4η−

µ̃(ξ)ν̃((η \\ ξ)−). (4.33)

The term ξ = η can now be adjoined to this sum, thanks to the convention
ν̃(∅) = 0. This proves (4.30). 2

In the special case ν = βh, we have the following formulae:

Lemma 4.2 (Cumulative distribution of βh). Let h : X → [0, 1]. Then

β̃h = 1 − Ih. (4.34)

Proof. From the definition (4.21) we easily obtain

( β̃h )(x0,...,xk) =

{
1 − h(x0) if k = 0,

1 if k ≥ 1,
(4.35)

which is equivalent to (4.34). 2
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Corollary 4.1. (Cumulative distribution of a convolution with βh).
Let µ be a cloud, and let h : X → [0, 1]. Then

µ̃ ∗ βh = µ̃ − µ ∗ Ih (4.36)

or equivalently

(µ̃ ∗ βh)(η) = µ̃(η) − h(last (η))µ(η) (4.37)

= µ̃(η−) + [1 − h(last(η))]µ(η) (4.38)

= h(last (η))µ̃(η−) + [1 − h(last (η))]µ̃(η). (4.39)

Proof. The formula (4.36) is an immediate consequence of (4.28) and (4.34).
The alternate forms (4.37)–(4.39) are trivial rewritings. 2

Corollary 4.2. If µ ≥ 0 and 0 ≤ g ≤ h ≤ 1, then µ∗βh E µ∗βg. In particular,

βh E βg .

Proof. This is an immediate consequence of (4.38). 2

Corollary 4.3 (Convolution from the right by βh). Let µ1, µ2 be clouds

and let 0 ≤ h ≤ 1. If µ1 E µ2, then µ1 ∗ βh E µ2 ∗ βh.

Proof. This is an immediate consequence of (4.39). 2

For general clouds ν, one can obtain an inequality analogous to (4.38):

Corollary 4.4. (Inequality for cumulative distribution of a convolu-
tion). Let µ, ν ≥ 0 be clouds with ‖|ν‖| < ∞. Then, for every marker η,

(̃µ ∗ ν)(η) ≤ µ̃(η−)‖|ν‖| + µ(η)ν
(
(last (η))

)
. (4.40)

Proof. Rewrite (4.29) as

(̃µ ∗ ν)(η) =
∑

σ≺η

µ(σ)ν̃(η \\σ) + µ(η)ν
(
(last (η))

)
. (4.41)

Using ν̃(η \\σ) ≤ ‖|ν‖| in the first term, we obtain (4.40). 2

See Lemma 4.13 below for an interesting application of Corollary 4.4.
It is also useful to know under what conditions a cloud µ is majorized by a

cloud βh. The easy answer is the following:

Lemma 4.3 (Majorization by βh). Let µ ≥ 0 be a cloud and let h : X →
[0, 1]. Then the following are equivalent:



36 T. de la Rue, R. Fernández and A.D. Sokal

(a) µ E βh.

(b) ‖|µ‖| ≤ 1 and µ((x)) ≤ 1 − h(x) for every marker (x) of level 0.

Proof. µ E βh means that µ̃(η) ≤ β̃h(η) for every marker η. By (4.35), this
means precisely that µ((x)) ≤ 1 − h(x) for every x ∈ X and that µ̃(η) ≤ 1 for
all η. 2

Corollary 4.5 (Comparison of βg with βh). Let g, h : X → [0, 1]. Then

βg E βh if and only if g ≥ h.

For the cumulative distribution of βg ∗βh we obtain the following important
identity:

Lemma 4.4 (Collapse identity). Let g, h : X → [0, 1]. Then

β̃g ∗ βh = β̃1−(1−g)(1−h) − Ig ∗ ρ1 ∗ Ih. (4.42)

Proof. We use the Kronecker delta notation δij = 1 if i = j and 0 otherwise.
Let η = (x0, . . . , xk). Then

(β̃g ∗ βh)(η) = β̃g(η
−) + [1 − h(xk)]βg(η)

= 1 − g(x0)δk1 + [1 − h(xk)]
[
[1 − g(x0)]δk0 + g(x0)δk1

]

= 1 − [1 − g(x0)][1 − h(x0)]δk0 − g(x0)h(x1)δk1

= β̃1−(1−g)(1−h)(η) − (Ig ∗ ρ1 ∗ Ih)(η) (4.43)

where the first equality uses (4.38), the second uses (4.35) and the definition
of βg , the third is an easy rewriting, and the fourth again uses (4.35). 2

Corollary 4.6 (Collapse inequality). Let gi : X → [0, 1] for i = 1, . . . , n.

Then

βg1 ∗ · · · ∗ βgn
E β1−

Q

n
i=1(1−gi). (4.44)

Proof. The claim is trivial for n = 1. For n = 2 it follows immediately from the
identity (4.42) and the fact that Ig1 ∗ρ1∗Ig2 ≥ 0. The cases n ≥ 3 can be proven
by an elementary induction using the case n = 2 along with Corollary 4.3. 2

We next need to know under what circumstances the partial ordering E is
preserved by convolution. Convolution from the left is easy:

Proposition 4.3 (Convolution from the left). Let µ, ν1, ν2 be clouds sat-

isfying µ ≥ 0 and ν1 E ν2. Then µ ∗ ν1 E µ ∗ ν2.

Proof. This is an immediate consequence of the formula (4.29). 2
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Physically, Proposition 4.3 says that if ν1 is a better cleaner than ν2, then this
same relation holds if both cleaners are preceded by an arbitrary nonnegative
operation µ.

The behavior of the partial ordering E under convolution from the right
is considerably more subtle; this reflects the fact that the partial ordering be-
tween cleaners is not preserved by arbitrary subsequent nonnegative operations.
Rather, we need to limit the class of subsequent operations that are allowed:

Proposition 4.4 (Convolution from the right). Let ν ≥ 0 be a cloud.

Then the following are equivalent:

(a) For all pairs of clouds µ1, µ2 satisfying µ1 E µ2, we have µ1 ∗ ν E µ2 ∗ ν.

(b) ρk ∗ ν E ν for all k ≥ 0.

(b′) ρ1 ∗ ν E ν.

(c) ν̃η′ ≤ ν̃η whenever η′ is a suffix of η.

(c′) ν̃η′ ≤ ν̃η whenever η is a marker of level k ≥ 1 and η′ = ηk
1 .

Proof. The implications (b) =⇒ (b′) and (c) =⇒ (c′) are trivial, the impli-
cation (c′) =⇒ (c) is easy.

From ρ1 ∗ ν E ν it follows, using Proposition 4.3 and the associativity of
convolution, that

ρk+1 ∗ ν = ρk ∗ (ρ1 ∗ ν) E ρk ∗ ν. (4.45)

Induction on k then gives (b′) =⇒ (b).
Now let η be a marker of level `. By (4.29) we have

˜(ρk ∗ ν)(η) =

{
ν̃(η`

k) if ` ≥ k,

0 if ` < k.
(4.46)

From this, we easily get (b) ⇔ (c) and (b′) ⇔ (c′). Hence (b), (b′), (c) and (c′)
are all equivalent.

The implication (a) =⇒ (b) is also trivial, because ρ0 ∗ ν = ν and ρk E ρ0

for all k ≥ 0.
Finally, (c′) =⇒ (a) is an immediate consequence of (4.30), since (c′)

ensures that the square brackets in (4.30) are always nonnegative. 2

Definition 4.2. We denote by R the class of clouds ν ≥ 0 satisfying any one
(hence all) of the equivalent conditions of Proposition 4.4.

Remark. Given a cloud ν, one can define a “dual” cloud ν∗ by the intertwining
relation (ρ0 − ρ1) ∗ ν = ν∗ ∗ (ρ0 − ρ1) [compare (3.1)]. Convoluting on the right
with 1, we obtain ν∗(η) = ν̃(η) − ν̃(η−). Thus, the “dual” of a nonnegative
cloud ν is nonnegative if and only if ν ∈ R. (Note, however, that (ν∗)∗ 6= ν, so
this is not a true duality.)
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Corollary 4.7 (Multi-monotonicity). For 1 ≤ i ≤ n, let µi, νi ≥ 0 be clouds

satisfying µi E νi and νi ∈ R. Then µ1 ∗ . . . ∗ µn E ν1 ∗ . . . ∗ νn.

Proof. We use the telescoping identity

µ1 ∗ . . . ∗µn − ν1 ∗ . . . ∗ νn =

n∑

i=1

µ1 ∗ . . . ∗µi−1 ∗ (µi − νi) ∗ νi+1 ∗ . . . ∗ νn. (4.47)

By hypothesis, we have µi−νi E 0 for all i. By Proposition 4.3, we can convolve
on the left with µ1 ∗ . . . ∗µi−1; and by Proposition 4.4(a) and Definition 4.2, we
can convolve on the right successively by νi+1, . . . , νn. 2

Remark. In Corollary 4.7, only ν2, . . . , νn really need to belong to R, as we
never convolve on the right with ν1.

Corollary 4.8 (Multi-monotonicity for cleaners). Let 0 ≤ gi ≤ hi ≤ 1
for i = 1, . . . , n. Then

βh1 ∗ · · · ∗ βhn
E βg1 ∗ · · · ∗ βgn

. (4.48)

Proof. An immediate consequence of Corollaries 4.5 and 4.7. 2

We now resume our study of the class R:

Proposition 4.5. The class R forms a multiplicative convex cone. That is,

(a) If µ, ν ∈ R and a, b ≥ 0, then aµ + bν ∈ R.

(b) If µ, ν ∈ R, then µ ∗ ν ∈ R.

Proof. This is immediate from property (a) of Proposition 4.4. 2

We know (Corollary 4.3) that all the clouds βf (0 ≤ f ≤ 1) belong to R,
as do all sums of convolutions thereof. But the latter turn out to constitute a
strictly smaller class, as they satisfy a condition like that of Proposition 4.4(c)
not only for suffixes but also for arbitrary subsequences:

Proposition 4.6. Let µ be a finite sum of clouds of the form aβf1 ∗ . . . ∗ βfn

with n ≥ 0, 0 ≤ f1, . . . , fn ≤ 1 and a ≥ 0. Then µ̃η′ ≤ µ̃η whenever η′ is a

subsequence of η.

Proof. It suffices to prove the result for µ = βf1 ∗ . . . ∗ βfn
. The case n = 0 (i.e.

µ = ρ0) is trivial, so assume n ≥ 1. First we consider the special case in which
each fi = χΛi

. In this case, we have µ̃η = 0 or 1 according to the following rule:

µ̃(x0,...,xk) = 0 ⇐⇒ there exist indices 1 ≤ i0 < . . . < ik ≤ n

such that xj ∈ Λij
for j = 0, . . . , k. (4.49)
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This is easily seen by induction on n: recall that βΛ is supported on levels 0
and 1, with βΛ(x0) = χΛc(x0) and βΛ(x0, x1) = χΛ(x0), so that (4.49) is clear
for n = 1. For n ≥ 2, let µ = βΛ1 ∗ . . .∗βΛn

and ν = βΛ1 ∗ . . .∗βΛn−1 . By (4.39),
we have for η = (x1, . . . , xk)

µ̃η = χΛn
(xk)ν̃ηk−1

0
+ χΛc

n
(xk)ν̃η , (4.50)

from which we can see that if ν satisfies (4.49), then so does µ.
Now, (4.49) obviously implies that if µ̃η = 0 and η′ is a subsequence of η,

then µ̃η′ = 0. This proves the Proposition in the special case fi = χΛi
.

To handle the general case, we note that each function f : X → [0, 1] can be
written in the form

f =
∑

k≥0

akχΛk
(4.51)

where ak ≥ 0,
∑

k ak = 1, and (Λk) is a sequence of (possibly empty) subsets
of X . [One way to get such a decomposition is to use the binary expansion
of f(x),

f(x) =

∞∑

k=1

dk(x)2−k (4.52)

with dk(x) ∈ {0, 1}, and then to set ak := 2−k and Λk := {x ∈ X : dk(x) = 1}.]
From (4.51) together with the fact that βf is affine in f , it follows that each
cloud of the form βf1∗. . .∗βfn

is a convex combination (with a finite or countably
infinite number of terms) of clouds of the form βχΛ1

∗ . . . ∗ βχΛn
. Since the set

of clouds satisfying the conclusion of the Proposition is obviously stable under
convex combination, the proof is complete. 2

Definition 4.3. We denote by B the class consisting of finite sums of clouds of
the form aβf1 ∗ . . . ∗ βfn

with n ≥ 0, 0 ≤ f1, . . . , fn ≤ 1 and a ≥ 0.
We denote by P the class of clouds µ ≥ 0 for which µ̃η′ ≤ µ̃η whenever η′ is

a subsequence of η.

We have just shown that B ⊆ P ⊆ R. The following examples show that
both these inclusions are strict:

Example 4.1. Let |X | ≥ 2 and Λ ⊆ X with Λ 6= ∅, X . Then πΛ ∈ P but πΛ /∈
B. One might worry that this example is somehow “pathological” because πΛ

is not supported on finitely many levels. But the next example avoids this
objection. . .

Example 4.2. Let X = {x, y}, and let µ be the cloud that takes the value 1
on the markers xy, xxx, xxy, yx, yyx and yyy and takes the value 0 elsewhere
(Figure 1). This is a cloud of norm 1, supported on levels ≤ 2. To verify that
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xy

xxy

yy

yyy

x y

xx yx

xxx yyx

Figure 1. The cloud µ in Example 4.2 takes the value 1 (resp. 0) on the markers
indicated by a full (resp. empty) circle. This cloud belongs to P but not to B.

µ ∈ P , it suffices to check that for each η satisfying µ̃η = 0, one has µ̃η′ = 0 for
each subsequence η′ of η. We leave this verification to the reader.

On the other hand, we claim that µ /∈ B. Indeed, suppose that we could
write µ in the form

µ =

n∑

i=1

aiβf
(i)
1

∗ . . . ∗ β
f
(i)
ni

(4.53)

with all ai > 0. Then all markers on which µ takes the value 0 must also be
given mass 0 by the cloud νi := β

f
(i)
1

∗ . . . ∗ β
f
(i)
ni

. Furthermore, it is easily seen

that νi satisfies ν̃i(η) = 1 for each marker η of level ≥ ni (see also Corollary 4.9
below). Since from Figure 1 we see that each marker η has at most one ancestor
lying in the support of µ, we conclude that we must have νi = µ for all i, so
that the right-hand side of (4.53) can be reduced to a single term. We would
then have µ = βf1 ∗ . . .∗βfn

, where we can assume that none of the functions fi

are identically 0. Since µ charges markers of level 2 but no higher, we must
have n = 2; and since µ takes only the values 0 and 1, we must have f1 = χΛ1

and f2 = χΛ2 for some subsets Λ1, Λ2 ⊆ {x, y}. Since µ(xxx) = 1, we must
have x ∈ Λ1 and x ∈ Λ2; likewise, since µ(yyy) = 1, we must have y ∈ Λ1 and
y ∈ Λ2; but then µ should take the value 0 on the marker xy, which it does not.
This proves that µ /∈ B.

Example 4.3. Let X = {x, y}, and let µ be the cloud that takes the value
1 on the markers xx, xyxx, xyxy, xyy, yxx, yxy, yxx and yyy and takes the
value 0 elsewhere (Figure 2). This is a cloud of norm 1, supported on levels
≤ 3. To verify condition (c) of Proposition 4.4, it suffices to check that for
each η satisfying µ̃η = 0, one has µ̃η′ = 0 for each suffix η′ of η. We leave this
verification to the reader. Hence µ ∈ R.
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xy
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yxyyxx yyyyyx

x y

xx yx

Figure 2. The cloud µ in Example 4.3 takes the value 1 (resp. 0) on the markers
indicated by a full (resp. empty) circle. This cloud belongs to R but not to P .

On the other hand, µ does not satisfy the analogous condition for arbitrary
subsequences, because µ̃xyx = 0 while µ̃xx = 1. Hence µ /∈ P .

Proposition 4.7. The class P forms a multiplicative convex cone.

Proof. The only nontrivial fact to prove is the stability under convolution. So
let µ and ν be clouds in P , let η = (y0, . . . , yk) be a marker, and let η′ =
(yi0 , . . . , yir

) (0 ≤ i0 < · · · < ir ≤ k) be a subsequence of η. For j = 0, . . . , r,
we set

σj := η
yij

0 4 η. (4.54)

Then, for each σ 4 η, we set

σ ∩ η′ := (yi0 , . . . , yi`
), (4.55)

where ` is the largest index such that σ` 4 σ.
Observing that each σ′ 4 η′ can be written as σj ∩ η′ for a unique j, we

obtain from (4.30)

(̃µ ∗ ν)(η′) =

r∑

j=0

µ̃(σj ∩ η′)
[
ν̃(η′ \\ (σj ∩ η′)) − ν̃

(
(η′ \\ (σj ∩ η′))−

)]
. (4.56)

Since ν ∈ P ⊆ R, the square brackets in the preceding equation are always
nonnegative. Moreover, since σj ∩ η′ is a subsequence of σj , the fact that µ
belongs to P ensures that

µ̃(σj ∩ η′) ≤ µ̃(σj). (4.57)
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Hence we get

(̃µ ∗ ν)(η′) ≤

r∑

j=0

µ̃(σj)
[
ν̃(η′ \\ (σj ∩ η′)) − ν̃

(
(η′ \\ (σj ∩ η′))−

)]
. (4.58)

On the other hand, the right-hand side can also be written as ˜(µ′ ∗ ν) (η′),
where µ′ is any cloud giving mass µ̃(σj)− µ̃(σj−1) to the marker σj ∩η′ for each
j = 0, . . . , r.

Using now (4.29) and again the hypothesis ν ∈ P , we get

(̃µ ∗ ν)(η′) ≤ ˜(µ′ ∗ ν)(η′) =

r∑

j=0

µ′(σj ∩ η′)ν̃(η′ \\ (σj ∩ η′)) (4.59)

≤

r∑

j=0

µ′(σj ∩ η′)ν̃(η \\σj) =

r∑

j=0

( ∑

σj−1≺σ4σj

µ(σ)
)
ν̃(η \\σj),

where σj−1 ≺ σ means σj−1 4 σ and σj−1 6= σ, and where we set σ−1 := ∅.
But in each term of (4.59), we have ν̃(η \\σj) ≤ ν̃(η \\σ) since ν ∈ P ⊆ R, hence

(̃µ ∗ ν)(η′) ≤
∑

σ4σr

µ(σ)ν̃(η \\σ)

≤
∑

σ4η

µ(σ)ν̃(η \\σ) = (̃µ ∗ ν)(η). (4.60)

2

For any cloud µ ≥ 0 and any marker η, let us define

Mµ(η) := sup
η′ : η4η′

µ̃(η′) (4.61)

(this may possibly be +∞); it is the supremum of the sums of µ over infinite
ascending branches passing through η. Obviously µ̃(η) ≤ Mµ(η) ≤ ‖|µ‖|, and
Mµ(η) is a decreasing function of η with respect to the partial order 4.

The clouds belonging to the class R have a remarkable property:

Proposition 4.8. If µ ≥ 0 belongs to the class R characterized in Proposi-

tion 4.4, then Mµ(η) takes the same value for all markers η.

Corollary 4.9. If µ ≥ 0 belongs to the class R and is supported on levels ≤ N ,

then µ̃(η) takes the same value for all markers η of level ≥ N .

Proof of Proposition 4.8. Let η1 and η2 be any two markers. We can always
find a marker σ satisfying η1 → σ → η2. Then, for each marker η′ such that
η2 4 η′, we have [using property (c) of Proposition 4.4]

µ̃(η′) ≤ µ̃(η1 ∗ σ ∗ η′) ≤ Mµ(η1), (4.62)
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hence
Mµ(η2) ≤ Mµ(η1). (4.63)

Reversing the roles of η1 and η2, we conclude that Mµ(η1) = Mµ(η2). 2

Definition 4.4. For each (finite) real number a ≥ 0, we denote by Sa the class
of clouds µ ≥ 0 satisfying Mµ(η) = a for all markers η. We write S =

⋃
a≥0 Sa.

The class S1 will play a major role in the sequel (Sections 4.5–4.8).
We have just shown that R ⊆ S; let us now show that this inclusion is strict:

Example 4.4. Let X = {x, y}, and let µ be the cloud that takes the value 1
on the markers xx, xyx, xyy and y, and takes the value 0 elsewhere (Figure 3).
Then we have Mµ(η) = 1 for every marker η, but ρ1 ∗ µ 6E µ (consider the
cumulative distributions on the marker xy). So µ ∈ S1 but µ /∈ R.

Proposition 4.9. The class S forms a multiplicative convex cone. More specif-

ically:

(a) If µ ∈ Sa and ν ∈ Sb and s, t ≥ 0, then sµ + tν ∈ Ssa+tb.

(b) If µ ∈ Sa and ν ∈ Sb, then µ ∗ ν ∈ Sab.

Proof. (a) Given µ ∈ Sa, ν ∈ Sb and s, t ≥ 0, we clearly have

Msµ+tν(η) ≤ sa + tb

for any marker η. The reverse inequality is easily obtained by choosing η′ <

η such that
∑

σ4η′ sµ(σ) ≥ sa − ε and then choosing η′′ < η′ such that∑
σ4η′′ tν(σ) ≥ tb − ε.
(b) Equation (4.29) gives, for any marker η,

(̃µ ∗ ν)(η) ≤ b
∑

σ4η

µ(σ) ≤ ab. (4.64)

For the reverse inequality, we first choose η < η such that
∑

σ4η µ(σ) ≥ a − ε.
Observe next using (4.29) that for any η′ < η, we have

(̃µ ∗ ν)(η′) ≥
∑

σ4η

µ(σ)ν̃(η′ \\σ). (4.65)

Now, if level(η) = k, we construct inductively a sequence η 4 η′
0 4 η′

1 4 . . . 4 η′
k

such that ν̃(η′
r \\σ) ≥ b − ε for any σ 4 η with level(σ) ≤ r. Taking η′ = η′

k

in (4.65) gives the desired result. 2

In summary, we have introduced four natural classes of clouds, which are
multiplicative convex cones and satisfy B ( P ( R ( S.
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Figure 3. The clouds µ and ρ1 ∗ µ in Example 4.4 take the value 1 (resp. 0) on
the markers indicated by a full (resp. empty) circle. The cloud µ belongs to S1

but not to R.
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4.4. A fundamental inequality

Let us now substantiate our assertion that the partial ordering E is related
to efficiency of cleaning.

Proposition 4.10 (Fundamental comparison inequality). (FH) Let µ
and ν be clouds of finite norm. If µ E ν, then

Tµw ≤ Tνw. (4.66)

If in addition µ, ν ≥ 0, then one has

‖Tµ‖w→w ≤ ‖Tν‖w→w (4.67)

and, for every vector c ≥ 0,

‖cTµ‖w ≤ ‖cTν‖w. (4.68)

Proof. Because µ and ν have finite norm, Tµw (resp. Tνw) is the pointwise limit
of TµN

w (resp. TνN
w) as N → ∞, where for each N ≥ 0 the cloud µN (resp. νN )

is supported on levels ≤ N and coincides with µ (resp. ν) on these levels. Thus
it is enough to prove the result when both µ and ν are supported on levels ≤ N .
We shall do this by induction on N .

We clearly have (4.66) if N = 0. So let N ≥ 1, and assume that (4.66) holds
whenever µ and ν are supported on levels ≤ N − 1. Now let µ and ν be clouds
supported on levels ≤ N with µ E ν. We can suppose that

ν(η) = 0 whenever level (η) = N ; (4.69)

for if this is not the case, we can simply replace µ and ν with the clouds obtained
by subtracting ν(η) from both µ(η) and ν(η) for each marker η of level N .
Furthermore, we can also suppose that

µ(η) ≥ 0 whenever level (η) = N ; (4.70)

otherwise, for each marker η of level N such that µη < 0, we can replace µη

with 0: the new cloud obtained in this way is still E ν.
Next, we consider the cloud µ′ defined by

µ′(η) =





0 if level (η) = N,

µ(η) + supxN∈X µ(η ◦ xN ) if level (η) = N − 1,

µ(η) otherwise.

(4.71)

Note that the definition of µ′ is the same as (4.14) in the proof of Proposition 4.1,
and a similar calculation using the Fundamental Hypothesis gives

Tµw ≤ Tµ′w. (4.72)
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Now, µ′ and ν are supported on levels ≤ N − 1, and the induction hypothesis
gives

Tµ′w ≤ Tνw. (4.73)

Together these prove (4.66).
Finally, (4.67) and (4.68) are easy consequences of (4.66) in the case of

nonnegative clouds µ, ν and, for the latter, nonnegative dirt vectors c. 2

4.5. Clouds carried by Λ

The following definition will play a fundamental role in our analysis:

Definition 4.5. Let Λ ⊆ X . We say that a cloud µ is carried by Λ in case
µη = 0 for every marker η = (x0, x1, . . . , xk) having at least one index j < k
with xj ∈ Λc.

Physically, this means that µ, interpreted as a cleaning operator (i.e. as
acting by convolution on the right), never sends dirt back into Λ from outside Λ.

Please note that for clouds µ carried by Λ, we have Mµ(η) = µ̃(η) whenever η
has at least one entry outside Λ.

Lemma 4.5. Let Λ ⊆ X . Then:

(a) All clouds If are carried by Λ.

(b) The cloud βf is carried by Λ if and only if supp(f) ⊆ Λ.

(c) The cloud πΛ′ is carried by Λ if and only if either Λ′ ⊆ Λ or Λ′ = X .

(d) If µ and ν are carried by Λ and a, b ∈ R, then aµ + bν is carried by Λ.

(e) If µ and ν are carried by Λ, then µ ∗ ν is carried by Λ.

Proof. (a) The cloud If is nonvanishing only on markers of level 0, and so is
manifestly carried by Λ for any Λ.

(b) The cloud βf is nonvanishing only on markers of levels 0 and 1. For the
latter we have (βf )(x0,x1) = f(x0). It follows that βf is carried by Λ if and only
if f(x) = 0 for all x ∈ Λc.

(c) follows easily from the definitions.
(d) is trivial.
(e) Suppose that (µ ∗ ν)(x0,...,xk) 6= 0. Then there must exist an index j

(0 ≤ j ≤ k) such that µ(x0,...,xj) 6= 0 and ν(xj ,...,xk) 6= 0. But since µ and ν are
carried by Λ, we must have x0, . . . , xj−1 ∈ Λ and xj , . . . , xk−1 ∈ Λ. 2

Clouds carried by Λ satisfy an identity analogous to Lemma 3.1:
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Lemma 4.6. Let Λ ⊆ X , and let µ1, . . . , µn be clouds carried by Λ. Then the

cloud µ1 ∗ . . . ∗ µn ∗ IΛ is supported on markers having all their entries in Λ.

Moreover, if hi : X → R are functions satisfying hi � Λ ≡ 1, then

µ1 ∗ . . . ∗ µn ∗ IΛ = Ih1 ∗ µ1 ∗ . . . ∗ Ihn
∗ µn ∗ IΛ. (4.74)

Proof. By Lemma 4.5, the cloud µ1 ∗ . . . ∗ µn is carried by Λ. It follows that
µ1 ∗ . . .∗µn ∗IΛ can be nonzero only on markers η = (x0, . . . , xk) with all xi ∈ Λ
(0 ≤ i ≤ k). For such η, the presence of the factors Ihi

changes nothing. 2

We also have the following property concerning convolutions with πΛ:

Lemma 4.7. Let Λ ⊆ X , and let µ ≥ 0 be a cloud. Then the following are

equivalent:

(a) µ is carried by Λ.

(b) µ ∗ πΛ is carried by Λ.

Proof. (a) =⇒ (b) follows from Lemma 4.5(c,e).
(b) =⇒ (a): Suppose that µ is not carried by Λ, i.e. that there exists a

marker η = (x0, x1, . . . , xk) and an index j < k such that xj ∈ Λc 6= ∅ and
µ(η) > 0. If xk ∈ Λc, we have (µ ∗ πΛ)(η) ≥ µ(η) > 0; if xk ∈ Λ, we have
(µ ∗ πΛ)(η′) ≥ µ(η) > 0 for η′ = (x0, x1, . . . , xk, y) with any y ∈ Λc; either way
we conclude that µ ∗ πΛ is not carried by Λ. 2

Remark. The implication (b) =⇒ (a) is false if µ is not assumed nonnegative.
To see this, consider X = {x, y} and Λ = {x}, and set µ(yx) = 1, µ(yxky) = −1
for all k ≥ 1, and µ = 0 on all other markers. Then it is not hard to verify that
µ ∗ πΛ = 0. But µ is not carried by Λ.

For certain pairs of clouds carried by Λ, we can prove an inequality going
in the opposite direction to Proposition 4.10, provided that we look only at
markers ending outside Λ; moreover, this inequality holds pointwise. Let us
recall that ∂Λ denotes the set of markers of the form η = (x0, . . . , xk) [k ≥ 0]
for which x0, . . . , xk−1 ∈ Λ and xk ∈ Λc.

Proposition 4.11. Let Λ ⊆ X , and let µ, ν ≥ 0 be clouds carried by Λ. Sup-

pose further that µ̃(η) ≤ ν̃(η) for all markers η ∈ ∂Λ. Then the following are

equivalent:

(a) µ E ν.

(b) µ ∗ If E ν ∗ If for every f satisfying χΛ ≤ f ≤ 1.

(c) µ ∗ IΛ E ν ∗ IΛ.
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(d) µ̃(η) ≤ ν̃(η) for every marker η having all its elements inside Λ.

Moreover, if Λ 6= X and µ̃(η) = ν̃(η) for all η ∈ ∂Λ, then (a)–(d) are equiva-

lent to

(e) µ ∗ IΛc ≥ ν ∗ IΛc .

Proof. Since µ and ν are carried by Λ, the hypothesis implies that µ̃(η) ≤ ν̃(η)
for every marker η having at least one element outside Λ. It follows that (a) is
equivalent to (d).

On the other hand, the inequalities expressing (a)–(c) are all identical when
evaluated on markers η having all their elements in Λ: they simply assert (d).
So we have (b) =⇒ (c) =⇒ (d), and it suffices now to show that (a) implies
the inequality (b) when evaluated on markers η having at least one element
outside Λ. So let η be such a marker, and let σ be its unique ancestor in ∂Λ.
Then

˜(µ ∗ If )(η) = ˜(µ ∗ If )(σ) = µ̃(σ−) + f(last (σ))µ(σ)

= [1 − f(last (σ))]µ̃(σ−) + f(last (σ))µ̃(σ)

and likewise for ν. [Recall that if η = (x0, . . . , xk), then η− := (x0, . . . , xk−1).]
It follows, by taking a convex combination of inequalities, that (a) implies (b).

Since µ is carried by Λ, the cloud µ∗ IΛc is supported on ∂Λ, and for η ∈ ∂Λ
we have

(µ ∗ IΛc)(η) = µ̃(η) − µ̃(η−) (4.75)

and likewise for ν. If µ̃(η) = ν̃(η) for all η ∈ ∂Λ, then (e) is equivalent to

µ̃(η−) ≤ ν̃(η−) (4.76)

for all η ∈ ∂Λ. But since Λ 6= X , every marker σ with all its elements in Λ is of
the form η− for some η ∈ ∂Λ, so this is equivalent to (d). 2

Corollary 4.10. Let Λ ⊆ X , and let µ, ν ≥ 0 be clouds carried by Λ and

belonging to the class Sa (cf. Definition 4.4) for the same constant a. If µ E ν,

then

(i) µ ∗ IΛc ≥ ν ∗ IΛc ,

(ii) µ ∗ If E ν ∗ If for every f satisfying χΛ ≤ f ≤ 1.

This is an immediate consequence of Proposition 4.11 together with the
definition of Sa, which entails that Mµ(η) = Mν(η) = a for all markers η.
Corollary 4.10 applies in particular (with a = 1) if µ and ν are of the form
βh1 ∗ . . . ∗ βhn

with all supp(hi) ⊆ Λ.
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4.6. Λ-regular clouds

Definition 4.6. We say that cloud µ ≥ 0 is Λ-regular in case it satisfies the
following two conditions:

µ̃(η) ≤ 1 for all markers η [i.e. ‖|µ‖| ≤ 1], (4.77)

µ̃(η) = 1 for all η ∈ ∂Λ. (4.78)

Lemma 4.8. Let Λ ⊆ X , and let µ ≥ 0 be a cloud.

(a) If Λ 6= X , then µ is Λ-regular if and only if it is carried by Λ and belongs

to the class S1.

(b) If Λ = X , then µ is Λ-regular if and only if ‖|µ‖| ≤ 1.

Proof. (a) If µ ∈ S1, then (4.77) clearly holds. If, in addition, µ is carried by Λ,
we have µ̃(η) = Mµ(η) = 1 whenever η has at least one element outside Λ, so
that (4.78) holds.

Conversely, suppose that µ is Λ-regular and that Λ 6= X . If η has all its
entries in Λ, then it is a proper ancestor of some σ ∈ ∂Λ (since Λ 6= X), and
we have Mµ(η) ≥ µ̃(σ) = 1. If η has at least one entry outside Λ, then it has a
(unique) marker σ ∈ ∂Λ as an ancestor, in which case Mµ(η) ≥ µ̃(η) ≥ µ̃(σ) = 1.
On the other hand, by (4.77) we always have Mµ(η) ≤ 1, hence Mµ(η) = 1
for all η and thus µ ∈ S1. Finally, if η has some proper ancestor σ ∈ ∂Λ,
then (4.77), (4.78) imply 1 ≥ µ̃(η) ≥ µ(η) + µ̃(σ) = µ(η) + 1, hence µ(η) = 0,
so that µ is carried by Λ.

(b) If Λ = X , the condition (4.78) is empty. 2

Corollary 4.11. Let Λ ⊆ X . Then:

(a) The cloud ρ0 (indicator of level 0) is Λ-regular.

(b) The cloud βf is Λ-regular if and only if supp(f) ⊆ Λ.

(c) The cloud πΛ′ is Λ-regular if and only if Λ′ ⊆ Λ.

(d) If µ and ν are Λ-regular, then µ ∗ ν is Λ-regular.

Proof. This is an immediate consequence of Lemma 4.8 along with Proposi-
tion 4.9 and Lemma 4.5; for part (c) one has to think separately about the
cases in which Λ and/or Λ′ is equal or not equal to X . 2

Corollary 4.12. Let Λ ⊆ X , and let µ be a Λ-regular cloud. Then

IΛc ∗ µ = IΛc , (4.79)

IΛ ∗ µ ∗ IΛ = µ ∗ IΛ. (4.80)
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Proof. We begin by proving (4.79). The claim is trivial if Λ = X , so assume
Λ 6= X . By Lemma 4.8, µ is carried by Λ, so it must vanish on all markers of
the form (x0, . . . , xk) with x0 ∈ Λc and k ≥ 1. But then, since µ belongs to S1,
it must give mass 1 to each marker of the form (x0) with x0 ∈ Λc.

(4.80) follows from (4.79) by convoluting on the right with IΛ and rearrang-
ing. 2

Corollary 4.13. Let Λ ⊆ X , and let µ, ν be Λ-regular clouds. If µ E ν, then

(i) µ ∗ IΛc ≥ ν ∗ IΛc .

(ii) µ ∗ If E ν ∗ If for every f satisfying χΛ ≤ f ≤ 1.

Proof. If Λ 6= X , this is an immediate consequence of Lemma 4.8 and Corol-
lary 4.10. If Λ = X , the claims are trivially true. 2

4.7. Comparison of Tµ with ΠΛ

We recall that the cloud πΛ, which is the indicator of ∂Λ, is associated to
the operator ΠΛ. This cloud plays a special role among Λ-regular clouds, by
virtue of its minimality with respect to E :

Lemma 4.9. Let Λ ⊆ X , and let µ be a Λ-regular cloud. Then:

(a) µ ∗ IΛc ≤ πΛ E µ E ρ0.

(b) If Λ 6= X and µ is supported on levels ≤ N , then πΛ E βN
Λ E µ.

Proof. (a) Let µ be any Λ-regular cloud and let η be any marker. Then either
there exists σ 4 η with σ ∈ ∂Λ, in which case µ̃(η) and π̃Λ(η) are both equal
to 1; or else there does not exist such a σ, in which case π̃Λ(η) = 0 ≤ µ̃(η). This
proves that πΛ E µ. Then, Corollary 4.13 gives µ ∗ IΛc ≤ πΛ ∗ IΛc = πΛ. The
inequality µ E ρ0 is trivial.

(b) Corollary 4.11(b,d) shows that βN
Λ is Λ-regular, so the relation πΛ E βN

Λ

follows from (a). For the second inequality, observe first that for each marker η
of level ≤ N , we have βN

Λ (η) = πΛ(η), hence

β̃N
Λ (η) = π̃Λ(η) ≤ µ̃(η), (4.81)

where the last inequality again uses (a). On the other hand, if level(η) > N ,
since βN

Λ and µ are Λ-regular clouds supported on levels ≤ N , we always have

β̃N
Λ (η) = 1 = µ̃(η), (4.82)

where the last inequality uses µ ∈ S1 from Lemma 4.8(a). This proves that
βN

Λ E µ. 2
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Lemma 4.10. Let Λ ⊆ X , and let µ ≥ 0 be a cloud. Consider the following

statements:

(a) µ is Λ-regular.

(b) µ ∗ πΛ = πΛ.

(c) πΛ ∗ µ = πΛ.

Then (a) implies both (b) and (c); and if Λ 6= X , then (b) implies (a) as well.

Proof. Suppose first that µ is Λ-regular. Then by Lemma 4.9, we have πΛ E

µ E ρ0. Since πΛ ∈ R, we can right-convolute this inequality with πΛ to obtain
πΛ E µ∗πΛ E πΛ (since πΛ∗πΛ = πΛ), thus proving (b). Likewise, since πΛ ≥ 0,
we can left-convolute with πΛ to prove (c).

Now suppose that µ ∗ πΛ = πΛ. By Lemma 4.7 we deduce that µ is carried
by Λ. Moreover, if η ∈ ∂Λ, we have

1 = πΛ(η) = (µ ∗ πΛ)(η) =
∑

σ4η

µ(σ)πΛ(η \\σ) =
∑

σ4η

µ(σ) = µ̃(η). (4.83)

When Λ 6= X , it easily follows that µ is Λ-regular. 2

Remark. The implication (c) =⇒ (a) is false when Λ 6= ∅: consider, for
instance, µ = IΛc . Indeed, (c) does not even imply that µ is carried by Λ:
consider, for instance, µ = IΛc + IΛ ∗ ρ1 ∗ IΛc ∗ ρ1.

We now examine the deviation µ−πΛ, and prove analogues of Proposition 3.6
and Lemma 3.5:

Lemma 4.11 (Comparison with πΛ). (FH) Let µ be a Λ-regular cloud.

Then:

(a) The cloud µ − πΛ can be decomposed in the form

µ − πΛ = (µ − πΛ) ∗ IΛ + (µ − πΛ) ∗ IΛc (4.84)

= µ ∗ IΛ − (πΛ − µ ∗ IΛc) (4.85)

= µ ∗ IΛ − µ ∗ IΛ ∗ πΛ (4.86)

where

(i) µ ∗ IΛ is nonnegative and is supported on markers all of whose entries are

in Λ;

and

(ii) πΛ−µ∗IΛc is nonnegative, is E µ∗IΛ, and is supported on markers in ∂Λ.
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(b) For any vector c ≥ 0, we have

‖c(Tµ − ΠΛ)‖w = ‖cTµIΛ‖w + ‖c(ΠΛ − TµIΛc)‖w ≤ 2‖cTµIΛ‖w. (4.87)

(c) We have

‖Tµ − ΠΛ‖w→w ≤ 2‖TµIΛ‖w→w. (4.88)

Proof. (a) The equalities (4.84), (4.85) are trivial, and (4.86) follows by using
Lemma 4.10: πΛ −µ ∗ IΛc = µ ∗πΛ −µ ∗ IΛc ∗πΛ = µ ∗ IΛ ∗πΛ. The inequalities
0 ≤ πΛ − µ ∗ IΛc E µ ∗ IΛ are an immediate consequence of Lemma 4.9(a).

(b) The equality is an immediate consequence of the identity, sign and sup-
port properties from part (a). The inequality comes from 0 ≤ πΛ−µ∗IΛc E µ∗IΛ

together with Proposition 4.10.
(c) For a general vector c, we can always write

‖c(Tµ − ΠΛ)‖w ≤ ‖ |c| |Tµ − ΠΛ| ‖w (4.89)

= ‖ |c|TµIΛ‖w + ‖ |c|(ΠΛ − TµIΛc)‖w,

and the result then follows from part (b). 2

Proposition 4.12 (Comparison of cleaners). (FH) Let µ and ν be Λ-regu-

lar clouds, with µ E ν. Then:

(a) We have

µ ∗ IΛ E ν ∗ IΛ, (4.90)

µ ∗ IΛc ≥ ν ∗ IΛc , (4.91)

πΛ − µ ∗ IΛc ≤ πΛ − ν ∗ IΛc . (4.92)

(b) For any vector c ≥ 0, we have

‖c(Tµ − ΠΛ)‖w ≤ ‖c(Tν − ΠΛ)‖w, (4.93)

cTµIΛc ≥ cTνIΛc . (4.94)

Proof. (a) is a restatement of Corollary 4.13. (b) then follows by using the
equality in (4.87) together with Proposition 4.10, exploiting the nonnegativity
of all the operators in question. 2

Proposition 4.13 (Comparison of cleaning sequences). Let (µn)n≥1 and

(νn)n≥1 be sequences of nonnegative clouds, with µn Λ-regular and µn E νn

for all n. If νn converges pointwise to πΛ [ i.e. limn→∞ νn(η) = πΛ(η) for all

markers η ], then µn also converges pointwise to πΛ.
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Proof. Since µn E νn, we have µ̃n ≤ ν̃n. The pointwise convergence of νn to πΛ

is equivalent to the pointwise convergence of ν̃n to π̃Λ, where

π̃Λ(η) =

{
0 if η has all its entries in Λ,

1 otherwise
(4.95)

(that is, π̃Λ = 1− 1Λ). Hence µ̃n(η) → 0 if η has all its entries in Λ; and for all
other markers η we have µ̃n(η) = 1 for all n by Λ-regularity. Hence µ̃n → π̃Λ,
i.e. µn → πΛ. 2

4.8. Convergence of cleaning operators

We are now ready to study the convergence of cleaning operators βh1 · · ·βhn

to ΠΛ, analogously to what was done in Section 3.5. But in the cloud context
we can shed additional light on this convergence by dividing our analysis into
two parts:

(1) Let (µn)n≥1 be a sequence of clouds that converges, in some suitable
topology, to a limiting cloud µ∞. Under what conditions can we show that
the operators Tµn

converge, in some correspondingly suitable topology,
to Tµ∞

?

(2) Consider the special case µn = βh1 ∗ . . . ∗ βhn
. Under what conditions

on the sequence (hn) does µn converge to πΛ in the topology needed in
part (1)?

We shall carry out this two-part analysis in two versions:

(a) Pointwise convergence µn → µ∞ entails vector-norm convergence Tµn
→

Tµ∞
.

(b) Uniform-on-levels convergence µn → µ∞ entails operator-norm conver-
gence Tµn

→ Tµ∞
.

In each case we shall require, as was done in Section 3.5, that (IΛαIΛ)k → 0 in
a suitable topology.

4.8.1. Pointwise (vector-norm) version

We begin with the pointwise (vector-norm) version of the convergence theo-
rems. So let (µn)n≥1 be a sequence of clouds such that, for each marker η, the
sequence µn(η) converges to a limit µ∞(η). In order to control the convergence
of the Tµn

, we shall assume that all the clouds µn are Λ-regular (for some fixed
set Λ ⊆ X). It is immediate from Definition 4.6 that the limiting cloud µ∞ is
likewise Λ-regular.
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Theorem 4.1. (Convergence theorem, pointwise version). (FH) Let

(µn)n≥1 be a sequence of Λ-regular clouds satisfying, for each marker η,

µn(η) −→
n→∞

µ∞(η). (4.96)

Then, for any vector c ≥ 0 with cIΛ ∈ l1(w) and satisfying

‖c(IΛαIΛ)k‖w −→
k→∞

0, (4.97)

we have

‖c(Tµn
− Tµ∞

)‖w −→
n→∞

0. (4.98)

The proof of Theorem 4.1 will be based on the following lemma:

Lemma 4.12. Let µ and ν be Λ-regular clouds. Then

|µ − ν| E 2|µ − ν| ∗ IΛ. (4.99)

Proof. We shall prove that

|µ − ν| ∗ IΛc E |µ − ν| ∗ IΛ, (4.100)

which is obviously equivalent to (4.99). Since µ is Λ-regular, µ ∗ IΛc charges
only markers in ∂Λ, and for σ ∈ ∂Λ we have

(µ ∗ IΛc)(σ) = µ(σ) = 1 −
∑

σ′≺σ

µ(σ′) = 1 − ˜(µ ∗ IΛ)(σ). (4.101)

The same result also holds for ν, so that any marker σ ∈ ∂Λ we have

(|µ − ν| ∗ IΛc )(σ) ≤ ˜(
|µ − ν| ∗ IΛ

)
(σ). (4.102)

Now, for any marker η, either η has all its entries lying in Λ, in which case

˜(
|µ − ν| ∗ IΛc

)
(η) = 0 ≤ ˜(

|µ − ν| ∗ IΛ

)
(η), (4.103)

or else there exists a unique σ 4 η with σ ∈ ∂Λ, and then we have

˜(
|µ − ν| ∗ IΛc

)
(η) = (|µ − ν| ∗ IΛc)(σ) (4.104)

≤ ˜(
|µ − ν| ∗ IΛ

)
(σ) ≤ ˜(

|µ − ν| ∗ IΛ

)
(η).

2
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Proof of Theorem 4.1. Fix any ε > 0, and choose k so that

‖c(IΛαIΛ)k‖w ≤ ε. (4.105)

It is easy to see that for all j ≥ 1 we have

(IΛ ∗ ρ1 ∗ IΛ)j+1 E (IΛ ∗ ρ1 ∗ IΛ)j E . . . E IΛ; (4.106)

therefore, by Proposition 4.10, the sequence (‖c(IΛαIΛ)jIΛ‖w)j≥0 is decreasing.
In particular, the hypothesis cIΛ ∈ l1(w) ensures that all these quantities are
finite. Therefore we can find a finite subset Λ′ ⊆ Λ such that for every j in the
interval 0 ≤ j ≤ k we have

‖c(IΛαIΛ)jIΛ\Λ′‖w ≤ ε/(k + 1). (4.107)

Using Lemma 4.12 and Proposition 4.10, we get

‖c(Tµn
− Tµ∞

)‖w ≤ ‖cT|µn−µ∞|‖w ≤ 2‖cT|µn−µ∞|IΛ‖w. (4.108)

Furthermore, by the Λ-regularity of µn and µ∞, the cloud |µn−µ∞|∗IΛ charges
only markers with all their entries lying in Λ. Let us now divide the set of such
markers into three classes as follows:

Class 1: Markers of level ≤ k with all their entries lying in Λ′.

Class 2: Markers of level ≤ k with at least one entry lying in Λ \ Λ′.

Class 3: Markers of level > k.

We can then decompose any cloud µ∗ ∗ IΛ (µ∗ = µn or µ∞) in the form
µ1
∗ + µ2

∗ + µ3
∗ so that µi

∗ charges only markers of class i. The triangle inequality
yields

‖cT|µn−µ∞|IΛ‖w ≤‖cT|µ1
n−µ1

∞
|‖w + ‖cTµ2

n
‖w + ‖cTµ2

∞

‖w (4.109)

+ ‖cTµ3
n
‖w + ‖cTµ3

∞

‖w,

and we will now bound these contributions separately as follows:

Class 1. Since class 1 is a finite set of markers, condition (4.96) ensures that
‖cT|µ1

n−µ1
∞

|‖w can be bounded by ε if n has been chosen large enough.

Class 2. We compare the cloud µ2
∗ (which stands for either µ2

n or µ2
∞) with

the cloud

ν2 :=
k∑

j=0

(IΛ ∗ ρ1 ∗ IΛ)j ∗ IΛ\Λ′ . (4.110)
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For each marker η, either there exists some σ 4 η with σ ∈ ∂Λ′ and level(σ) ≤ k,

in which case ν̃2(η) = 1 ≥ µ̃2
∗(η), or else µ̃2

∗(η) = 0 (remember that µ2
∗ charges

only markers of class 2). Hence, we have

µ2
∗ E ν2. (4.111)

Then, Proposition 4.10 and (4.107) together give

‖cTµ2
∗

‖w ≤

k∑

j=0

‖c(IΛαIΛ)jIΛ\Λ′‖w ≤ ε. (4.112)

Class 3. The cloud µ3
∗ (standing for µ3

n or µ3
∞) satisfies

µ3
∗ E (IΛ ∗ ρ1 ∗ IΛ)k. (4.113)

Applying again Proposition 4.10 gives, by (4.105),

‖cTµ3
∗

‖w ≤ ‖c(IΛαIΛ)k‖w ≤ ε. (4.114)

2

Example 4.5. It is natural to ask whether the hypothesis of Λ-regularity in
Theorem 4.1 can be weakened to assuming that the µn are carried by Λ, with
‖|µn‖| = 1 for all n (or even ‖|µn‖| uniformly bounded). The answer is no, at
least when Λc is infinite and Λ 6= 0: it suffices to choose x0 ∈ Λ and a sequence
of distinct elements y1, y2, . . . ∈ Λc, and to let µn be the cloud taking the value 1
on the marker (x0yn) and 0 on all other markers. Then µn → 0 pointwise; but
if we take c = δx0 , w = 1 and α = (1/2)I , we have ‖cTµn

‖w = 1/2 for all n. So
the role played by Lemma 4.12 in handling markers ending in Λc is apparently
crucial.

Here is one natural context in which a sequence of clouds (µn) has a point-
wise limit µ∞: Suppose that (µn) is a sequence of nonnegative clouds that is
decreasing in the sense of E, i.e.

. . . E µn+1 E µn E . . . E µ1. (4.115)

Then for each marker η the sequence µ̃n(η) is decreasing and bounded below
by 0, hence has a limit. Since µn(η) = µ̃n(η) − µ̃n(η−), we deduce that for
each η the sequence µn(η) converges as well, to a limit which we call µ∞(η).

In particular, we get a sequence of Λ-regular clouds satisfying (4.115) by
considering

µn := βh1 ∗ . . . ∗ βhn
, (4.116)

where (hn)n≥1 is a sequence of functions taking values in [0, 1] and supported
on Λ. We are mainly interested in the case where the limit µ∞ of the se-
quence (4.116) is equal to πΛ. The following proposition gives a necessary and
sufficient condition on the functions (hn) for this to happen:
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Proposition 4.14. (Conditions on cleaning sequences, pointwise ver-
sion). Let (hn)n≥1 be a sequence of functions satisfying 0 ≤ hn ≤ χΛ, and

define

µn := βh1 ∗ . . . ∗ βhn
. (4.117)

Then µn converges pointwise to πΛ if and only if

∞∑

n=1

hn = ∞ on Λ. (4.118)

Proof. Let us prove first that the condition (4.118) is necessary. Suppose that
there exists x ∈ Λ such that

∞∑

n=1

hn(x) < ∞, (4.119)

and let N be an integer such that

∑

n>N

hn(x) < 1. (4.120)

We first claim that we can find a marker η with last (η) = x such that µN (η) > 0.
Indeed, since µN is supported on finitely many levels, let us choose a marker σ
of maximum level with µN (σ) > 0. Then every marker η obtained from σ by
changing its last entry — in particular the one with last(η) = x — satisfies
µN (η) = µN (σ) > 0 (this is a consequence of the fact that µN ∈ S1).

Now, for each n > N , we have

µn(η) = (µN ∗ βhN+1 ∗ . . . ∗ βhn
)(η) (4.121)

≥ µN (η)
(
1 − hN+1(x)

)
· · ·

(
1 − hn(x)

)
≥ µN (η)

(
1 −

∞∑

k=N+1

hk(x)

)
.

It follows that
µn(η) 6−→

n→∞
0 = πΛ(η). (4.122)

This proves the necessity of (4.118).
Conversely, assume that (4.118) is satisfied, and let us prove that µ∞ = πΛ.

Since each µn is Λ-regular, it is enough to verify that for each marker η =
(y0, . . . , yk) with all yj ∈ Λ, we have

µn(η) −→
n→∞

0. (4.123)

We fix such a marker and set

Λ′ := {y0, . . . , yk}. (4.124)
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Now, let N be a large enough integer (to be made precise later). Hypothe-
sis (4.118) ensures that if n is large enough, we can find indices 0 = n0 <
n1 < . . . < nN = n such that for each j = 1, . . . , N and each y ∈ Λ′, we have

1 −

nj∏

i=nj−1+1

hi(y) >
1

2
. (4.125)

Then Corollaries 4.8 and 4.6 imply that

µn E β1−
Qn1

i=n0+1(1−hi)
∗ · · · ∗ β1−

QnN
i=nN−1+1(1−hi)

E (βh)∗N , (4.126)

where

h :=
1

2
χΛ′ . (4.127)

Hence

µ̃n(η) ≤ ˜(βh)∗N (η). (4.128)

But an easy induction shows that for each j = 0, . . . , k, we have

(βh)∗N (y0, . . . , yj) = 2−N

(
N

j

)
−→

N→∞
0. (4.129)

Thus, µn(η) can be made arbitrarily small if we take N large enough. 2

Combining Theorem 4.1 and Proposition 4.14, we obtain Theorem 3.2 as an
immediate corollary.

We can also obtain, as an easy corollary of Proposition 4.14, the following
generalization of it:

Corollary 4.14 (Cleaning by clouds). Let (νn)n≥1 be a sequence of Λ-re-

gular clouds satisfying

∞∑

n=1

[1 − νn((x))] = ∞ for all x ∈ Λ. (4.130)

Then ν1 ∗ . . . ∗ νn converges pointwise to πΛ.

Conversely, if ν1 ∗ . . . ∗ νn converges pointwise to πΛ and the (νn)n≥1 are

all supported on finitely many levels and belong to S1 (this last is automatic if

Λ 6= X), then (4.130) holds.

Proof. Define hn(x) = 1 − νn((x)). By Lemma 4.3 we have νi E βhi
. By

Corollary 4.7 we have ν1 ∗ . . .∗νn E βh1 ∗ . . .∗βhn
. The result then follows from

Propositions 4.14 and 4.13.
The converse holds under the specified conditions, by exactly the same proof

as in Proposition 4.14. 2
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Remark. For the converse, the hypothesis that the (νn)n≥1 be supported on
finitely many levels (and belong to S1 if Λ = X) is essential: a counterexample
is ν1 = πΛ, ν2 = ν3 = · · · = I .

We can also weaken the condition on the sequence (νn) if we look only at
the dust that stays inside Λ:

Corollary 4.15. (Generalized cleaning by clouds, behavior inside Λ).
Let (νn)n≥1 be a sequence of nonnegative clouds that are carried by Λ and

satisfy ‖|νn‖| ≤ 1 and

∞∑

n=1

[1 − νn((x))] = ∞ for all x ∈ Λ. (4.131)

Then ν1 ∗ . . . ∗ νn ∗ IΛ converges pointwise to zero.

Proof. Note first that, by Lemma 4.6, the cloud ν1 ∗ . . . ∗ νn ∗ IΛ is supported
on markers having all their entries in Λ. Now define hn(x) = 1− νn((x)); again
by Lemma 4.3 we have νi E βhi

, and by Corollary 4.7 we have ν1 ∗ . . . ∗ νn E

βh1 ∗ . . . ∗ βhn
. By Proposition 4.14, we have βh1 ∗ . . . ∗ βhn

→ πΛ pointwise, so
that

˜(βh1 ∗ . . . ∗ βhn
)(η) → 0 (4.132)

for all markers η having all their entries in Λ. Since ν1 ∗ . . .∗νn E βh1 ∗ . . .∗βhn
,

it follows that, for such markers,

˜(ν1 ∗ . . . ∗ νn)(η) → 0 (4.133)

and hence also (ν1 ∗ . . . ∗ νn)(η) → 0. 2

Remark. Here there is no converse: one could take, for instance, ν1 = IΛc and
ν2 = ν3 = · · · = I .

4.8.2. Uniform (operator-norm) version

Let us now consider the uniform (operator-norm) version of the convergence
theorems. We shall assume that µn converges to µ∞ uniformly on all markers
of a given level, i.e.

sup
level(η)=`

|µn(η) − µ∞(η)| −→
n→∞

0 (4.134)

for each ` ≥ 0. In this case it is not necessary to assume that the µn are Λ-
regular; it suffices to assume that they are carried by Λ and uniformly bounded
in norm.
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Theorem 4.2. (Convergence theorem, uniform version). (FH) Let

(µn)n≥1 be a sequence of clouds carried by Λ and satisfying a uniform bound

‖|µn‖| ≤ M < ∞. Suppose further that

µn(η) −→
n→∞

µ∞(η) uniformly for all η of a given level (4.135)

and that

‖(IΛαIΛ)k‖w→w −→
k→∞

0. (4.136)

Then

‖Tµn
− Tµ∞

‖w→w −→
n→∞

0. (4.137)

Proof. We proceed as in the proof of Theorem 4.1, but here the reasoning is
much simpler since the uniform-convergence hypothesis (4.135) allows us to
avoid the introduction of the subset Λ′. We begin by observing that µ∞ is
carried by Λ and satisfies

‖|µ∞‖| ≤ lim inf
n→∞

‖|µn‖| ≤ M. (4.138)

Now fix any ε > 0, and choose k so that

‖(IΛαIΛ)k‖w→w ≤ ε/M. (4.139)

We divide the set of all markers into two classes:

Class 1: Markers of level ≤ k.

Class 2: Markers of level > k.

We decompose any cloud µ∗ (µ∗ = µn or µ∞) in the form µ1
∗ + µ2

∗ so that µi
∗

charges only markers of class i. The triangle inequality yields

‖Tµn−µ∞
‖w→w ≤ ‖T|µ1

n−µ1
∞

|‖w→w + ‖T|µ2
n|‖w→w + ‖T|µ2

∞
|‖w→w, (4.140)

and these contributions may be bounded separately as follows:
Class 1. The cloud |µ1

n −µ1
∞| charges only markers of level ≤ k. By (4.135),

if n is large enough we have

|µ1
n − µ1

∞| ≤
ε

k + 1
(ρ0 + ρ1 + · · · + ρk), (4.141)

so that ‖| |µ1
n − µ1

∞| ‖| ≤ ε. Therefore, by Proposition 4.1, ‖T|µ1
n−µ1

∞
|‖w→w ≤ ε

as well.
Class 2. Since µ∗ (= µn or µ∞) is carried by Λ, any marker η = (x0, . . . , x`)

charged by µ2
∗ must have ` > k and x0, . . . , xk ∈ Λ. Since ‖|µ∗‖| ≤ M , it follows

that
|µ2

∗| E M(IΛ ∗ ρ1 ∗ IΛ)k. (4.142)

By Proposition 4.10 we have ‖T|µ2
∗
|‖w→w ≤ M‖(IΛαIΛ)k‖w→w ≤ ε by (4.139).

2
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In the uniform case we have the following analogue of Proposition 4.14:

Proposition 4.15. (Conditions on cleaning sequences, uniform ver-
sion). Let (hn)n≥1 be a sequence of functions satisfying 0 ≤ hn ≤ χΛ, and

define

µn := βh1 ∗ . . . ∗ βhn
. (4.143)

Then the following are equivalent:

(a) µn converges uniformly-on-levels to πΛ.

(b)
∑n

i=1 hi converges uniformly (as n → ∞) to +∞ on Λ.

(b′) There exist δ > 0 and a sequence 0 = n0 < n1 < n2 < . . . satisfying

nj∑

i=nj−1+1

hi ≥ δχΛ (4.144)

for all j.

(b′′) For all δ < ∞, there exists a sequence 0 = n0 < n1 < n2 < . . . satisfy-

ing (4.144) for all j.

Proof. Since the hi are bounded, it is easy to see that (b), (b′) and (b′′) are all
equivalent.

The proof of (b′′) =⇒ (a) is a straightforward adaptation of the corre-
sponding proof in Proposition 4.14. Indeed, we want to show here that the
convergence (4.123) holds uniformly for all markers of a given level. With the
hypothesis (b′′), we can repeat the end of the proof of Proposition 4.14 with
Λ′ = Λ instead of (4.124), which gives the result.

Conversely, let us prove that (a) =⇒ (b). Suppose that
∑n

i=1 hi does not
converge uniformly to +∞ on Λ. Then there exists M < ∞ such that, for any
n ≥ 1, we can find x ∈ Λ with

n∑

i=1

hi(x) < M. (4.145)

For such n and x, we consider the markers η whose entries are all equal to x,
and we denote by ηk the only such marker that lies on level k. For 0 ≤ j ≤ n
and k ≥ 0, let us define

pj(k) := µj(ηk), (4.146)

where µ0 := ρ0. We have p0(0) = 1, p0(k) = 0 for each k > 0, and for j ≥ 1

pj(k) = [1 − hj(x)]pj−1(k) + hj(x)pj−1(k − 1). (4.147)
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(The preceding equation holds also for k = 0 if for each j we set pj(−1) := 0.)
Observe that for each j we always have

∑
k pj(k) = 1. Let us introduce the

barycenter

Gj :=
∑

k

kpj(k). (4.148)

We obviously have G0 = 0, and a direct calculation gives, for j ≥ 1,

Gj = Gj−1 + hj(x). (4.149)

Therefore, we have

Gn =
n∑

j=1

hj(x) < M. (4.150)

By the Markov inequality, this implies that

2M∑

k=0

µn(ηk) =

2M∑

k=0

pn(k) ≥
1

2
, (4.151)

which clearly prevents µn from converging uniformly to πΛ. 2

Combining Theorem 4.2 and Proposition 4.15, we obtain Theorem 3.1 as an
immediate corollary.

4.8.3. Some final remarks

There are three natural topologies for convergence of clouds: ‖| · ‖| norm;
uniform-on-levels; and pointwise. Norm convergence of the µn implies operator-
norm convergence of the Tµn

without any hypothesis on α beyond the Fun-
damental Hypothesis (cf. Proposition 4.1). Uniform-on-levels convergence is
weaker than norm convergence in that the mass of µn − µ∞ can run “upwards
to infinity”, as in the example βn

Λ → πΛ. This is handled in Theorem 4.2 by
assuming that ‖(IΛαIΛ)k‖w→w → 0; then the Tµn

converge in operator norm.
Finally, pointwise convergence is still weaker than uniform-on-levels convergence
because mass can also run “outwards to infinity” (when X is infinite), as in the
example βΛn

→ βΛ with Λn ↑ Λ and all Λn ( Λ. This is handled in Theo-
rem 4.1 by working on a fixed vector c ∈ l1(w) and demanding convergence only
in vector norm (not operator norm); the upwards-running mass is handled by
assuming that ‖c(IΛαIΛ)k‖w → 0.

4.9. Some further identities and inequalities

Let us now present some further identities and inequalities that will play an
important role in Section 6. Our first result is a cloud analogue and extension
of Lemmas 3.8 and 3.9:
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Lemma 4.13.

(a) Let h : X → [0, 1] and set Λ := supp h. Then we have the identity

∞∑

k=0

β∗k
h ∗ Ih = 1Λ. (4.152)

[ Recall that 1Λ is the cloud that takes the value 1 on markers having all

their entries in Λ, and 0 elsewhere. ]

(b) Let ν ≥ 0 be a cloud satisfying ‖|ν‖| ≤ 1. Set h(x) := 1 − ν((x)). Then

we have the inequality
∞∑

k=0

ν∗k ∗ Ih ≤ 1. (4.153)

Proof. (a) The proof of Lemma 3.8 is in fact a proof of the cloud identity (4.152):
no more need be said. But just for completeness, here is an alternate proof:
Let µ be any cloud; then by (4.36) we have

µ ∗ Ih = µ̃ − µ̃ ∗ βh. (4.154)

Now set µ = β∗k
h and sum from k = 0 to N : we get

N∑

k=0

β∗k
h ∗ Ih = 1 −

˜
β
∗(N+1)
h (4.155)

(since β̃∗0
h = ρ̃0 = 1). Now take N → ∞: by Proposition 4.14, β

∗(N+1)
h converges

pointwise to πΛ, hence
˜

β
∗(N+1)
h converges pointwise to π̃Λ = 1 − 1Λ. This

proves (4.152).
(b) By Corollary 4.4 we have, for any cloud µ ≥ 0,

(̃µ ∗ ν)(η) ≤ µ̃(η−) + µ(η)ν
(
(last (η))

)
= µ̃(η) −

[
1 − ν

(
(last (η))

)]
µ(η)

(4.156)

and hence
µ ∗ Ih ≤ µ̃ − µ̃ ∗ ν. (4.157)

Now take µ = ν∗k and sum from k = 0 to N :

N∑

k=0

ν∗k ∗ Ih ≤ 1− ˜ν∗(N+1) ≤ 1 (4.158)

(since ν̃∗0 = ρ̃0 = 1). Taking N → ∞ gives the result. 2
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We also have the following curious collection of inequalities and identity
involving the cloud µ := 1 − ν̃. These too will play a central role in Section 6;
what makes them so powerful is that the inequalities go in both directions.

Lemma 4.14. Let ν ≥ 0 be a cloud satisfying ‖|ν‖| ≤ 1. Define h(x) :=
1 − ν((x)) and µ := 1− ν̃.

(a) We have Ih ≤ µ ≤ 1 and

∞∑

n=0

ν∗n ∗ µ ≤ 1. (4.159)

(b) If ν is carried by Λ and satisfies ν((x)) < 1 for all x ∈ Λ [ i.e. supp h = Λ],
then

∞∑

n=0

ν∗n ∗ µ ≥ 1Λ. (4.160)

(c) If ν is Λ-regular and satisfies ν((x)) < 1 for all x ∈ Λ, then µ is supported

on markers having all their entries in Λ (so that Ih ≤ µ ≤ 1Λ) and

∞∑

n=0

(IΛ ∗ ν ∗ IΛ)∗n ∗ µ =
∞∑

n=0

ν∗n ∗ µ = 1Λ. (4.161)

(d) If ν belongs to S1 and is supported on levels ≤ K, then µ is supported on

levels ≤ K − 1.

Please note that since µ ≥ Ih, Lemma 4.14(a) is a strengthening of Lem-
ma 4.13(b). Furthermore, if ν = βh, then µ = Ih, so that Lemma 4.14(c) is a
direct generalization of Lemma 4.13(a).

Proof of Lemma 4.14. (a) Since ‖|ν‖| ≤ 1, we have µ ≥ 0. Since ν ≥ 0, we have
µ ≤ 1. Finally, since µ((x)) = 1 − ν((x)) = h(x), we have µ ≥ Ih.

Let us now observe that µ := 1− ν̃ = (ρ0 − ν) ∗1 and perform the following
calculation:

N−1∑

n=0

ν∗n ∗ µ =

N−1∑

n=0

ν∗n ∗ (ρ0 − ν) ∗ 1 = (ρ0 − ν∗N ) ∗ 1 = 1− ν̃∗N (4.162)

≤ 1. (4.163)

Now take N → ∞: since µ, ν ≥ 0, the left-hand side increases pointwise to a
limiting cloud

∑∞
n=0 ν∗n ∗ µ whose values lie in [0, 1] by (4.163).

(b) Now suppose that ν is carried by Λ and that ν((x)) < 1 for all x ∈ Λ.
Then Corollary 4.15 implies that ν∗N (σ) → 0 for all markers σ ending in Λ,
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hence ν̃∗N (η) → 0 for all markers η having all their entries in Λ. By (4.162) this
implies (4.160).

(c) Since ν is Λ-regular, we have ν̃(η) = 1 whenever η has at least one entry
outside Λ; hence µ is supported on markers having all their entries in Λ. Since
in addition ν((x)) < 1 for all x ∈ Λ, we can apply Corollary 4.14 to conclude

that ν∗N → πΛ pointwise, i.e. ν̃∗N → π̃Λ pointwise. But

π̃Λ(η) =

{
0 if η has all its entries in Λ,

1 otherwise,
(4.164)

so that π̃Λ = 1 − 1Λ. By (4.162) this proves the second equality in (4.161).
Since µ = IΛ ∗µ ∗ IΛ, we have ν∗n ∗µ = (IΛ ∗ ν ∗ IΛ)∗n ∗µ by Lemma 4.6, which
proves the first equality.

(d) If ν ∈ S1 is supported on levels ≤ K, it follows that ν̃(η) = 1 whenever
level(η) ≥ K, hence µ is supported on levels ≤ K − 1. 2

Remark. At a formal level, the computation (4.162)–(4.163) is inspired by the
(admittedly meaningless) “identity”

∞∑

n=0

ν∗n = (ρ0 − ν)−1.

Another, more physical, way of expressing the intuition behind (4.162)–(4.163)
is to observe that

ν∗n ∗ µ = ν̃∗n − ν̃∗(n+1), (4.165)

so that (ν∗n ∗ µ)(η) measures the mass that lies 4 η after n steps but gets
pushed above (or out) at the (n + 1)st step. Summing over n, we should get 1
whenever η has all its entries in Λ, since by Corollary 4.15 all the mass should
eventually be pushed out.

5. Alternate sufficient conditions for cleanability

In this section we do not assume the Fundamental Hypothesis. Rather, our
goal is to examine briefly the conditions under which cleaning can be assured
even in the absence of the Fundamental Hypothesis. Please note that we are
entitled to use here those results of Section 4 that refer only to clouds. How-
ever, we must scrupulously avoid using those results which, like Propositions 4.1
and 4.10, refer to operators and therefore depend on the Fundamental Hypoth-
esis.

First, we need a few definitions. Let a = (axy)x,y∈X be any nonnegative
matrix (in practice, we will take a to be either α or IΛαIΛ). For any marker
η = (x0, . . . , xk), we define

a
η := ax0x1ax1x2 · · · axk−1xk

. (5.1)
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We then define the spaces of clouds l1(a) and l∞(a) by the norms

‖ν‖1,a :=
∑

η

a
η|ν(η)|, (5.2)

‖ν‖∞,a := sup
η : a

η>0
|ν(η)|. (5.3)

If µ and ν are clouds, we write

〈µ, ν〉a :=
∑

η

a
ηµ(η)ν(η) (5.4)

whenever this sum has an unambiguous meaning; in particular, if µ, ν ≥ 0, then
〈µ, ν〉a is well-defined though it may be +∞.

If ν is a cloud, we would like to define an operator Tν,a by the usual formula

Tν,a :=
∑

η=(x0,...,xk)

ν(η)I{x0}aI{x1}a · · · aI{xk−1}aI{xk}. (5.5)

[When a = α, we write simply Tν .] The trouble is that, in the absence of
the Fundamental Hypothesis or its equivalent for a, it is difficult to guarantee
that this sum is well-defined (compare Proposition 4.1). We therefore restrict
ourselves in this section to nonnegative clouds ν and consider (5.5) as defining
a matrix Tν,a whose elements lie in [0, +∞]. Of course, when necessary we shall
verify a posteriori that the elements of Tν,a are finite.

Finally, if c ≥ 0 and w ≥ 0 are vectors, we define a nonnegative cloud µc,w by

µc,w((x0, . . . , xk)) = cx0wxk
. (5.6)

It is easily checked that for any nonnegative cloud ν we have

cTν,aw = 〈µc,w, ν〉a. (5.7)

(We define 0 ·∞ = 0; this may be needed to interpret the inner product cTν,aw.)
In particular, taking ν = ρk, we have

cakw =
∑

level (η)=k

a
ηµc,w(η) (5.8)

and hence that
∞∑

k=0

cakw = ‖µc,w‖1,a. (5.9)

The following theorem and its corollary give a sufficient condition for a dust
vector c to be cleanable in l1(w) sense by every cleaning process that visits each
site infinitely many times. The proofs are almost trivial, now that we have the
results of Section 4 in hand.
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Theorem 5.1. Let a be a nonnegative matrix, let µ be a nonnegative cloud

belonging to l1(a), and let (νn)n≥1 be a sequence of nonnegative clouds satisfying

a uniform bound ‖νn‖∞,a ≤ M < ∞ and tending pointwise a-a.e. to zero [ i.e.
limn→∞ νn(η) = 0 for each marker η having a

η > 0 ]. Then

lim
n→∞

〈µ, νn〉a = 0. (5.10)

Proof. An immediate consequence of Lebesgue’s dominated convergence theo-
rem. 2

Corollary 5.1 (Sufficient condition for universal cleaning). Let Λ ⊆ X ,

and let c ≥ 0 and w ≥ 0 be vectors satisfying

∞∑

k=0

c(IΛαIΛ)kw < ∞. (5.11)

If (fn)n≥1 are functions X → [0, 1], supported in Λ and satisfying
∑

n fn = +∞
everywhere on Λ, we have

lim
n→∞

cβf1 · · ·βfn
IΛw = 0. (5.12)

More generally, if (ωn)n≥1 are nonnegative clouds carried by Λ that satisfy

‖|ωn‖| ≤ 1 and
∑

n[1 − ωn((x))] = +∞ for all x ∈ Λ, we have

lim
n→∞

cTω1 · · ·Tωn
IΛw = 0. (5.13)

Proof. This is simply the special case of Theorem 5.1 in which a = IΛαIΛ,
µ = µc,w and νn = ω1 ∗ · · · ∗ ωn ∗ IΛ: by (5.9), the hypothesis (5.11) guarantees
that µc,w ∈ l1(a). [Using Lemma 4.6 to rewrite νn as IΛ∗ω1∗IΛ∗· · ·∗IΛ∗ωn∗IΛ,
we see that 〈µc,w, νn〉α = 〈µc,w, νn〉IΛαIΛ .] We can take M = 1. The fact that
νn(η) → 0 for all η is an immediate consequence of Corollary 4.15. 2

In view of Theorem 4.1, it is natural to wonder whether the hypothesis∑∞
k=0 cαkw < ∞ in Corollary 5.1 can be weakened to assuming that cαkw is

finite for every k and tends to zero as k → ∞. It turns out that this is not
the case; indeed, the following example shows that Corollary 5.1 is in a certain
sense sharp:

Example 5.1. Let (ρk)k≥0 be any sequence of positive numbers satisfying∑∞
k=0 ρk = ∞. Then, on a countably infinite state space X , we can construct a

matrix α ≥ 0 and vectors c, w ≥ 0 such that

(a) cαkw = ρk for every k ≥ 0.

(b) There exists a sequence x1, x2, . . . ∈ X in which each element of X occurs
infinitely often, and for which we have limn→∞ cβx1 · · ·βxn

w = ∞.
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0

(`, `)

(1, `)

(2, `)

(` − 1, `)

(2, 3)

(3, 3)

(1, 2)

(2, 2)

(1, 1)

(1, 3)

Figure 4. The directed graph associated to the matrix α in Example 5.1. The
vertices of this graph correspond to the points of X , and the edges correspond
to the nonzero matrix elements of α.

To see this, take X = {0} ∪ {(k, `) : 1 ≤ k ≤ `}, and define the matrix α by

α0,(1,`) = ρ1/(2`ρ0), (5.14)

α(k,`),(k+1,`) = 2ρk+1/ρk for 1 ≤ k ≤ ` − 1, (5.15)

with all other coefficients of α set to 0. The state space X can be visualized
as a tree with root 0 and branches numbered ` = 1, 2, . . . (see Figure 4). Now
consider the vector c = ρ0δ0, which puts a mass ρ0 of dirt on site 0 and nothing
elsewhere, and the vector w = 1. It is easy to see that, for each k ≥ 1, the vector
cαk is supported on sites (k, `) [` ≥ k] and takes there the values ρk/2`−k+1.
Hence cαkw = ρk for all k. In order to construct the sequence x1, x2, . . ., let us
first consider the following two sequences of sites:

AL := (1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), (1, L), . . . , (L − 1, L),

BL := (1, 1), (2, 2), (3, 3), . . . , (L, L)

so that AL (resp. BL) sweeps, in order, the non-summit (resp. summit) sites of
the branches 1 through L. Now let us define our sweeping process x1, x2, . . . as
follows:

0, AL1 , B1, AL2 , B2, AL3 , B3, . . .

where the indices L1 < L2 < . . . will be chosen in a moment. After the first
step (x1 = 0), we have a mass ρ1/2` of dust on each site (1, `). After the
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sequence AL1 , we end up with a mass ρ`/2 on each site (`, `) for 1 ≤ ` ≤ L1.
The step B1 then destroys the mass ρ1/2 that sat on the site (1, 1). After the
sequence AL2 , we end up with a mass ρ`/2 on each site (`, `) for 2 ≤ ` ≤ L2.
The step B2 then destroys the mass ρ2/2 that sat on the site (2, 2). And so
forth. If we choose each Lr so that

Lr∑

`=r

ρ`

2
≥ 10r +

ρr

2
, (5.16)

then we are assured of having a total mass at least 10r on the summit sites at
each step after the operation ALr

has been completed. Hence cβx1 · · ·βxn
w→∞.

This example shows that cαkw being finite for every k and tending to zero
as k → ∞ is not sufficient to ensure that every cleaning process that visits
each site infinitely many times will succeed in removing the dirt in l1(w) sense.
Nevertheless, this hypothesis turns out to be sufficient to ensure that there exists

a successful cleaning process:

Theorem 5.2 (Sufficient condition for existence of cleaning). Let Λ ⊆
X , and let c ≥ 0 and w ≥ 0 be vectors satisfying

(a) c(IΛαIΛ)kw < ∞ for all k ≥ 0

and

(b) limk→∞ c(IΛαIΛ)kw = 0.

Then it is possible to find a sequence of sites x1, x2, . . . ∈ Λ and a sequence of

numbers ε1, ε2, . . . ∈ (0, 1] such that limn→∞ cβε1δx1
· · ·βεnδxn

IΛw = 0.

Question 5.1. Can we always take εi = 1?

The proof of this theorem will be based on a simple lemma:

Definition 5.1. We say that a cloud ν ′ ≥ 0 arises from a cloud ν ≥ 0 by
a single-marker update acting at the marker η if there exists a real number
κ ∈ [0, ν(η)] such that

• ν′(η) = ν(η) − κ,

• ν′(σ) = ν(σ) + κ for each child σ of η,

• ν′(τ) = ν(τ) for every other marker τ .

Lemma 5.1 (Imitation Lemma). Suppose that the cloud ν ′ ≥ 0 arises from

the cloud ν ≥ 0 by a single-marker update acting at the marker η. Let y =
last (η). Then, for any vector c ≥ 0, we can find a number ε ∈ [0, 1] (depending

on c, ν and ν′) such that

cTν′ = cTνβεδy
. (5.17)
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Proof. Let κ = ν(η) − ν ′(η). If κ = 0, we can take ε := 0; so let us assume
henceforth that ν(η) ≥ κ > 0. We then have, for all x ∈ X ,

(cTνβεδy
)x =

{
(cTν)x + ε(cTν)yαyx if x 6= y,

(1 − ε)(cTν)y + ε(cTν)yαyy if x = y,
(5.18)

whereas

(cTν′)x =

{
(cTν)x + κ(cTη)yαyx if x 6= y,

(cTν)y − κ(cTη)y + κ(cTη)yαyy if x = y.
(5.19)

Therefore, to satisfy (5.17), we proceed as follows: if (cTη)y = 0 we set ε := 0; if
(cTη)y > 0, we set ε := κ{(cTη)y/(cTν)y}. In the latter case we have (cTν)y ≥
ν(η)(cTη)y ≥ κ(cTη)y > 0, so that ε ≤ 1. 2

Proof of Theorem 5.2. Since βε1δx1
· · ·βεnδxn

IΛ = IΛβε1δx1
IΛ · · · IΛβεnδxn

IΛ by
Lemma 3.1, everything in both hypothesis and conclusion takes place within Λ,
so we can assume for notational simplicity that Λ = X .

By virtue of the Imitation Lemma, it suffices to find a sequence (νn)n≥0

of nonnegative clouds, with ν0 = ρ0, such that each νn+1 arises from νn by a
single-marker update, and which satisfy

cTνn
w −→

n→∞
0. (5.20)

We shall construct these clouds to be {0, 1}-valued and lie in S1. In particular,
updating the marker η at step n will mean that νn(η) = 1 and νn+1(η) = 0, and
for each child σ of η, νn(σ) = 0 and νn+1(σ) = 1.

Since for each k ≥ 0 we have

cαkw =
∑

level (η)=k

αηµc,w(η) < ∞, (5.21)

for each ε > 0 we can find a finite subset Mε,k of the set of all markers of level k,
such that ∑

level (η)=k
η/∈Mε,k

αηµc,w(η) <
ε

2k+1
. (5.22)

Furthermore, we can arrange for these subsets to be nested, i.e. Mε,k ⊆ Mε′,k

whenever ε > ε′.
We now fix a sequence (εj) of positive numbers decreasing to 0, and we

choose a sequence of integers N1 < N2 < . . . such that cαkw ≤ εj whenever
k > Nj . Let Sj,` denote the set of all markers of level ` which are ancestors of

any marker in ∪
Nj

k=0Mεj ,k. By construction, all these sets are finite. We then
define the sequence (νn)n≥1 of clouds by a sequence of single-marker updates
starting from ν0 = ρ0, visiting the markers in the following order:

S1,0, S1,1, . . . , S1,N1 , S2,0, S2,1, . . . , S2,N2 , . . .
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(the markers within each Sj,` being updated in an arbitrary order).
Let now j ≥ 1, and consider any stage in this process while we are updating

the markers in ∪
Nj+1

`=0 Sj+1,`. At such a stage, the cloud νn is always supported
on three kinds of markers:

• Markers lying on levels k ≤ Nj but outside Mεj ,k. [Since at stage j we

updated all the ancestors of markers in ∪
Nj

k=0Mεj ,k, it is impossible for
subsequent operations to place mass on any of those markers.]

• Markers lying on two successive levels N and N + 1 strictly above Nj .
[This happens while we are updating markers in Sj+1,N .]

• Markers lying on levels Nj < k ≤ Nj+1 but outside Mεj+1,k.

The first kind of markers contributes to cTνn
w at most εj , the second at

most 2εj , and the third at most εj+1. This proves that (5.20) holds. 2

The following example shows that there cannot be any converse to Theo-
rem 5.2 that refers only to the behavior of the sequence (cαkw)k≥0:

Example 5.2. Let (ρk)k≥0 be any sequence of positive numbers (in particular,
it can tend to +∞, or oscillate, or whatever). Then, on a countably infinite
state space X , we can construct a matrix α ≥ 0 and vectors c, w ≥ 0 such that

(a) cαkw = ρk for every k ≥ 0.

(b) There exists a sequence y1, y2, . . .∈X for which limn→∞ cβy1 · · ·βyn
w=0.

We shall use the same state space X = {0} ∪ {(k, `) : 1 ≤ k ≤ `} as in Exam-
ple 5.1 (cf. Figure 4) but shall make a slightly different choice of the matrix α.

Start by choosing any sequence of positive numbers (σ`)`≥1 satisfying
lim`→∞ σ` = 0 and

∑∞
`=1 σ` = ∞ (e.g. σ` = 1/` will do). Then it is not

hard to see that we can find positive numbers (γk`)1≤k≤` such that

(i) γk` ≤ σ` for all k, `.

(ii)
∑∞

`=k γk` = ρk for all k.

(For instance, for each k we could choose inductively

γk` = min

[
σ`,

1

2

(
ρk −

`−1∑

`′=k

γk`′

)]

for ` ≥ k.) Now define the matrix α by

α0,(1,`) = γ1`/ρ0, (5.23)

α(k,`),(k+1,`) = γk+1,`/γk` for 1 ≤ k ≤ ` − 1, (5.24)
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with all other coefficients of α set to 0. Choose once again c = ρ0δ0 and w = 1.
Now choose the sequence y1, y2, . . . to be

0, (1, 1), (1, 2), (2, 2) (1, 3), (2, 3), (3, 3), . . .

It is easy to see that, at any stage after the site (`, `) has been swept and before
the site (` + 1, ` + 1) has been swept, the total quantity of dirt cβy1 · · ·βyn

w
does not exceed σ`+1 +

∑∞
`′=`+2 γ1,`′ ; and this tends to zero as ` → ∞.

It is worth remarking that if (and only if)
∑∞

k=0 ρk = ∞, then it is possible
to choose first the (σ`) and then the (γk`) so that, in addition to properties (i)
and (ii), we have

(iii)
∑∞

`=1 γ`` = ∞.

Indeed, let (σk)k≥1 be any sequence of positive numbers satisfying lim
k→∞

σk = 0

and
∑∞

k=1 min(ρk, σk) = ∞.7 Then the preceding construction yields γkk =
min(σk , (1/2)ρk), so that

∑∞
k=1 γkk = ∞. In this way we can find a matrix α

that serves simultaneously for Example 5.1 and the present example: that is,
there exists both a sequence x1, x2, . . . ∈ X in which each element of X oc-
curs infinitely often and such that limn→∞ cβx1 · · ·βxn

w = ∞, and a sequence
y1, y2, . . . ∈ X such that limn→∞ cβy1 · · ·βyn

w = 0.

6. Converse results

In this section we do not assume the Fundamental Hypothesis. Rather, our
goal is to study what happens in case the Fundamental Hypothesis fails. As
before, we are entitled to use here those results of Section 4 that refer only to
clouds, but must avoid using those results that refer to operators.

6.1. General result

Our main result is the following:

Theorem 6.1. Let X be a finite or countably infinite set, let Λ ⊆ X , and

let c ≥ 0 and w ≥ 0 be vectors that are strictly positive on Λ. Consider the

following conditions on a matrix α:

(a)
∑∞

k=0 c(IΛαIΛ)kw < ∞.

(b) For all h : X → [0, 1] with supp h = Λ such that h ≥ εχΛ for some ε > 0,

we have
∑∞

k=0 c(IΛβhIΛ)kw < ∞.

7Given any sequence (ρk)k≥1 of positive numbers satisfying
P∞

k=1
ρk = ∞, we can always

find a sequence (σk)k≥1 such that 0 < σk ≤ ρk for all k, limk→∞ σk = 0 and
P∞

k=1
σk = ∞.

To see this, note first that ρ′
k := min(ρk , 1) also satisfies

P∞
k=1

ρ′k = ∞. Now let σk := ρ′k
‹`

1+
Pk

j=1
ρ′j

´1/2
. Clearly limk→∞ σk = 0, and

PN
k=1

σk ≥
` PN

k=1
ρ′k

´‹`

1 +
PN

k=1
ρ′k

´1/2
→ ∞

as N → ∞.
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(b′) There exists h : X → [0, 1] with supp h = Λ such that
∑∞

k=0 c(IΛβh×
IΛ)kw < ∞.

(c) For every finite sequence f1, . . ., fm of functions X → [0, 1] with

supp(fi) ⊆ Λ such that
∑

i fi ≥ εχΛ for some ε > 0, we have
∑∞

k=0 c(IΛ×
βf1 · · ·βfm

IΛ)kw < ∞.

(c′) There exists a finite sequence f1, . . . , fm of functions X → [0, 1] with

supp(fi) ⊆ Λ such that
∑∞

k=0 c(IΛβf1 · · ·βfm
IΛ)kw < ∞.

(d) For every cloud ν ≥ 0 that is carried by Λ and satisfies ‖|ν‖| ≤ 1 and

ν((x)) ≤ 1 − ε for every x ∈ Λ (for some ε > 0), we have
∑∞

k=0 c(IΛTν×
IΛ)kw < ∞.

(d′) There exists a cloud ν ∈ S1 that is carried by Λ and supported on finitely

many levels, such that
∑∞

k=0 c(IΛTνIΛ)kw < ∞.

Then (a) ⇐⇒ (b) ⇐⇒ (b′) ⇐⇒ (c) ⇐⇒ (d) =⇒ (c′) =⇒ (d′); and for

matrices α satisfying the additional hypothesis

There exists a constant C < ∞ such that IΛαIΛw ≤ Cw (6.1)

all seven conditions are equivalent.

Proof. (d) =⇒ (c) =⇒ (b) =⇒ (b′) =⇒ (c′) =⇒ (d′) is trivial. So it
suffices to prove (a) =⇒ (d) and (b′) =⇒ (a), as well as to prove (d′) =⇒ (a)
under the hypothesis (6.1).

(a) =⇒ (d): Since ν is carried by Λ, for k ≥ 1, (IΛ ∗ ν ∗ IΛ)k charges only
markers with all their entries in Λ. Lemma 4.13(b) then implies that

∞∑

k=0

(IΛ ∗ ν ∗ IΛ)k ≤
1

ε
1Λ + IΛc ≤

1

ε

∞∑

k=0

(IΛ ∗ ρ1 ∗ IΛ)k (6.2)

(here ε ≤ 1). Passing from clouds to operators, we have

∞∑

k=0

c(IΛTνIΛ)kw ≤
1

ε

∞∑

k=0

c(IΛαIΛ)kw < ∞. (6.3)

(b′) =⇒ (a) and (d′) =⇒ (a): Let us start with hypothesis (d′), and
observe that hypothesis (b′) is merely the special case in which ν = βh.

Note first that we must have ν((x)) < 1 for every marker (x) of level 0 with
x ∈ Λ, since otherwise c(IΛTνIΛ)kw could not tend to zero as k → ∞. (Here
we have used the strict positivity of c and w on Λ.)

Now define µ := 1 − ν̃. By Lemma 4.14(c), µ takes values in [0, 1] and is
supported on markers having all their entries in Λ. By Lemma 4.14(d), if ν is
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supported on levels ≤ K, then µ is supported on levels ≤ K − 1. Putting these
facts together, we obtain

0 ≤ µ ≤ IΛ ∗

( K−1∑

k=0

(IΛ ∗ ρ1 ∗ IΛ)k

)
∗ IΛ. (6.4)

By Lemma 4.14(c) we then have

1Λ =

( ∞∑

n=0

(IΛ ∗ ν ∗ IΛ)n

)
∗ µ ≤

( ∞∑

n=0

(IΛ ∗ ν ∗ IΛ)n

)
∗

( K−1∑

k=0

(IΛ ∗ ρ1 ∗ IΛ)k

)
.

(6.5)

Passing now to operators, we have

∞∑

k=0

(IΛαIΛ)k ≤

( ∞∑

n=0

(IΛTνIΛ)n

)
∗

( K−1∑

k=0

(IΛαIΛ)k

)
. (6.6)

Now sandwich this between nonnegative vectors c and w. If ν = βh [case (b′)],
then K = 1, so that the second large parenthesis on the right-hand side of (6.6)
is the identity operator. In case (d′), we use hypothesis (6.1). Either way, we
find that

∞∑

k=0

c(IΛαIΛ)kw ≤ C ′
∞∑

n=0

c(IΛTνIΛ)nw (6.7)

for a finite constant C ′. This completes the proof. 2

Please note that hypothesis (6.1) is automatic whenever Λ is a finite set. On
the other hand, Examples 3.2 and 3.3 show that, when Λ is infinite, hypothe-
sis (6.1) cannot be dispensed with in proving that (c′) =⇒ (a) [or, a fortiori,
(d′) =⇒ (a)].

The following example shows that the hypothesis that ν is supported on
finitely many levels cannot be dispensed with in proving that (d′) =⇒ (a),
even in the presence of the Fundamental Hypothesis [which is much stronger
than (6.1)]:

Example 6.1. Let Λ = X = {1, 2, 3, . . .}. Let α be right shift (acting on dirt
vectors), i.e. αi,i+1 = 1 for all i ≥ 1 and all other matrix elements of α are 0. Set
c = 1 and let wj = 1/j2. Note that αw ≤ w. Then (αkw)i = wi+k = 1/(i+k)2,
so that

∞∑

k=0

(αkw)i =

∞∑

k=0

1

(i + k)2
∼

1

i
as i → ∞, (6.8)
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and hence
∑∞

k=0 cαkw = +∞. On the other hand, let us take ν to be the cloud

ν(η) =

{
1 if level (η) = first (η),

0 otherwise.
(6.9)

(In other words, for dirt starting at site i, ν sends it upwards i levels.) For this
choice of α we have (T k

ν w)i = w2ki = 4−k/i2, so that
∑∞

k=0 cT k
ν w < ∞.

In view of Theorem 3.2, which guarantees cleaning whenever h is strictly
positive on Λ — without any need for uniformity — one might be tempted to
remove the uniformity hypothesis in condition (b), i.e. to replace (b) by

(b∗) For all h : X → [0, 1] with supp h = Λ, we have
∑∞

k=0 c(IΛβhIΛ)kw < ∞.

But neither (a) nor any conceivable stronger hypothesis can possibly imply this,
as Example 3.1 shows. The upshot is that, without a uniformity hypothesis on h,
one can conclude in some cases that c(IΛβhIΛ)kw tends to zero as k → ∞ [cf.
Theorem 3.2 and Corollary 5.1], but one cannot conclude anything about the
rate of convergence — in particular, one cannot conclude that this sequence is
summable in k.

6.2. Finite Λ

If Λ is a finite subset of X (and in particular if X is finite), then all choices
of strictly positive vectors c and w are equivalent, and Theorem 6.1 can be
rephrased in a simpler form, in terms of the spectral radii of the various matrices.
The main idea is that if the spectral radius of IΛαIΛ is ≥ 1, then there is no
way to clean the set Λ completely.

Let us recall that the spectral radius (= largest absolute value of an eigen-
value) of a finite matrix A satisfies spr(A) = limn→∞ ‖An‖1/n; in particular,
the latter limit is independent of the choice of norm. It is well known (and easy
to prove using ‖Am+n‖ ≤ ‖Am‖‖An‖) that spr(A) < 1 ⇐⇒ limn→∞ ‖An‖ = 0
⇐⇒

∑∞
n=0 ‖A

n‖ < ∞. Finally, on a finite set the convergence of sequences
of vectors or matrices can be understood either pointwise or in norm; the two
notions are equivalent.

Since the uniformity conditions on h, etc. in Theorem 6.1 are trivially sat-
isfied when Λ is finite, we can state the following immediate corollary of Theo-
rem 6.1:

Corollary 6.1. Let X be a finite or countably infinite set, and let Λ ⊆ X be a

finite subset. Then the following conditions on a matrix α are equivalent:

(a) spr(IΛαIΛ) < 1.

(b) For all h : X → [0, 1] with supp h = Λ, we have spr(IΛβhIΛ) < 1.
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(b′) There exists h : X → [0, 1] with supp h ⊆ Λ such that spr(IΛβhIΛ) < 1.

(c) For every finite sequence f1, . . . , fm of functions X → [0, 1] with

supp(
∑m

i=1 fi) = Λ, we have spr(IΛβf1 · · ·βfm
IΛ) < 1.

(c′) There exists a finite sequence f1, . . . , fm of functions X → [0, 1] with

supp(fi) ⊆ Λ such that spr(IΛβf1 · · ·βfm
IΛ) < 1.

(d) For every cloud ν ≥ 0 that is carried by Λ and satisfies ‖|ν‖| ≤ 1 and

ν((x)) < 1 for every x ∈ Λ, we have spr(IΛTνIΛ) < 1.

(d′) There exists a cloud ν ∈ S1 that is carried by Λ and supported on finitely

many levels, such that spr(IΛTνIΛ) < 1.

(e) For every infinite sequence f1, f2, . . . of functions X → [0, 1] with

supp(fi) ⊆ Λ such that
∑

i fi = ∞ everywhere on Λ, we have limn→∞ IΛ×
βf1 · · ·βfn

IΛ = 0.

(f) For every infinite sequence ν1, ν2, . . . of nonnegative clouds carried by Λ
and satisfying ‖|νi‖| ≤ 1 and

∑
i[1 − νi((x))] = ∞ for all x ∈ Λ, we have

limn→∞ IΛTν1 · · ·Tνn
IΛ = 0.

Proof. The equivalence of (a), (b), (b′), (c), (c′), (d) and (d′) is an immediate
consequence of Theorem 6.1 specialized to Λ finite. The implication (a) =⇒ (f)
follows from Corollary 5.1, and (f) =⇒ (e) is trivial. Finally, (e) =⇒ (c) [or
(f) =⇒ (d)] is easy: just consider the sequence f1, . . . , fm repeated infinitely
many times and use Lemma 4.6. 2

The following example shows that, when X is infinite, the behavior of the
matrix α is not completely controlled by that of the matrices IΛαIΛ for all
finite Λ:

Example 6.2. We shall exhibit a nonnegative matrix α satisfying spr(IΛαIΛ) <
1 for all finite Λ ⊂ X — so that in particular the Fundamental Hypothesis holds
for all the matrices IΛαIΛ — but for which the Fundamental Hypothesis does
not hold, i.e. we cannot find a vector w > 0 satisfying αw ≤ w.

Take X = {1, 2, . . .} and 0 ≤ ε < 1, and set α1,1 := ε, α1,j := 1 for all j ≥ 2,
αi+1,i := 2 for all i ≥ 2, and αi,j := 0 elsewhere:

α =




ε 1 1 1 · · ·
0 0 0 0 · · ·
0 2 0 0 · · ·
0 0 2 0 · · ·
...

. . .
. . .

. . .
. . .




. (6.10)
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If we could find a w > 0 such that αw ≤ w, we would have wi+1 ≥ 2wi for
all i ≥ 2. Since w2 > 0, this would imply wi → +∞ as i → ∞. But αw ≤ w
implies also that w1 ≥

∑∞
i=2 wi, which is impossible.

Now let us show why spr(IΛαIΛ) < 1 for all finite Λ ⊂ X . Set m := max Λ.
Then, for any vector v and any j ≥ m−1, we have (IΛαIΛ)jv ∈ span(e1) where
e1 := (1, 0, 0, . . .). Since αe1 = εe1, it follows that

spr(IΛαIΛ) =

{
ε if 1 ∈ Λ,

0 if 1 /∈ Λ.
(6.11)

In particular, by taking ε = 0 we can even arrange to have spr(IΛαIΛ) = 0 [i.e.,
IΛαIΛ is nilpotent] for every finite Λ.
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