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1. Introduction

Let X be a finite or countably infinite set, let 7 be a collection of nonnegative
real matrices indexed by X, and let C be a class of nonnegative real vectors
indexed by X. In this paper we want to ask variants of the following question:
Under what conditions does there exist a sequence of elements (73)5°; in 7 such



Probabilistic Potential Theory and the Dobrushin Uniqueness Theorem 3

that ¢TIy --- T, — 0 for all ¢ € C? (If X is infinite, we must of course specify the
topology in which this convergence is to be understood.)

Here is a homely but suggestive interpretation: Think of the elements of X as
the “sites” of a dirty floor, the nonnegative vectors ¢ = (¢ )z x as “distributions
of dirt”, and the matrices T € 7 as the “cleaning operators” at our disposal.
Application of a cleaning operator T  transforms the dirt distribution from ¢
to ¢T'. (Note that we always write our dirt vectors on the left, in analogy with
probability distributions in Markov-chain theory.) It is natural to ask: Under
what conditions can the floor be completely cleaned? We will also ask: Under
what conditions can a subset A C X be cleaned, and in this case, where in
A¢:= X \ A does the dirt go?

These questions arise in mathematical statistical mechanics in connection
with the Dobrushin [7,8,10,11,13,18,21] and Dobrushin—Shlosman [1,9, 22]
uniqueness theorems. Indeed, the simplest proofs of these theorems employ a
“cleaning” process of precisely the form just discussed.! This led us to investi-
gate the cleaning process in its own right.

In this paper we shall not treat the case of an arbitrary family 7 of cleaning
operators?, but shall focus on the special case of “single-site” cleaning operators:
for each z € X we are given exactly one cleaning operator 3,, which leaves
untouched the dirt on sites other than x and which distributes the dirt on z to
sites y with a weight factor ay. In other words,

Cy + Cxgy if y#x,
Cy Ol if y=nux.

(cBz)y = (1.1)

This is the case that arises in the proof of the Dobrushin uniqueness theorem.
The definition (1.1) can trivially be rewritten as

B = I{$}c + I{w}a, (12)

1We learned the “cleaning” interpretation of the Dobrushin uniqueness theorem from
Michael Aizenman in the mid-1980s.

2The general case leads, in fact, to interesting issues of computational complexity and
decidability (see [5] for an excellent survey of closely related problems). Consider the following
problem:

Input: A finite set T1,..., Ty of n X n matrices with nonnegative rational entries.

Question: Does there exist a sequence of indices i1,...,%4; such that the product
T;, - -+ T3, has spectral radius < 17

This problem turns out to be NP-hard, even when restricted to matrices with elements 0
and 1 [4, Remarks 2 and 3 after Theorem 2|, i.e. an oracle for solving it would permit the
polynomial-time solution of any problem in the class NP (e.g. the traveling salesman problem).
Even more strikingly, it has very recently been proven [6] that this problem is algorithmically
undecidable even when restricted to m = 3, n = 46 (indeed, even when T4, T» are stochastic
matrices and T3 is a diagonal matrix with a single nonzero element). The proof uses a simple
reduction from [3, Theorem 2.1].
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where I7,y and Ig;)e are the projection operators on {z} and its complement,
respectively. This way of writing the cleaning operators brings out the close
relations between our subject and probabilistic potential theory [12,14,15,19].
Indeed, probabilistic potential theory in discrete time and countable state space
can be interpreted as the theory of the algebra of operators generated by a
single nonnegative matrix o = (@zy)z,yex together with all the multiplication
operators Iy (where f is a real-valued function on X) — or more specifically,
as the theory of the multiplicative convex cone of operators generated by «
together with all the nonnegative multiplication operators Iy.

Our main result (Theorem 3.2) is that, under mild conditions on the matrix o
(see Section 2.2), any sequence of cleaning operations inside A that visits each
site of A infinitely many times will lead, in the limit, to the same result: the
dirt will be removed from A and transferred to A€ as specified by the “balayage
operator” II,.

The plan of this paper is as follows: In Section 2 we set forth the basic
definitions and state a few of our main results. In Section 3 we analyze the
cleaning operators by deriving matrix identities and inequalities in the spirit of
probabilistic potential theory [12,14,15,19]; here o = (@tzy)s,yex is considered
to be a fixed matrix of nonnegative real numbers. In Section 4 we introduce
an alternate approach that we think clarifies the combinatorial structure of
these identities and inequalities: it is based on the tree of finite sequences of
elements of X. In essence, we are now treating the matrix elements oy, as
noncommutative indeterminates; or in physical terms, we are keeping track of
the entire trajectory of each particle of dirt, and not merely its endpoint. This
approach allows a much finer analysis of the algebra of operators generated by «
and the multiplication operators I f.3 In Section 5 we present some alternative
sufficient conditions that guarantee the cleanability of A. Finally, in Section 6
we present some converses to our results.

2. Basic set-up

Let X be a finite or countably infinite set (assumed nonempty), and let
a = (Qy)z,yex be a nonnegative matrix indexed by X.

2.1. Definition of operators

We shall employ the following classes of matrices. (We refer to them as
“operators”, but for now we treat them simply as matrices. Later we shall
make clear on what space of vectors they act.)

3Here our approach mirrors the spirit of modern enumerative combinatorics [20], where
generating functions are considered in the first instance as formal power series, i.e. as an
algebraic tool for efficiently manipulating collections of coefficients. Only at a second stage
might one insert specific numerical values for the indeterminates and worry about convergence.
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Multiplication operators. For each A C X, we denote by I the projection
on A, i.e. the matrix

1 if x=ye€A,
I\) gy = 2.1
(Ta)zy {0 otherwise. (2.1)

More generally, if f is a real-valued function on X, we denote by Iy the operator
of multiplication by f, i.e. the matrix

flz) if 2=y,

; (2.2)
0 otherwise.

(If)ay = [(2)02y = {

Clearly Ip = I,,,, where x denotes the indicator function of A.

Cleaning operators. For each z € X, we define the cleaning operator 3, by

Bz = I{I}c + I{z}a. (2.3)
More generally, for each A C X, we define the cleaning operator 55 by
Oa = Ipe + Iz, (2.4)

where A¢ := X \ A. More generally yet, for each function f: X — [0,1], we
define the cleaning operator 8 by

ﬂf =Ii_y+ Ia, (25)
so that Ba = B,,. We also introduce, for later use, the “dual” cleaning operators
ﬂ;? =I_y+alyf (2.6)

(these have no obvious physical interpretation but will play an important role
in our analysis). Clearly all the operators 55 and B;Z are nonnegative (i.e. have
nonnegative matrix elements). We have 8y = 85 = I and 81 = ] = a.

Remark. In the “single-site cleaning problem” as formulated in the Introduction,
the only allowed cleaning operators are the 3, (z € X). When ) f(z) =1
(resp. < 1), one can interpret 3¢ as a convex combination of the 8, (resp. of
the 3, and the identity operator), hence as the expected output from a random
choice of single-site cleaning operator. When . f(x) > 1, the operators 35
have no such interpretation in terms of single-site cleaning; nevertheless, their
introduction is natural from the point of view of probabilistic potential theory,
as we shall see. Indeed, the quantity ) . f(z) plays no role whatsoever in
our analysis; the condition 0 < f < 1, on the other hand, is crucial. Whenever
we write 3 it will be assumed tacitly that 0 < f < 1.
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Balayage operators. For each A C X and each n > 0, we define HE\”) to be

the result of cleaning n times the set A and then keeping only the dirt outside A:

n

Y = B3lne = > (Ina)* e (2.7)
k=0

Let us note the identities

Br =T + (Inaly) "Iy,
(™ =Y. (2.8)

We then define the balayage operator 115 by a limiting process:

oo

Iy = lim 1117 = 3" (Iha) Iy (2.9)

n— oo
k=0

Please note that, with no hypotheses other than the nonnegativity of «, the
matrix elements of IIy are well-defined (and nonnegative) but might be +oo.
However, we shall soon introduce a condition (the Fundamental Hypothesis)
under which the matrix elements of IT, are finite and indeed II, is a contraction
operator on a suitable space of dirt vectors (Lemma 2.1). It furthermore follows
from (2.8) that II, is a projection operator, i.e. II3 = II, (see also Lemma 3.4).

2.2. The Fundamental Hypothesis

From now through the end of Section 4 (with the exception of Sections 3.6
and 3.7), we shall make the following

Fundamental Hypothesis. There exists a vector w = (wg)zex with w, > 0
for all z, such that aw < w.

In potential theory, a vector w satisfying aw < w is called subinvariant,
superharmonic or excessive with respect to a [12,14,15,19]. Thus, the Fun-
damental Hypothesis asserts the existence of a strictly positive subinvariant
vector.

For clarity, all results in this paper that assume the Fundamental Hypothesis
will be marked “(FH)”.

Remarks. 1. The Fundamental Hypothesis implies that the operator P :=
IElaIw is submarkovian, i.e. satisfies P1 < 1. Our results could therefore be
given a more probabilistic flavor, reminiscent of Markov-chain theory, by rewrit-
ing them in terms of P (this is easy because I,, commutes with all the other
multiplication operators I¢). We shall not need this interpretation, however, so
we leave this translation to the reader.
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2. If X is finite and « is irreducible, the Fundamental Hypothesis means
simply that the Perron— Frobenius eigenvalue (= spectral radius) of a is < 1.
In this case it is natural to take w to be the Perron—Frobenius eigenvector (this
is the unique choice if the spectral radius equals 1, but is nonunique otherwise).
But if « fails to be irreducible, the Fundamental Hypothesis is stronger than
this assertion about the spectral radius: consider, for instance, o = (|} ¢) with
a > 0 and 0 < b < 1, which has spectral radius 1 but does not satisfy the
Fundamental Hypothesis. It can be shown [16] that, when X is finite, the
Fundamental Hypothesis holds if and only if the spectral radius of « is < 1 and
each class J for which the square submatrix «y; has spectral radius 1 is a final
class (i.e. ajr =0 whenever j € J and k ¢ J).*

3. Example 6.2 below shows that if X is infinite, then the Fundamental
Hypothesis can fail even though each matrix Iyaly for A finite has spectral
radius O (i.e. is nilpotent).

We fix once and for all a vector w > 0 satisfying aw < w. For any vector
¢ = (¢z)zex, we define

lellw = lealws (2.10)

zeX

and we denote by I!*(w) the space of vectors ¢ satisfying |||, < oo.
For any matrix A = (Ayzy)a,yex, we define the operator norm

A
lAluow = sup LAl (2.11)
¢ of finite support ||C||w
c#0

If || Al w—w < 00, then A defines a bounded operator on ! (w) of norm || A||y— -
It is not hard to see that (2.11) is equivalent to

Al = sup w13 Ay, (212)
rzeX yex

In particular, when A is a nonnegative matrix, (2.11)—(2.12) reduces simply to

Aw),
Al = sup L2, 2.13)

Thus, for nonnegative matrices, ||Al|w—w < 1 if and only if Aw < w.

The norms of the multiplication operators are trivially given by

7l w—w = [ fllso == sup [f(z)]- (2.14)
reX

4We recall that the classes of a nonnegative matrix o are defined as the strongly connected
components of the directed graph with vertex set X and edge set {zy: azy > 0}: seee.g. [2,17].
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The Fundamental Hypothesis immediately gives ||a|lw—w < 1. More generally,
for any f: X — [0, 1], the cleaning operator (s satisfies

Brw=IL_rw+Ifow < Li_jyw+Tjw=w (2.15)

and hence ||Bf||w—w < 1. A similar argument shows, yet more generally, that
for any functions (f;)"_; and operators (A;)?_;, we have

i Ifi Ai
=1

Finally, for the balayage operator IIy we have the easy result:

<

w—w

Z||Ai||wHW|fi| SZHAZ'HUJHW ||fz||oo (2~16)
i=1 00 i=1

Lemma 2.1. (FH) For each A C X, the matrix I has finite matrix elements,
and indeed satisfies
0 <Irw < w, (2.17)

so that | |lw—w < 1. More specifically, ||IIllw—w equals 1 if A # X, and
equals 0 if A = X.

Proof. By (2.15) we have Hs\n)w = O Ipew < BRw < w. Since 0 < HXL) T IIp
elementwise, we have ngn)w T IIyw elementwise by the monotone convergence
theorem, and hence ITayw < w. Since IT, is nonnegative, we conclude from (2.11)
or (2.12) that ||TIz]|wow < 1.

On the other hand, we have clly = ¢ for any vector ¢ supported on A€
when A # X (so that ¢ can be chosen nonzero) this implies that ||IIa]|w—w > 1.

When A = X, by contrast, we have Iy = 0. a

2.3. Main results

Let us now state briefly a few of our main results, just to give their flavor.
Our principal result on cleaning is the following:

Theorem 2.1 (= Theorem 3.2). (FH) Consider a region A C X and func-
tions 0 < h; < xa (i > 1) such that

i hi(z) =00 Va €A. (2.18)
i=1

If the nonnegative vector ¢ € ' (w) is such that ||c(Inalp)*||w — 0 as £ — oo,
then

le(Bny -+ Bra = Ha)lw = O (2.19)
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Intuitively, this says that any sequence of cleaning operations inside A that
covers A infinitely many times will lead, in the limit, to removing the dirt from A
and transferring it to A€ as specified by the balayage operator Il,.

We also have a variant of this result (Theorem 3.1) in which the vector-norm
convergence (2.19) is strengthened to operator-norm convergence, at the price
of a stronger hypothesis on the functions h; (namely, requiring that they cover
the set A uniformly). Finally, we will prove some far-reaching extensions of this
result, in terms of the tree formalism, in Section 4.8.

We also have some sufficient conditions for cleanability when the Fundamen-
tal Hypothesis is not assumed. For instance:

Theorem 2.2 (= Theorem 5.2). Let A C X, and let ¢ > 0 and w > 0 be
vectors satisfying

(a) c(Iralp)*w < oo for allk >0
and

(b) lim c(Ipalp)Fw = 0.

k—oo
Then it is possible to find a sequence of sites x1,x2,... € A and a sequence of
numbers e1, €3, ... € (0,1] such that

nh—{%o Cﬂsﬁzl .. 'ﬂsnézn Iaw = 0. (2.20)

Although this result refers only to matrices, its proof uses the tree formalism
(see Section 5).

Finally, we have a converse result when the Fundamental Hypothesis is not
assumed:

Theorem 2.3 (= Theorem 3.3). Let X be a finite or countably infinite set,
let A C X, and let ¢ > 0 and w > 0 be vectors that are strictly positive on A.
Consider the following conditions on a matrix o:

(a) Yopepc(Iaadp)*w < oo.

(b) For all h: X — [0,1] with supp h = A such that h > ex for some € > 0,
we have Y p- o c(InBrlp)*w < co.

(b') There exists h : X — [0,1] with supph = A such that Y p-c(IpBhx
In)Fw < .

(c) For every finite sequence f1, ..., fm of functions X — [0, 1] with supp(f;) C
A such that >, f; > exa for some € > 0, we have Y, c(IpfBf, -+ %
ﬁfmIA)kw < 0.
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(¢") There exists a finite sequence f1,..., fm of functions X — [0,1] with
supp(fi) € A such that > pe o c(IaBy, -+ By, In)Fw < oc.

Then (a)—(c) are all equivalent and imply (c¢'); and for matrices « satisfying the
additional hypothesis

There exists a constant C' < oo such that Inalyw < Cw (2.21)
all five conditions are equivalent.

Intuitively, this says (at least if A is a finite set) that if the spectral radius
of Inady is > 1, then there is no way to clean the set A completely. In fact, we
shall prove a stronger version of this result in Section 6, using the tree formalism
(see Theorem 6.1 and Corollary 6.1).

3. Matrix approach to balayage

In this section we study the algebra of operators generated by « and the
multiplication operators I¢, by deriving matrix identities and inequalities in the
spirit of probabilistic potential theory [12,14,15,19]. Our main goal is to study
the convergence of a product of cleaning operators [y, - - - Bn, where all the h;
have support contained in A. We shall show that, under very general conditions,
any such product must converge to IIn (see Theorems 3.1 and 3.2). We shall
also prove a converse result when the Fundamental Hypothesis is not assumed
(Theorem 3.3).

3.1. Identities for cleaning operators

Proposition 3.1 (Fundamental identities). For all h, hq, he: X — [0,1],
the following identities hold:

(i) Intertwining I:

(I —a)Bh = GBI — ). (3.1)
(i) Intertwining II:
(Bhy = DIny, = In, (B, — 1), (3.2)
Brln = Inpy,- (3.3)
(iii) Comparison:
By = By = Tny—n, (I — ), (3.4)

I-— ﬁh = Ih(I - Oé). (3.5)
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(iv) Collapse:
Bhy Bry = Bi—(1=hy)(1=hs) — Iniadn, (I — ). (3.6)

Proof. (i)
Ozﬂh — ﬂ;a = Oz.[lfh - Ilfha = Iha - th = ﬂh - ﬂ;: (3.7)

(ii) Both sides of (3.2) are equal to Ip, (o — I)1},. Equation (3.3) follows by
setting hy = ho = h.

(iif)
ﬂh1 - ﬂh2 = Il—hl - Il—h2 + (Ihl - IhQ)a = Ih2—h1 (I - Oé). (38)
Equation (3.5) follows by setting hy = 0, ho = h.
(iv)

Bhy Bry + Inyadpy, (I — ) = Ta_pyy(1—ho) + Inyadi—py + Ii—py Ing oo 4 Iy aldp,
=I1-n)(1-ho) T Inya+ Lip In,o

= Br-(1-h1)(1—ha)- (3.9)
O
Corollary 3.1 (Telescoping comparison). For all g1, ..., gn, h1, ..., hy:

X — [0,1], we have

ﬂgl T ﬁgn — Bhy -+ Bh, = Zﬂm T ﬁg’i—l‘[hifg'i (I - a)ﬁhiﬂ - B, (3.10)
i=1

= Zﬂgl to ﬂgi—11hi—giﬂ;:i+1 o /B;n (I - a)'
i=1
Proof. This is an immediate consequence of the telescopic decomposition
Bor B = Bra - Br = Y Bar -+ Bai s Bae = Bn)Bhiys -+ Bnnr (3.11)
i=1

the comparison identity (3.4), and the intertwining relation (3.1). O

Lemma 3.1 (Cleaners with restricted support). Suppose that supp(g;) C
Afori=1,...,n, and let h;: X — R be any functions satisfying h; | A =1 for
i=1,...,n. Then

ﬁgl"'ﬁgnI/\:Ih1ﬁg1"'IhnﬂgnIA (312)
and
IAﬂz;lﬁ;n :IAﬁslIMﬁ;nIhn (3.13)

Furthermore,
IneBg, - By, = Ine = By, -+ By, Ine. (3.14)
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Proof. Note first that if supp(g) C A, we have Irc33Ia = 0; therefore, for any h
satisfying h [ A = 1, we have

Bgln = InBgIn = InBgln. (3.15)

So, starting with 3, - - B4, Ia, we successively use the first equality in (3.15),
working from right to left in the product, to transform it into a3y, - - - In B, Ia.
We then successively use the second equality in (3.15), working from left to right
in the product, to transform it into Iy, By, - - - In, By, Ian. This proves (3.12). An
analogous argument gives (3.13). Identities (3.14) are immediately verified by
induction. a

3.2. Inequalities for cleaning operators

We now turn our attention to proving inequalities that say, roughly speaking,
that one operator “cleans better” than another.

Lemma 3.2. (FH) Let A be any subset of X, and let f be any function satis-
fying xao < f < 1. Then
IANI —a)I;w > 0. (3.16)

If, in addition, 0 < h; < xp fori=1,...,n, then
IA(I—a)ﬁhl---ﬂhnIf’wZO. (3.17)
Proof. We have

INI —a)Ifw = I) fw — Iyafw

> Infw — Ihow [since f <1]
> Iz fw— Izw [since aw < w]
=ILh(f-1w=0 [since f =1 on Al. (3.18)

This proves (3.16). Then
IA(I — Oz)ﬂhl N 'ﬂhnlfw = IAﬂZI N ~ﬁ;n(1 — Oz)IfU)
= IAﬂ}tl o 'ﬁZnIA(I — a)Ifw
>0 (3.19)

where the first equality uses the intertwining relation (3.1), the second uses the
identity (3.13), and the final inequality uses (3.16) and the nonnegativity of

B B :

Proposition 3.2 (Multi-monotonicity). (FH) Suppose that 0 < g; < h; <
xa< f<1lfori=1,...,n. Then

ﬁhl“-6hn‘l—fw§/691.-.ﬁgn[fw' (320)
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Proof. We will prove (3.20) by proving separately that Ix.(LHS) < Ix.(RHS)
and that Ix (LHS) < Ix(RHS). The former is in fact equality, since Ixefp, - - X
Bh, = IreBy, - - By, = Iae. The latter follows from the telescoping comparison
identity (3.10) and the inequality (3.17), along with the nonnegativity of the
operators (g, ..., Bq,_, that lie on the left in (3.10). ad

Proposition 3.3 (Collapse inequality). (FH) Suppose that 0 < g;,h; <
xa<f<lfori=1,...,nandj=1,...,m. Then

B+ Bgu By -+ B Lrw < Bro1pn (1—g0) Bry -+ Bn Lpw. (3.21)

Proof. For n = 1 this is trivial. For n = 2 it follows from the collapse iden-
tity (3.6) together with the inequality (3.17). The cases n > 3 are obtained by
an easy induction from the case n = 2. a

Combining Propositions 3.2 and 3.3, we obtain the following comparison
result:

Corollary 3.2 (Multi-monotonicity + collapse). (FH) Suppose that 0 <
hi,gj <xa < f<lfori=1,...,Nandj=1,...,k. Suppose further that
there exist integers 0 < ng <ni < ... <ni < N such that

n;
1- JI a-h)=g (3.22)
i:7lj_1+1
for all j. Then
B, "'6hNIfw < ﬁgl "'69klfw' (3'23)

Now we develop some analogous inequalities going in the reverse direction
provided that we look only at the dirt outside A; moreover, these inequalities
hold pointwise.

Lemma 3.3. Let A be any subset of X. Then
IA(I — a)Ipe <0. (3.24)
If, in addition, 0 < h; < xa fori=1,...,n, then
IAN(I — ), - B, Ire <0. (3.25)

Proof. The inequality (3.24) is trivial since o > 0. To prove (3.25), we make a
computation analogous to that in the proof of Lemma 3.2:

IA(I — Oz)ﬂhl c 'ﬂhnIAc = IAﬂZI o ﬂ;n(f — a)IAc
=InBp, B, In(I — a)Ire <0 (3.26)

where the final step uses (3.24). ad
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Proposition 3.4 (Reverse multi-monotonicity). Suppose that 0 < h; <
gi < xa fori=1,...,n. Then

Bos BouIne > By - Bu Inc. (3.27)

Proof. We will prove (3.27) by proving separately that Ixc(LHS) < Ixe(RHS)
and that I (LHS) < Ix(RHS). The former is in fact equality because of (3.14).
The latter follows from the telescoping comparison identity (3.10) and the in-
equality (3.25), along with the nonnegativity of the operators 3y, , ..., On,_, that
lie on the left in (3.10). O

Proposition 3.5 (Reverse collapse inequality). Suppose that 0 < g;, h; <
xa fori=1,....,nand j=1,...,m. Then

Bagr =+ BanBry *+ BrmIne = Bi[1r, (1—g:)Bhy ** * Brm Lne- (3.28)

i=1

Proof. For n = 1 this is trivial. For n = 2 it follows from the collapse iden-
tity (3.6) together with the inequality (3.24). The cases n > 3 are obtained by
an easy induction from the case n = 2. a

Combining Propositions 3.4 and 3.5, we obtain:

Corollary 3.3 (Reverse multi-monotonicity + collapse). Suppose that
0 < hiygj < xa fori =1,...,N and j = 1,...,k. Suppose further that
there exist integers 0 < ng < ny < ... < ng < N such that

1- J[ a-h)=y (3.29)
i:nj,1+l
for all j. Then
By Brw Ine > By, -+ By Tae. (3.30)

3.3. Identities related to IIx

Lemma 3.4 (Properties of II5). Let A C X. Then the following identities
hold:

(i) Basic properties of Il,:
1% =1I,, (3.31)
InN(I —TIp) =1 —TI,. (3.32)

(ii) Absorption of cleaning operators: If supp(h) C A, then
IhHA = IhOéHA, (333)
Brllp = 114, (3.34)
7By = T14. (3.35)
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Proof. Tt follows immediately from the definition (2.9) of II5 that Ty Txc = Ty
and IpeITp = Ipe, hence TIATTp = TIpTp<TTp = Iy Tpe = IT5. This proves (3.31).
Equation (3.32) is trivially equivalent to IxcIIn = Ipe. It also follows immedi-
ately from the definition of II5 that

IZTp = TIA — Ipe = Tphallp, (3.36)

and premultiplying this by Ij, yields (3.33). The identity (3.34) follows imme-
diately from (3.33) and the definition of §;,. The identity (3.35) follows from
ALy = Halpe(Li—p + Ina) = Hpalpe =114 O

Proposition 3.6 (Convergence-to-balayage identity). Suppose that 0 <
hi < xa fori=1,...,n. Then

By Bh, — A = Bry - Br, In(I —TIy)
= (IaBryIn) -+ - (IS, In)IA (I = T14). (3.37)

Proof. We shall prove the first line of (3.37) by induction on n. It is true for
n =0, by (3.32). So assume it is true for n — 1, i.e. that

By Br. —TIa = By -+ B, In(I —TI4). (3.38)

Left-multiplying by B, and using (3.34), the desired identity follows. The
alternative form (second line of (3.37)) is then an immediate consequence of
Lemma 3.1. ]

Remark. In the absence of the Fundamental Hypothesis, some of the matrix
elements of ITx could be 400, but the identities (3.31)—(3.35) and (3.37) continue
to hold (with some matrix elements possibly +00 or —o0).

3.4. Comparison of cleaning operators with ITx

Definition 3.1. Let A C X. We say that an operator A > 0 is absorbed by 11
in case AIlp = II,.

By Lemma 3.4, operators [, - - - O, with supp(h;) C A are absorbed by II,,
as are all convex combinations thereof.

Operators absorbed by ITp obey some elementary but remarkable identities
and inequalities:

Lemma 3.5 (Comparison with IT,). (FH) Let A C X, and let A > 0 be an
operator absorbed by II5. Then:

(1) 0 <IIaw < Aw. [In particular, if A # X, we have || Al|w—w > 1.]
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(ii) The operator A —II can be decomposed in the form

A—TIp = (A—HA)IA+(A—HA)IAc (3.39)
= AI\ — (IT) — Alj<) (3.40)
= AI\(I —TIy) (3.41)
where
Alp >0, (3.42)
IIA — Alpxe = AIZIIA >0, (3.43)
(TIp — Alze)w < ATz w. (3.44)

(iii) The following norm relations hold:
[A = llwow = [[AIAT = HA)[Jw—sw < 2[[ AL [[w—w (3.45)
and, for every vector ¢ > 0,

(A =TIp)|[w = [[cAIAllw + lc(Ta — Alpe)|lw < 2[|cAIp |- (3.46)

Proof. By Lemma 2.1 we have 0 < [Tyw < w. Applying A on the left and using
Allp =115, we obtain (i). The remark in brackets is obtained by left-multiplying
with any vector ¢ > 0 (¢ # 0) supported on A€.

Equalities (3.39), (3.40) are trivial, and (3.41) follows from AIlp = II5 using
(3.32): A—TIpA = A(I —IIp) = AIN(I —1Ip). (3.42) is trivial. The hypothesis
Allp = II, yields Ty — Alxe = A(IIp — Ipc) = AIAIIA > 0, which is (3.43).
Finally, (3.44) is a rewriting of (i).

The identity in (3.45) is an application of (3.41), and the inequality follows
from the fact that ||[I — Izljw—w < 2 (cf. Lemma 2.1).

Since cAI, is supported on A while ¢(ITp — Alxc) is supported on A¢, the
equality in (3.46) follows from (3.39)—(3.41). The inequality follows from (3.44)
together with the nonnegativity of the operators IIy — Alx. and Aly. a

We can now compare the “efficiency of cleaning” of two operators A and B.

Corollary 3.4. (Comparison of cleaners). (FH) Let A C X, and let
A, B > 0 be operators absorbed by I15. Suppose further that

Alyw < Blzw, (3.47)
Alpcw > Blpcw. (3.48)

Then
”A_HAHwHw < ||B_HAHwHw (?"49)

and, for every vector ¢ > 0,

[e(A = Ta)[lw < [le(B = Ha) |- (3.50)
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Proof. The vector-norm inequality (3.50) is an immediate consequence of the
equality in (3.46) together with the hypotheses (3.47), (3.48).

For the operator-norm inequality (3.49), note that the decomposition (3.40)
yields
Agy for y € A,

3.51
—(IIp — A)gy fory e A (3:51)

(A —=1IA)ey = {
Inequalities (3.42) and (3.43) therefore imply the componentwise identity
|A—HA| ZAIA—I—(HA—AIAc). (3.52)

Inequality (3.49) is an immediate consequence of this identity and the hypothe-
ses (3.47), (3.48) together with (2.12). |

The applications of interest to us follow from the multi-monotonicity bo-
unds (3.20) and (3.27) and the collapse inequalities (3.21) and (3.28):

Corollary 3.5. (FH) Let A C X.
(i) Suppose that 0 < g; < h; < xa fori=1,...,n. Then

”ﬂm to 6hn - HA||w—>w < ”ﬂgl to ﬂgn - HA||w—>w (3-53)

and, for each vector ¢ > 0,
le(Bhy -+ Bn, = )l < [lc(Bg, - -+ By, = TIa) - (3.54)

(ii) Suppose that 0 < h; < xa fori = 1,...,N. Then, for every choice of
integers 0 < n; < --- <np < N, we have

”ﬂhl o Bhy — HAH“’H“’ B ||ﬁ17n:‘:11(17hi) e ﬁl*“?ﬁnkqﬂ(l*hi) o HA”wH“’

(3.55)
and, for each vector ¢ > 0,
(B, -+ Bry = Ha)llo < (B, 1—ny) - "ﬁl_nygnk_lﬂu—hi) — 1) |-
(3.56)

3.5. Convergence of cleaning operators to ITx

We are now ready to study the convergence of cleaning operators 3y, - - - On,,
to IIn. We shall prove the main result in two versions: a uniform (operator-
norm) version, and a dust-dependent (vector-norm) version. A central role in
these analyses will be played, respectively, by the quantities

pa(€) = [[(IaaIn) [l (3.57)
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and, for each vector ¢ > 0,
pall;c) == |le(Iaaln)t|w. (3.58)

Clearly we have 0 < pp(f) < 1 and 0 < par(f;¢) < ||¢/lw. Note also that
both pa(¢) and [since ¢ > 0] pa(4; ¢) are increasing functions of A.
For brevity let us denote
ﬁaA = 6&)(/\ (359)

for0<e<1andaset ACX.
Lemma 3.6. Fix a region A C X and a number € > 0.
(i) If pao(£) — 0 as £ — oo, then
1(Tar Bear I )™ [l oo o0 (3.60)
uniformly for all regions A" C A.

(ii) If the nonnegative vector ¢ € [(w) is such that pa(¢;c) — 0 as { — oo,
then
lle(IarBear Iar)™ [l 0 (3.61)

uniformly for all regions A’ C A.

Proof. The obvious identity

N
N
(InBear I )N = [(1 — e)Iar + 6IA/0JA/]N= Z (é ) (1 —e)N e Iy alp ) In

£=0
(3.62)
(valid for N > 1) allows us to write
(T Benr Tar)™ o }
< BE(Fa (X 3.63
||C(IA/66A/IA/)N||’LU = ( A( N)) ( )

where X is a Binomial(V, €) random variable and

R ={ P e (360

In both cases,

Frr(€) < Fa(0) o 0. (3.65)
Denoting
My = sup Fy (), (3.66)

>K
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we can decompose
E(Fn (X)) < MoP(Xy < K) + Mk, (3.67)

where My < oo [in case (ii) because ¢ € I}(w)]. By hypothesis, given § > 0 we
can choose K so that Mg < §/2. For such K,

K

P(Xy <K)<(1-g)VKNKEY (1-g)F ! 0 (3.68)
£=0

Thus for N large enough the first term on the right-hand-side of (3.67) is also
smaller than §/2. a

We remark that in the situation (i), the inequality
I(Zns Bear I )M 2 |y < (| (La Benr I )™ o | (Zar B In) 2 [l (3.69)
implies that the convergence in (3.60) is actually exponentially fast in N.
Theorem 3.1 (Uniform cleaning). (FH) Consider a region A C X and fun-
ctions 0 < h; < xa (i > 1) such that

> hi(z) = oo uniformly for x € A. (3.70)
i=1

(i) If pa(£) = [(InaIn)|luw—w — 0 as £ — oo, then

||ﬂh1 o ﬁhN - HA||w—>w N—> 0. (371)

— 00

(ii) If the nonnegative vector c€1*(w) is such that pa (¢;¢) = ||c(Iaaly)?||w —0
as f — oo, then
el -+~ B~ Ta) | — 0. (372)

We remark that if A is a finite set, then the hypothesis (3.70) is equivalent to
the apparently weaker hypothesis that .~ h;(z) = oo for all z € A [cf. (3.83)
below]. But if A is an infinite set, then (3.70) is stronger.

Proof of Theorem 3.1. By Proposition 3.6 and the fact that || — I ||p—w < 2
[or alternatively by Lemma 3.5(iii)], it is enough to show that

18ny -+ Ban Ia o - O i case (i), (3.73)

leBhy - Brn IA ]| w Je 0 in case (ii). (3.74)
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Now, since the h; are bounded, (3.70) is equivalent to the existence of § > 0
and a sequence 0 = ng < n; < ng < ... satisfying

nj
S hiz o (3.75)
i:nj,1 —+1
for all j. This, in turn, is equivalent to the existence of £ > 0 such that

j

1= [T (-h)=exa (3.76)

i:nj_1+1

for every j (indeed, we can set € = 1 — exp(—9)). Therefore, by Corollary 3.2,
if N > ng we have

Hﬂin "'5hNIAHwHw < ||ﬁ§AIA||wHwa (?"77)
B, -+ BunIallw < BEATA |- (3.78)
The theorem then follows from Lemmas 3.1 and 3.6. O

Remark. The standard “cleaning” proof of the Dobrushin uniqueness theo-
rem [10,11,13,18,21] proves a very special case of Theorem 3.1(ii): namely,
one assumes the very strong hypothesis aw < (1 — &)w for some £ > 0, and one
takes h; = d5,, where x1,x9,. .. is a sequence that visits each site of A infinitely
many times. The correlations between A and A€ can then be bounded in terms
of ITa (see [10,11,18] for variants of this idea).

Let us also remark that, in the application to the Dobrushin uniqueness
theorem, it appears to be necessary to take w = 1. This choice plays no role
in the “cleaning” proof itself, but plays a role in the final step of the argument,
where the total oscillation of a function of many variables is bounded by the
sum of its single-variable oscillations — not a weighted sum.

The non-uniform (dust-dependent) version of the previous result relies on
the following decomposition:

Lemma 3.7. Fixe > 0 and a set A C X. Then, for all integers N > K > 0,
M = B8 Ie + (InBeaIn) K 1N BN (3.79)

Proof. By (3.14) we have
Ize B, = Ipe (3.80)

and hence
BN = Ine + 1635, (3.81)
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It follows that

N _ QK pN—-K
e — ﬁsAﬁsA
= B8 (Ine + I BN by (3.81)]
= B8 Ine + (InBenIn) S IS5 [by (3.12)]. (3.82)

Theorem 3.2 (Dust-dependent cleaning). (FH) Consider a region A C X
and functions 0 < h; < xa (i > 1) such that

> hi(x) =00 forallz € A. (3.83)
=1

If the nonnegative vector ¢ € ' (w) is such that py(¢;¢) = ||c(Inadp )| — 0 as
{ — oo, then
le(Bhs -+~ By = Ha)llw = 0. (3.84)

Proof. As in the proof of Theorem 3.1, it is enough to show that
1eBhy - Bx Iallw = 0. (3.85)
Fix 6 > 0 and 0 < € < 1. By Lemma 3.6 we can choose K so that
lle(InrBear In )5 [l < 6/2 (3.86)

uniformly for all regions A’ C A. On the other hand, since ¢ € I*(w), we can
choose a finite set A’ C A so that

le(Inaln) Inallw < 8/12(K +1)] (3.87)

for £ =0,1,..., K. Then hypothesis (3.83) guarantees that there exists a se-
quence of integers 0 = ng < n; < ng < ... such that

]

- JI a-h)zexn (3.88)

i=nj_141
for all j. Therefore, by Corollary 3.2, if N > n; we have

1Bhy -+ Brn Iallw < lleBEx Tl (3.89)
Now, by the decomposition (3.79), whenever k > K we have

BEVIN = BE Inar + (Inr Bear In ) K Ino B K I (3.90)
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Applying this to the vector w, we deduce the vector inequalities
ﬁfA/IAU} S ﬁg\,IA\A/w + (IA/ﬁEA/IA/)KIA/w [by (215)}
< B Ianaw + (In Bea In )5 Tyw [by (3.27)]

(IA/Q)ZIA\A/’UJ + (IA/ﬂEA/IA/)KIA/w

]~

K
< (Inadn) Inaw + (In Bear In ) S Inw. (3.91)

Thus,

leBEx Iallw < Y lleaaa) Ina llw + lle(IarBenrar) ¥ [l < 6. (3.92)
£=0

O

Let us observe that, in the absence of some uniformity hypothesis on the h;
[like (3.70)], the convergence in (3.84) can be arbitrarily slow, even if pa(¢; ¢) —0
arbitrarily rapidly:

Example 3.1. Let A be countably infinite (say, A = {1,2,3,...}); let w =1
and choose any ¢ > 0 with ¢ € I'. Let us consider the best possible case for
cleaning, namely a = 0, so that ps(¢;¢) = 0 for all ¢ > 1. Then ||c(B5 —TIp) ||l =
Yo, cill—h(i)]V =: en. It is a fairly simple analysis exercise to show that the
(h;i)i>1 can be chosen so that ey decays more slowly with N than any specified
convergent-to-zero sequence (6n)N>0.°

3.6. Some further identities and inequalities

Let us now prove a beautiful identity for the sum of a geometric series
Zﬁzo(l ABRIA)YN. This identity will play a central role in the next subsection
in the proof of the converse theorem on cleaning (Theorem 3.3).

5Let (c;);>1 be any strictly positive sequence, and let (§5)n>0 be any sequence of non-
negative numbers converging to zero. We claim that one can choose a sequence (hi)i>1 of
numbers in (0, 1] such that ey := 352, ¢;(1 — h;)¥ > & for all but finitely many N.
Proof. Choose Ni such that éy < ¢1/2 for all N > Ni; and for 4 > 2, inductively choose
N; > N;_1 such that §y < ¢;/2 for all N > N;. Then, for each ¢ > 1, choose h; small enough
so that (1 — hi)NiJrl > 1/2. Tt follows that, for N; < N < N;4+1 we have

On < ei/2 < il —h)Nitt <1 — )N <en.

Since every N > Np belongs to some such interval, we are done. [}
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Lemma 3.8. Let A C X, and let h: X — [0,1] be strictly positive on A and
zero outside A. (In other words, supp h = A.) Then

> IaBrInN)NIn = (Iaaln) Iy (3.93)
N=0 k=0

Proof. Everything occurs within A, so for notational simplicity let us sup-
pose that A = X. Write 8, = I1_n + Ira, expand out the Nth power, and
sum over N. We get a sum over all finite sequences (including the empty
sequence) of factors I;_; and Ina. Now let us treat the matrix elements of
«a as noncommuting indeterminates and extract the coefficient of a monomial
Ozozy Ogyms - - Ozp_qz, With & > 0 (it is easy to see that these are the only mono-
mials that arise). To the left of a,,,, we have an arbitrary number (including
zero) of factors 1 — h(z) followed by one factor h(xg): this gives

o0

> [ = h(wo)]"h(zo) = 1

n=0

since 0 < h(xo) < 1. Likewise to the immediate left of each a, ,.,. Finally,
to the right of ay, _,», we have an arbitrary number (including zero) of factors
1—h(xy): this gives Y~ [1—h(z)]™ = 1/h(x), and this factor is cancelled by
the I}, on the left-hand side of (3.93). So each monomial oyyg Ozyzs * ** Qap_ 12k
gets a coefficient 1, which corresponds exactly to the right-hand side of (3.93).

O

Important Remark. By treating the matrix elements of a as noncommuting
indeterminates, we are in essence using the tree formalism that will be described
in detail in Section 4.

If we use a product By, --- By, in place of the single cleaning operator 3y,
then we can obtain an inequality in place of the identity (3.93):

Lemma 3.9. Let A C X, and let f1,..., fm: X — [0,1] be supported on A.
Define h:=1—T[~,(1 — fi). Then

D UaBp -+ B I In <D (Inadn)FIn (3.94)
k=0 k=0

provided that the right-hand side is elementwise finite.

Proof. As in the previous lemma, everything here occurs within A, so we can
assume for notational simplicity that A = X. We apply Corollary 3.1 with
g1=...=gm =0 and h; = f;, to obtain

1By By, = (foiﬁ;ﬁm - --ﬁ}m>(1 C0)=PU-a)  (3.95)
=1



24 T. de la Rue, R. Ferndndez and A.D. Sokal

where P is a sum of products of the operators o, Iy, and Iy, (1 < j < m).
Furthermore, the term in P containing no factors of « is the operator of multi-
plication by

m

oIl a-m=1-T[a-f)=n (3.96)

i=1  j=i+l =1

Since the other terms are nonnegative, we have P > Ij,.
Let us now abbreviate B = 8y, - - - By,,. Under the assumption that > j- ; af
is elementwise finite, we have

(I — ) ( > ak) =1 (3.97)
k=0
Therefore, right-multiplying (3.95) by Y o, " yields
I,<P=(I-B)) o (3.98)
k=0

We now left-multiply this inequality by B* and sum from k = 0 to N: since
B*(I — B) = BF — B! the sum telescopes and we have

N oo oo
> B, <(I-BYTH> aF <> ok (3.99)
k=0 k=0 k=0

Taking N — oo gives the result. O

Lemma 3.9 is a special case of a result to be proven in Section 4.9 using the
tree formalism [see Lemmas 4.13(b) and 4.14(a)]. Indeed, the mysterious oper-
ator P in (3.95) will correspond to the cloud p in Lemma 4.14(a). Furthermore,
in the tree context the summability condition on Y > o can be removed.

Finally, we have a reverse inequality:

Lemma 3.10. Let A C X, and let f1,..., fm: X — [0,1] be supported on A.
Then

e} 00 m—1
Z(IAOJA)k < <Z(1Aﬂfl co 6fmIA)n> < Z (IAOJA)k) (3.100)
k=0 n=0 k=0

provided that >_>° (IpB, - B, In)" is elementwise finite.

The main tool in the proof is the following bound, which uses only the
nonnegativity of the matrix «:
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Lemma 3.11. Let fi,..., fm: X — [0,1]. Then

m m—1
0<> I8, B}, < Y ok (3.101)
i=1 k=0
Proof. Write 8} = I+ aly and expand out the left-hand side of (3.101). Let
us once again treat the matrix elements of a as noncommuting indeterminates
and extract the coefficient of a monomial oz, Qzygy - Oy 1o, With 0 < k <
m—1 (it is easy to see that these are the only monomials that arise). We need to
show that each such coefficient is < 1 (the nonnegativity is obvious). We have
already computed in (3.96) the term with no powers of a: it is 1 — J]";[1 —
fi(zo)] < 1. Now suppose that there are k a’s, occurring at positions ji, ..., jk

with i +1 < j1 < j2 < ... < jr <m. The coefficient of such a term will be

[fi(L = fix1) - (1= fr—0)l(@o) X [f (1 = frr1) - (1 = fio—1)](z1)  (3.102)
X X fi (U= fien) - (L= f)l (k)

and we then need to sum over all choices of indices 1 < i < j; < jo < ... <
Jx < m. First fix j1,...,jx and sum over i: one gets
Jji—1 Jji—1
D= fir) (1= f-)l(@o) = 1= [ 1 = falzo)] <1 (3.103)
i=1 i=1

[just as in (3.96)]. We then sum over j; and so forth, each time bounding the
sum by 1. a

Proof of Lemma 3.10. Once again, we can assume that A = X. Let us abbre-
viate B = By, - -- Bf,,. From (3.95) we have

I-B=P(-a) (3.104)
where Lemma 3.11 gives
m—1
0<P< > ok (3.105)
k=0

Under the assumption that Y~ j B™ is elementwise finite, we have

<§0 B") (I-B)=1I, (3.106)

so we can left-multiply (3.104) by >"°° ) B™ to obtain

I= (2@3”)13(1 — ). (3.107)
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Now right-multiply this inequality by o* and sum from k¥ = 0 to N: the sum
on the right telescopes and we obtain

N 0o 00 00 m—1
St = (S )ru-a < (Sn)rs (X 5) (X o)
k=0 n=0 n=0 n=0 k=0
(3.108)
Taking N — oo gives the result. O

Lemma 3.10 is a special case of a result to be proven in Section 4.9 us-
ing the tree formalism [see Lemma 4.14(c,d)], where moreover the summability
condition on > " (InBy, - - By, Ia)" can be removed. The pair of inequali-
ties (3.94), (3.100) will play a crucial role in the proof of the converse theorem
on cleaning (Theorem 3.3), just as their tree generalizations will do in the proof
of the strong form of this result (Theorem 6.1).

3.7. Converse results

In this subsection we do not assume the Fundamental Hypothesis. Rather,
our goal is to study what happens in case the Fundamental Hypothesis fails.
Here we are entitled to use the algebraic identities that were proven in the
preceding subsections, since such identities are valid irrespective of the Funda-
mental Hypothesis. Furthermore, we are entitled to use those inequalities that
do not refer to the vector w, since they are based only on the nonnegativity of
the matrix elements of a. But we must be very careful to avoid using any result
that depends on the Fundamental Hypothesis.

Our main result is the following:

Theorem 3.3. Let X be a finite or countably infinite set, let A C X, and
let ¢ > 0 and w > 0 be vectors that are strictly positive on A. Consider the
following conditions on a matrix «a:

(a) Yonepc(Iaadp)*w < oco.

(b) For all h: X — [0,1] with supph = A such that h > ex for some ¢ > 0,
we have > po o c(IpBplr)Fw < cc.

(b') Thire exists h: X — [0,1] with supph = A such that Y ;o c(IrB X
Iz w < oo.

(c) For every finite sequence fi, ..., fm of functions X — [0, 1] with supp(f;)
C A such that y, fi > exa for somee > 0, we have > 2~ ¢(IpBy, - - Bf,, X
In)Fw < oc.

(¢) There exists a finite sequence fi,..., fm of functions X — [0,1] with
supp(fi) € A such that > pe o c(IaBf, -+ B, In)Fw < oc.
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Then (a)—(c) are all equivalent and imply (¢’); and for matrices o satistying the
additional hypothesis

There exists a constant C < oo such that Iyalyw < Cw (3.109)
all five conditions are equivalent.

Proof. (b) = (b’) is trivial, while (b’) = (a) = (b) are immediate
consequences of Lemma 3.8.

(a) = (c) is an immediate consequence of Lemma 3.9, and (¢) = (b)
is trivial, as is (¢) = (¢/).

Finally, Lemma 3.10 entails (¢’) = (a) under the hypothesis (3.109). O

Please note that the hypothesis (3.109) is automatic whenever A is a finite
set. On the other hand, the following two examples show that, when A is infinite,
hypothesis (3.109) cannot be dispensed with in proving that (¢/) = (a):

Example 3.2. Let X = {0,1,2,3,...}; set ag; = 1 for all j > 1, and set all
other matrix elements of o to 0. Set w = 1 and let ¢ be any strictly positive
vector in ['. Now let A be any infinite subset of X containing 0. We have

llllx € (0,00)  for k =0,
c(Inodp)fw = { +0 for k =1, (3.110)
0 for k > 2,

so that Y32 c(Iaalp)*w = 400. On the other hand, if we take f; = ... =
fm = xa for any m > 2, we have > .=, c(Irfy, ~-~ﬁfmIA)kw =Y pogcIpax
IA)™ 1w = ||¢||1 < oo. Indeed, we have B4 Ix = 0 for all £ > 2.

Example 3.3. In the preceding example, one of the components of the vector
Iralpyw was +00. Here is a variant in which the vector Iyalpw is pointwise
finite but is not bounded by any multiple of w. Take A = X = {z1, 22, 23,...}U
{y1, 92,3, .. .}; set ag,y; = 1if j < i, and set all other matrix elements of «
to 0. Set w = 1 and ¢;, = ¢, = 1/i®. Then (aw),, = i, (aw),, = 0 and
o*w = 0 for k > 2; so (3.110) again holds and the same choice of fi,..., fm
provides a counterexample.

We will return to these questions in Section 6, where we will prove a signif-
icant extension of Theorem 3.3 (see Theorem 6.1).

4. Tree approach to balayage

In this section we introduce an alternate approach to studying the algebra
of operators generated by o and the multiplication operators Iy, which brings
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out more clearly its underlying combinatorial structure and which permits a far-
reaching generalization of the results obtained in the preceding section. This
approach is based on considering the tree of finite sequences of elements of X6.
Another way of phrasing matters is to say that we are working in the algebra
of formal power series in noncommuting indeterminates {agy }2yex subject to
the relations agyouw = 0 whenever y # u.

The plan of this section is as follows: In Section 4.1 we introduce the formal-
ism of “markers” and “clouds”, and we analyze its relation with the operator
formalism of Section 3. In particular, we introduce the key operation of convolu-
tion of clouds, which corresponds to multiplication of operators. In Section 4.2
we define clouds to represent each of the special operators a, I¢, 3y and II5. In
Section 4.3 we introduce a very important partial ordering < on clouds, which
formalizes (roughly speaking) the comparison of operators by their “efficiency
of cleaning”. We study the circumstances under which the partial ordering <
is preserved by convolution from the left or the right, and we introduce several
important subclasses of clouds (B C P C R € S). In Section 4.4 we prove a
fundamental comparison inequality, which substantiates our assertion that the
partial ordering < is related to the efficiency of cleaning. In Section 4.5 we intro-
duce the notion of a cloud being “carried” by a subset A, and in Section 4.6 we
introduce the stricter notion of being “A-regular”. In Section 4.7 we show that
the cloud 7 (which is associated to the balayage operator I, ) plays a special
role among A-regular clouds, by virtue of its minimality with respect to <. In
Section 4.8 we put all these tools together, and study the convergence of cleaning
operators On, - - - On, to IIx. In the cloud context we can shed additional light
on this convergence, by distinguishing convergence of clouds from convergence
of the corresponding operators. In Section 4.9 we prove some further identities
and inequalities that will play a crucial role in the converse results of Section 6.

4.1. Markers, clouds and operators

A nonempty finite sequence n = (xg,1,...,2x) of elements of X will be
called a marker. We denote by X[ = UZO:() X*+1 the set of all markers.
Given a marker = (xg,21,...,xx), we define

level (n) =k, (4.1)
first (n) := xo, (4.2)
last (1) := xg, (4.3)

77{ = (T, Tig1, - - -, T5). (4.4)

An ancestor (or prefiz) of 7 is any one of the markers 77 (0 < j < k); we write
1’ < 1 to denote that n is an ancestor of . We write ' < 7 to denote that ' < n

SWe use the word “tree” even though it turns out to be convenient, in our approach, to
suppress the root of the tree (that is, the empty sequence).
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and ' #£ 1. A child of  is any marker of the form (zo, z1, ..., xg, x+1) for some
Trr1 € X. A suffiz of 1 is any one of the markers 77;-C (0 <j <k). A subsequence
of n = (xo, x1, ..., x1) is any marker of the form 1’ = (zj,, zj,,...,x; ) for some

choice of indices 0 < jp < j1 < ... < ji < k.

A cloud v = (v,) is a real-valued function on the set X[ of markers. [We
shall sometimes write v(n) as a synonym for v,,.] We say that v has finite support
if v, = 0 for all but finitely many markers n. We say that v is supported on
levels < N if v, = 0 whenever level(n) > N. We define

VIl := sup Y v, (4.5)
n

oxn

and we say that v has finite norm if |||v]|| < co. The set of clouds of finite norm
forms a Banach space with the norm ||| - |||

Clouds allow us to give an abstract combinatorial representation of the alge-
bra of operators generated by « and the multiplication operators, independently
of any particular choice of the matrix a. To see this, let us associate to the
marker n = (zg, 21, ..., %) the operator

T’I = I{rg}al{rl}a"'aI{rk,l}aI{Ik}' (46)

[The level of a marker thus corresponds to the number of factors « in the corre-
sponding operator. In physical terms, a marker = (zo, z1, ..., z)) represents a
piece of dirt that has traveled from z( to z, via the path g — z1 — ... — z.]
More generally, to a cloud v we associate the operator T, defined by

T, :=Y T, (4.7)
n

(Initially this formula makes sense only for clouds of finite support, but we will
soon extend the definition to clouds of finite norm.) Conversely, given any finite
sum of operators of the form Iy oy, --- Iy, ,aly, , we can expand it out as a
(possibly infinite) sum of terms Iy, yol(y,y -+~ I{z,_,yl(s, ) and thus represent
it in the form 7, for some cloud v supported on a finite number of levels;
furthermore, v has finite norm if the functions f; are bounded. Of course, to
make these considerations precise we will have to deal with possibly infinite
sums and specify the exact classes of clouds and operators under consideration.

Proposition 4.1 (Extension of T,). (FH) Let v be a cloud of finite support.
Then
1T [ < I[¥[II (4.8)

Therefore, the definition of the operator T, can be extended by linearity and
continuity to all clouds of finite norm, and the map v — T,, is a contraction.



30 T. de la Rue, R. Ferndndez and A.D. Sokal

Proof. Because a has nonnegative entries, it suffices to consider the case in which
vy 2> 0 for all n. We assume that the cloud v is supported on levels < IV, and we
shall prove the proposition by induction on N. If N = 0, (4.8) is straightforward.
Suppose therefore that N > 0, and consider a vector ¢ = (¢;)zex. (Again, we
can suppose ¢; > 0 for all x € X.) We have

N
”CTV”w = Z Z UnCaoQuox, Oxyazo *° * Olay_qay, Wey, - (49)
k=0 n=(zo,...,zx)

In this sum, the contribution of the markers 7 such that level (n) € {N —1, N} is

§ CroOpoxy """ oy _sxn_1 (VanN—l =+ E VnozNazN—lzNsz)

n=(zo,...,tN—-1) rNEX
(4.10)
where 7 o xy denotes the marker obtained by appending the element zn to 7.
Using the Fundamental Hypothesis in the form

Z Oz _zyWan S Wy _1, (4].].)
rNEX

the contribution (4.10) can be bounded by

D o Qs Wan (Vy SUD vpoay ) (412)
n=(zo,...,tN—-1) tNEX
Thus, we obtain
leTollw < €T | (4.13)
where v/ is the cloud defined by
0 if level (n) = N,
Uy = Up+SUD, cx Vnoay if level (n) = N —1, (4.14)
vy otherwise.
The cloud v’ is supported on levels < N — 1 and satisfies ||| = |||v]||; this
completes the proof. O

Since our goal is to represent combinatorially the algebra of operators gen-
erated by o and the Iy, we need to introduce an operation on clouds that
corresponds to the multiplication of operators. We do this as follows: Given
two markers 7 and 7', we say that n leads to n’ (and write n — 7') in case
last (n) = first (). If n — n’, we define n * 1’ to be the concatenation of n
with ' with the proviso that the element last (n) = first (') is not repeated.
That is, if n = (xg,21,...,2%) and 0" = (Yo, y1,--.,Ykr) With 2y = yo, then



Probabilistic Potential Theory and the Dobrushin Uniqueness Theorem 31

nxn = (o, &1, ..., Tk, Y1, - - -, Yk’ ). Note that level (n*n') = level (n)+level ().
Finally, given clouds v; and vs, we define the convolution vy * vy by

(xwa)(n) = > vilm)ra(n). (4.15)

7112
NLxn2="n

(Note that this convolution is associative but non-commutative.) Since the
sum (4.15) is finite for each 7, convolution is well-defined for arbitrary pairs of
clouds vy, 2. Moreover, if v1 and vy are of finite support (resp. supported on
finitely many levels), then so is v1 * 5. Furthermore, we have:

Proposition 4.2 (Norm boundedness of convolution). Let v and vy be
clouds of finite norm. Then

e oIl < el il (4.16)

Proof. For any marker 7 of level k, we have

k
Z|(V1*u2)(0) (1 % v2)(m) :Z

oxn
k
Z vi ()| [va ()| =

151 T]O VQ(T]z)

Il
<
B I\Mx-
o

| A

Mw EM-

|11 770|Z|V2

U—<nI

04

-.
Il
=]

()| w2l < vl ezl (4.17)

‘Mw

-
Il
=]

d

It is now easily verified that convolution of clouds corresponds to multipli-
cation of operators, i.e.
Toysv, =T, T, (4.18)

whenever v, 5 are clouds of finite norm. Indeed, this formula is easily seen to be
true for clouds of finite support; it then extends by continuity to clouds of finite
norm as a consequence of Propositions 4.1 and 4.2. Of course, the identity (4.18)
is no accident: we defined convolution so that (4.18) would hold! Note in
particular the importance of the “leads to” relation and the non-repetition of
last (1) = first (n'): these implement the identity I1 1 Iy = duyl{a}-

4.2. Some special clouds

Let us now define clouds to represent each of the special operators introduced
in Section 2.1.
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Level indicators. For each k > 0, we define a cloud p* by

1 iflevel(n) =k
k )
= 4.19
(o) {O otherwise. (4.19)

It is immediate that [|[p*[|| = 1 and that T,x = o*; in particular, Tj0 = I. Note
also that p® is the two-sided identity for convolution: p® * v = v * p’ = v for
every cloud v. Furthermore, p* x pf = pF*.

For any cloud v, we shall denote its convolution powers by v*" (or simply v™),
with the convention that v*0 = p°. In particular, we have (p¥)*¢ = p** for all
k,2>0.

Clouds associated to multiplication operators. To each function f: X — R,
we associate a cloud that we shall call (by slight abuse of notation) I:

f(xo) if k=0,
. - 4.20
(£ (@o,..nn) {0 if k>1. ( !
We also write I, as a shorthand for I, . It is easy to verify that |||I¢]|| = || f]l~

and T, = Iy.

Clouds associated to cleaning operators. To each function f: X — [0, 1], we
associate a cloud that we shall call (by slight abuse of notation) 3;:

1—f(xo) ifk=0,
(Bf) (@oyerner) = 4 f (o) ifk=1, (4.21)
0 if k> 2.
We also write 8 as a shorthand for f,,. It is easy to verify that ||| = 1,
Bf =I5+ 1y * p! and Ts, = By.
Clouds associated to balayage operators. For each A C X, we denote by A

the set of markers of the form n = (xo, ..., zx) [k > 0] for which 2, ..., 251 € A
and xp € A°. We then define a cloud wp by
1 ifne JA,
= 4.22
() {0 otherwise. ( )

It is easy to verify that |[|ma||| = 1 whenever A # X, mx = 0, and Ty, = IIx.
Note also that mp *x mpA = .

Indicator clouds. We denote by 1 the cloud that takes the value 1 on all
markers. More generally, for A C X, we denote by 1, the cloud that takes the
values

(4.23)

1 if n has all its entries in A,
(1a)y = .
0 otherwise.
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Formally we have

T, = Zak =(I—-a)!
k=0

and -
Ty, =In Y (Inaln)F Iy = IN(I = Inady) " a;
k=0
but since [||1]|] = |||]1a[|| = oo (for A # &), there is no guarantee that these series

converge. The advantage of the tree formalism is that it makes sense to speak
of the clouds 1 and 1, without worrying about convergence questions.

4.3. A partial ordering on clouds

The space of clouds is obviously endowed with the “pointwise” partial or-
dering defined by

pw<v ifandonlyif u, <y, foralln. (4.24)

(In particular, ¥ > 0 means that a cloud is nonnegative.) We would now like
to introduce a weaker partial ordering that will play an important role in the
sequel; roughly speaking, it formalizes the comparison of operators by their
“efficiency of cleaning”.

To each cloud v, we associate another cloud v, called its cumulative distri-

bution, defined by
Up=> Vo (4.25)

o=xn
or in other words by
U=vxl. (4.26)
(Note also that |[|v||| = || |;/| lloo-) We then introduce a partial ordering < on the

space of clouds, defined by:
Definition 4.1 (Definition of <). p < v if and only if 7 < 7, i.e.
p<v if and only if p, <, for all 5. (4.27)

Obviously p < v implies ¢ < v but not conversely.

Let us begin by proving two useful formulae for the cumulative distribution
of a convolution. If n = (xo,...,2) is any marker and o = (zo,...,2;) is
any ancestor of 7, we denote by 7 \\ ¢ the marker (z;,...,2x); it is the unique
marker ¢ satisfying o x £ = . Also, if n is any marker of level k > 1, we define
n- = 7]571 and n_ = n¥. If n is a marker of level 0, we define n~ =n_ = @
(the empty sequence).
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Lemma 4.1 (Cumulative distribution of a convolution). Let u,v be clo-
uds. Then

(n*v)=p*v (4.28)

or equivalently
(pxv) Z pu(o)p(n\ o) (4.29)
= Zu [\ o) = #(n \ 0)-)] (4.30)

where in (4.30) we make the convention that V(@) = 0.

Proof. Identity (4.28) is an immediate consequence of the associativity of con-
volution:

(wxv)=(u*xv)*x1=px(rx1l)=pxv. (4.31)

(4.29) is just a rewriting of this.
We now insert in (4.29) the identity u(o) = p(o)— (o) with the convention
f(2) = 0. This yields

(xv)(n) =Y fla)v(n \o) Y. Ao )\ o). (4.32)
i 1ev§f;7)21

In the second sum on the right, we make the change of variables { = ¢~ and
observe that n\\ 0 = (n \\ €)_ ; this sum therefore becomes

> RO \E)-). (4.33)

Esn~

The term & = 7 can now be adjoined to this sum, thanks to the convention
v(@) = 0. This proves (4.30). O

In the special case v = (), we have the following formulae:
Lemma 4.2 (Cumulative distribution of 8p). Let h: X — [0,1]. Then
B =1-1I. (4.34)
Proof. From the definition (4.21) we easily obtain

= . 4.35
(B ) (@o,....an) {1 if k> 1, )

which is equivalent to (4.34). O
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Corollary 4.1. (Cumulative distribution of a convolution with 3p).
Let p be a cloud, and let h: X — [0,1]. Then

—_~—

Wk Bp=p— pux*Ip (4.36)

or equivalently
(ko Br)(n) = f(n) — h(last (1)) u(n) (4.37)
= pu(n~) + [1 = h(last(n))]u(n) (4.38)
= h(last (n))p(n~) + [1 — h(last (1))]a(n)- (4.39)
Proof. The formula (4.36) is an immediate consequence of (4.28) and (4.34).
The alternate forms (4.37)—(4.39) are trivial rewritings. O

Corollary 4.2. If t > 0and 0 < g < h <1, then pux By, < px*B,y. In particular,
ﬂh d 69-

Proof. This is an immediate consequence of (4.38). O

Corollary 4.3 (Convolution from the right by 8). Let u1, u2 be clouds
andlet()g h§ 1. Ifﬂ,l S],ug, thenul *ﬂh S],UQ*/@II-

Proof. This is an immediate consequence of (4.39). O
For general clouds v, one can obtain an inequality analogous to (4.38):

Corollary 4.4. (Inequality for cumulative distribution of a convolu-
tion). Let u,v > 0 be clouds with |||v||| < co. Then, for every marker 1,

—~—

(e v)(m) < F )Vl + p(n)v((last (n)). (4.40)

Proof. Rewrite (4.29) as

(s v)(m) =Y wl(o)o(n \ o) + p(n)v((ast (n))). (4.41)
Using v(n \\ o) < |||v]|] in the first term, we obtain (4.40). O

See Lemma 4.13 below for an interesting application of Corollary 4.4.
It is also useful to know under what conditions a cloud p is majorized by a
cloud (p,. The easy answer is the following:

Lemma 4.3 (Majorization by 8). Let ;x > 0 be a cloud and let h: X —
[0,1]. Then the following are equivalent:
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(a) p < B
(b) el <1 and p((x)) <1 — h(z) for every marker (z) of level 0.

Proof. p < (B, means that pi(n) < Bh( ) for every marker 7. By (4.35), this
means precisely that p((z)) < 1 — h(x) for every z € X and that f(n) < 1 for
all 7. m|

Corollary 4.5 (Comparison of 34 with 8,). Let g,h: X — [0,1]. Then
By < By if and only if g > h.

For the cumulative distribution of 3,4 * 3;, we obtain the following important
identity:

Lemma 4.4 (Collapse identity). Let g,h: X — [0,1]. Then

By * B = Bi—(1—gy1—n) — Lg * p* % In. (4.42)

Proof. We use the Kronecker delta notation d;; = 1 if i = j and 0 otherwise.
Let n = (xo,...,x%). Then

(By * Br) (1) = By (™) + [1 — h(zx)] By (n)
=1—g(x0)dr1 + [1 — h(zx)][[1 — g(20)]0k0 + 9(x0)0k1 ]

=1 —=[1 = g(@o)l[1 = h(w0)|dko — g(0)h(21)dk

= Bi-(1-g)a-n) (M) = (g * p* * In)(n) (4.43)
where the first equality uses (4.38), the second uses (4.35) and the definition
of By, the third is an easy rewriting, and the fourth again uses (4.35). ]

Corollary 4.6 (Collapse inequality). Let ¢g;: X — [0,1] for i = 1,...,n.
Then
ﬂgl *ﬂgn < Bi- I, (1—g:) (4'44)

Proof. The claim is trivial for n = 1. For n = 2 it follows immediately from the
identity (4.42) and the fact that I,, *p'* I, > 0. The cases n > 3 can be proven
by an elementary induction using the case n = 2 along with Corollary 4.3. O

We next need to know under what circumstances the partial ordering < is
preserved by convolution. Convolution from the left is easy:

Proposition 4.3 (Convolution from the left). Let u,v1,v2 be clouds sat-
isfying > 0 and v1 < ve. Then p*x vy < p* vs.

Proof. This is an immediate consequence of the formula (4.29). a
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Physically, Proposition 4.3 says that if v; is a better cleaner than 9, then this
same relation holds if both cleaners are preceded by an arbitrary nonnegative
operation .

The behavior of the partial ordering < under convolution from the right
is considerably more subtle; this reflects the fact that the partial ordering be-
tween cleaners is not preserved by arbitrary subsequent nonnegative operations.
Rather, we need to limit the class of subsequent operations that are allowed:

Proposition 4.4 (Convolution from the right). Let v > 0 be a cloud.
Then the following are equivalent:

(a) For all pairs of clouds 1, pe satistying py1 < po, we have pq x v < g * v.
(b p* v Qv forall k> 0.

)
(b') ptxv Q.
) Uy < Uy whenever n' is a suffix of .

(c
(¢") vy <, whenever 1 is a marker of level k > 1 and 1’ = nf.
Proof. The implications (b) = (b') and (¢) = (¢’) are trivial, the impli-
cation (¢/) = (c) is easy.
From p!' x v < v it follows, using Proposition 4.3 and the associativity of

convolution, that
PP s = pF s (pt ) < pF (4.45)

Induction on k then gives (b') = (b).
Now let i be a marker of level £. By (4.29) we have

p(nl) if >k,

: (4.46)
0 if ¢ < k.

(pF*v)(n) = {

From this, we easily get (b) < (c) and (b’) < (¢). Hence (b), (b'), (c) and (c)
are all equivalent.

The implication (a) == (b) is also trivial, because p° x v = v and p* < p°
for all £ > 0.

Finally, (¢/) = (a) is an immediate consequence of (4.30), since (c’)
ensures that the square brackets in (4.30) are always nonnegative. O

Definition 4.2. We denote by R the class of clouds v > 0 satisfying any one
(hence all) of the equivalent conditions of Proposition 4.4.

Remark. Given a cloud v, one can define a “dual” cloud v* by the intertwining
relation (p° — pt) * v = v* x (p* — p!) [compare (3.1)]. Convoluting on the right
with 1, we obtain v*(n) = v(n) — 7(n-). Thus, the “dual” of a nonnegative
cloud v is nonnegative if and only if v € R. (Note, however, that (v*)* # v, so
this is not a true duality.)
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Corollary 4.7 (Multi-monotonicity). For1 < i <n, let u;,v; > 0 be clouds
satisfying pu; Jv; and v; € R. Then py % ... % pup Jvg % ... % vy,

Proof. We use the telescoping identity
n
LKook fly — U1 KL K Uy = Zul*...*m_l*(ui—yi)*y¢+1*...*yn. (4.47)
i=1

By hypothesis, we have pu; —v; <0 for all ¢. By Proposition 4.3, we can convolve
on the left with gy *...* u;—1; and by Proposition 4.4(a) and Definition 4.2, we
can convolve on the right successively by v;41,...,vy. O

Remark. In Corollary 4.7, only vs, ..., v, really need to belong to R, as we
never convolve on the right with v;.

Corollary 4.8 (Multi-monotonicity for cleaners). Let 0 < ¢g; < h; < 1
fori=1,...,n. Then

Bhy %% Bh, I Bg, %% Gy, (4.48)
Proof. An immediate consequence of Corollaries 4.5 and 4.7. O
We now resume our study of the class R:
Proposition 4.5. The class R forms a multiplicative convex cone. That is,
(a) If y,v € R and a,b > 0, then ap+bv € R.
(b) If p,v € R, then pxv € R.
Proof. This is immediate from property (a) of Proposition 4.4. a

We know (Corollary 4.3) that all the clouds G (0 < f < 1) belong to R,
as do all sums of convolutions thereof. But the latter turn out to constitute a
strictly smaller class, as they satisfy a condition like that of Proposition 4.4(c)
not only for suffixes but also for arbitrary subsequences:

Proposition 4.6. Let u be a finite sum of clouds of the form aBy, ... x* s,
withn > 0,0 < fi,...,fn <1 and a > 0. Then p,y < i, whenever 7 is a
subsequence of 1.

Proof. It suffices to prove the result for y = 8¢, *...% 3y, . The case n =0 (i.e.
p = p°) is trivial, so assume n > 1. First we consider the special case in which
each f; = xa,. In this case, we have f1,, = 0 or 1 according to the following rule:

P(zg,....z) = 0 <= there exist indices 1 <ip < ... <ip <n
such that z; € A;; for j =0,..., k. (4.49)
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This is easily seen by induction on n: recall that 8, is supported on levels 0
and 1, with 8a(z0) = xae(zo) and Ba(xo, 1) = xa(x0), so that (4.49) is clear
forn=1. Forn > 2,let p= 0p, *...%0p, and v = fBp, *... %[, _,. By (4.39),
we have for n = (x1,...,2x)

Py = XAn (xk)’ﬁng—l + XAg (xk)ﬁ,,, (4.50)

from which we can see that if v satisfies (4.49), then so does p.

Now, (4.49) obviously implies that if fi,, = 0 and ' is a subsequence of 7,
then fi,, = 0. This proves the Proposition in the special case f; = xa,-

To handle the general case, we note that each function f: X — [0, 1] can be
written in the form

f= ZakXAk (4.51)

k>0

where ar > 0, Y, ar = 1, and (Ay) is a sequence of (possibly empty) subsets
of X. [One way to get such a decomposition is to use the binary expansion

of f(x), .
fla) =" dp(z)27" (4.52)
k=1

with di(x) € {0,1}, and then to set ay, := 27 and Ay, := {z € X : dp(z) = 1}]
From (4.51) together with the fact that 3 is affine in f, it follows that each
cloud of the form B¢, *...x(y, is a convex combination (with a finite or countably
infinite number of terms) of clouds of the form 3y, *...x By, . Since the set
of clouds satisfying the conclusion of the Proposition is obviously stable under
convex combination, the proof is complete. O

Definition 4.3. We denote by B the class consisting of finite sums of clouds of
the form a8y, * ... x By, withn >0,0< fi,...,fn <1landa > 0.

We denote by P the class of clouds p > 0 for which g,y < i, whenever 7’ is
a subsequence of 7.

We have just shown that B C P C R. The following examples show that
both these inclusions are strict:

Example 4.1. Let |[X| > 2and A C X with A # @, X. Then mp € P but mp ¢
B. One might worry that this example is somehow “pathological” because ma
is not supported on finitely many levels. But the next example avoids this
objection. ..

Example 4.2. Let X = {x,y}, and let x be the cloud that takes the value 1
on the markers xy, zzzx, rry, yx, yyr and yyy and takes the value 0 elsewhere
(Figure 1). This is a cloud of norm 1, supported on levels < 2. To verify that
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xTrxr Ty yx yy

Figure 1. The cloud p in Example 4.2 takes the value 1 (resp. 0) on the markers
indicated by a full (resp. empty) circle. This cloud belongs to P but not to 5.

w € P, it suffices to check that for each n satisfying fi,, = 0, one has g, = 0 for
each subsequence i’ of 7. We leave this verification to the reader.

On the other hand, we claim that p ¢ B. Indeed, suppose that we could
write g in the form

n= Z alﬂfl(i) ...k ﬁféi) (453)
i=1 '

with all a; > 0. Then all markers on which p takes the value 0 must also be
given mass 0 by the cloud v; := ﬂf(i) ® ...k ﬁf(i). Furthermore, it is easily seen
1 g

that v; satisfies 7;(n) = 1 for each marker 7 of level > n; (see also Corollary 4.9
below). Since from Figure 1 we see that each marker 7 has at most one ancestor
lying in the support of u, we conclude that we must have v; = p for all 7, so
that the right-hand side of (4.53) can be reduced to a single term. We would
then have y = By, x...* 3y, , where we can assume that none of the functions f;
are identically 0. Since p charges markers of level 2 but no higher, we must
have n = 2; and since p takes only the values 0 and 1, we must have f; = xa,
and fo = xa, for some subsets Ay, A2 C {x,y}. Since p(zzx) = 1, we must
have z € A; and = € Ag; likewise, since p(yyy) = 1, we must have y € Ay and
y € Ag; but then p should take the value 0 on the marker xy, which it does not.
This proves that u ¢ B.

Example 4.3. Let X = {z,y}, and let p be the cloud that takes the value
1 on the markers zx, zyxx, ryry, ryy, yrr, yry, yre and yyy and takes the
value 0 elsewhere (Figure 2). This is a cloud of norm 1, supported on levels
< 3. To verify condition (c¢) of Proposition 4.4, it suffices to check that for
each 7 satisfying [, = 0, one has fi,, = 0 for each suffix ’ of . We leave this
verification to the reader. Hence u € R.
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Figure 2. The cloud g in Example 4.3 takes the value 1 (resp. 0) on the markers
indicated by a full (resp. empty) circle. This cloud belongs to R but not to P.

On the other hand, p does not satisfy the analogous condition for arbitrary
subsequences, because fiyy,; = 0 while fiy, = 1. Hence p ¢ P.

Proposition 4.7. The class P forms a multiplicative convex cone.

Proof. The only nontrivial fact to prove is the stability under convolution. So
let o and v be clouds in P, let n = (yo,...,yx) be a marker, and let 7' =
Yigs -, Yi,) (0 <idg < --- < i, <k) be asubsequence of . For j =0,...,r,
we set »

0j = nglj <. (4.54)

Then, for each o < 7, we set

o' = Wigy- - Yi,)s (4.55)

where £ is the largest index such that o, < 0.
Observing that each o’ < 7/ can be written as o; N7’ for a unique j, we
obtain from (4.30)

T

(xv)(') = oy ) [P\ (o5 0 )) = 5((0' \ (o5 N ')-)].  (4.56)
j=0

Since v € P C R, the square brackets in the preceding equation are always
nonnegative. Moreover, since o; N7’ is a subsequence of ¢;, the fact that p
belongs to P ensures that

filo; ) < o). (4.57)
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Hence we get

<

(wxv)(') < > ilog) [P0 \ (o5 0 n)) = 7((" \ (o5 )= )] (4.58)

Jj=0

On the other hand, the right-hand side can also be written as (u' *v) (),
where p/ is any cloud giving mass fi(o;) — fi(o;—1) to the marker o; N7’ for each
j=0,...,7

Using now (4.29) and again the hypothesis v € P, we get

(nxv)(') < (1 *v) Zu (o5 0o\ (o5 N 1)) (4.59)

<Zu (o; N o(n\oj) = Z( Z u(a))'ﬁ(n\\%‘),

j=0 o;_1<0<0;j

where 0,1 < ¢ means 0;_1 < 0 and 0j_1 # o, and where we set o1 := .
But in each term of (4.59), we have ¥(n\ 0;) < v(n\ o) since v € P C R, hence

(xv)(n') < Y wlo)o(n\ o)

o0,
<Y wlo)pn\ o) = (uxv)(n). (4.60)
oxn
O
For any cloud p > 0 and any marker 7, let us define
My(n) == sup p(n) (4.61)

n':nsn’

(this may possibly be +00); it is the supremum of the sums of p over infinite
ascending branches passing through n. Obviously z(n) < M,(n) < |||g/l|, and
M, (n) is a decreasing function of n with respect to the partial order <.

The clouds belonging to the class R have a remarkable property:

Proposition 4.8. If p > 0 belongs to the class R characterized in Proposi-
tion 4.4, then M, (n) takes the same value for all markers 7.

Corollary 4.9. If i > 0 belongs to the class R and is supported on levels < N,
then [i(n) takes the same value for all markers 1 of level > N.

Proof of Proposition 4.8. Let 11 and ns be any two markers. We can always
find a marker o satisfying 71 — o — 2. Then, for each marker 1’ such that
N2 < 1, we have [using property (c) of Proposition 4.4]

i(n') < fulm x o ') < My(m), (4.62)
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hence
My (n2) < Myu(m). (4.63)

Reversing the roles of 1, and 72, we conclude that M, (m) = M,(n2). O

Definition 4.4. For each (finite) real number a > 0, we denote by S, the class
of clouds p > 0 satisfying M,,(n) = a for all markers . We write S = J,50S

The class S; will play a major role in the sequel (Sections 4.5-4.8).
We have just shown that R C S; let us now show that this inclusion is strict:

Example 4.4. Let X = {x,y}, and let u be the cloud that takes the value 1
on the markers zz, zyz, xyy and y, and takes the value 0 elsewhere (Figure 3).
Then we have M, (n) = 1 for every marker n, but p' * u @ u (consider the
cumulative distributions on the marker zy). So p € 81 but u ¢ R.

Proposition 4.9. The class S forms a multiplicative convex cone. More specif-
ically:

(a) If pe S, andv € Sy and s,t > 0, then sy + tv € Sgattp-
(b) If u € S, and v € Sy, then p*v € Sgp.
Proof. (a) Given p € S,, v € Sp and s,t > 0, we clearly have
Msyte0(n) < sa+tb

for any marker . The reverse inequality is easily obtained by choosing 1’ =
n such that 3>° . su(c) > sa — e and then choosing n” = 7' such that

Doy tr(0) > th —e.
(b) Equation (4.29) gives, for any marker 7,

u xv)(n) <b Z (o) < ab. (4.64)

oxn

For the reverse inequality, we first choose 7 = 1 such that > _ <7 u(o) > a—e.
Observe next using (4.29) that for any 1’ 3= 77, we have

(uxv)(n') = > p(e)v(n' \ o) (4.65)

o7

Now, if level(7]) = k, we construct inductively a sequence T ) < 71 < ... <1
such that 7(n. \ o) > b — ¢ for any o < 7 with level(o) < r =7
in (4.65) gives the desired result. g

In summary, we have introduced four natural classes of clouds, which are
multiplicative convex cones and satisfy BC P C R C S.
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TTT Ty \TYT | ayy

Tx Ty yxr yy

Figure 3. The clouds p and p! * p in Example 4.4 take the value 1 (resp. 0) on
the markers indicated by a full (resp. empty) circle. The cloud p belongs to Sy
but not to R.
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4.4. A fundamental inequality

Let us now substantiate our assertion that the partial ordering < is related
to efficiency of cleaning.

Proposition 4.10 (Fundamental comparison inequality). (FH) Let u
and v be clouds of finite norm. If y < v, then

T,w < T,w. (4.66)
If in addition p,v > 0, then one has
1T llw—w < Tl (4.67)
and, for every vector ¢ > 0,
[eTullw < 1Ty [|uw- (4.68)

Proof. Because p and v have finite norm, T, w (resp. T, w) is the pointwise limit
of Tj,yw (resp. T,y w) as N — oo, where for each N > 0 the cloud py (resp. vy)
is supported on levels < N and coincides with p (resp. v) on these levels. Thus
it is enough to prove the result when both p and v are supported on levels < N.
We shall do this by induction on N.

We clearly have (4.66) if N = 0. So let N > 1, and assume that (4.66) holds
whenever i and v are supported on levels < N — 1. Now let i and v be clouds
supported on levels < N with © < v. We can suppose that

v(n) =0 whenever level (n) = Nj; (4.69)

for if this is not the case, we can simply replace p and v with the clouds obtained
by subtracting v(n) from both u(n) and v(n) for each marker n of level N.
Furthermore, we can also suppose that

u(n) >0 whenever level (n) = N; (4.70)

otherwise, for each marker n of level IV such that u, < 0, we can replace u,
with 0: the new cloud obtained in this way is still < v.
Next, we consider the cloud p’ defined by

0 if level (n) = N,
' (n) = q pn) +sup, ex p(noan) if level () = N — 1, (4.71)
w(n) otherwise.

Note that the definition of p’ is the same as (4.14) in the proof of Proposition 4.1,
and a similar calculation using the Fundamental Hypothesis gives

Tyw < Typw. (4.72)
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Now, p/ and v are supported on levels < N — 1, and the induction hypothesis
gives
Tyw < T,w. (4.73)

Together these prove (4.66).
Finally, (4.67) and (4.68) are easy consequences of (4.66) in the case of
nonnegative clouds p, v and, for the latter, nonnegative dirt vectors c. a

4.5. Clouds carried by A

The following definition will play a fundamental role in our analysis:

Definition 4.5. Let A C X. We say that a cloud p is carried by A in case
ty = 0 for every marker n = (2o,21,...,2;) having at least one index j < k
with IS A°.

Physically, this means that p, interpreted as a cleaning operator (i.e. as
acting by convolution on the right), never sends dirt back into A from outside A.

Please note that for clouds p carried by A, we have M, (n) = fi(n) whenever n
has at least one entry outside A.

Lemma 4.5. Let A C X. Then:
(a) All clouds Iy are carried by A.
(b) The cloud By is carried by A if and only if supp(f) C A.

(
G

)
)

¢) The cloud my/ is carried by A if and only if either A’ C A or A’ = X.
) If uw and v are carried by A and a,b € R, then ap + bv is carried by A.
)

(e) If u and v are carried by A, then p v is carried by A.

Proof. (a) The cloud Iy is nonvanishing only on markers of level 0, and so is
manifestly carried by A for any A.

(b) The cloud ¢ is nonvanishing only on markers of levels 0 and 1. For the
latter we have (8¢)(z0,2,) = f(70). It follows that 3y is carried by A if and only
if f(x) =0 for all x € A°.

(¢) follows easily from the definitions.

(d) is trivial.

(e) Suppose that (p * v)a,....2,) 7 0. Then there must exist an index j
(0 < j < k) such that p,,..2,) 70 and vy, .+, # 0. But since p and v are
carried by A, we must have zg,...,z;-1 € A and z;,..., 251 € A. O

Clouds carried by A satisfy an identity analogous to Lemma 3.1:
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Lemma 4.6. Let A C X, and let p1, ..., i, be clouds carried by A. Then the
cloud py * ... * p, * In is supported on markers having all their entries in A.
Moreover, if h;: X — R are functions satisfying h; | A =1, then

U1Kk iy x IA = Tpy oy % ook Iy o i % Ip. (4.74)

Proof. By Lemma 4.5, the cloud pq * ... * p, is carried by A. It follows that
{1 * . . % fi, % Ip can be nonzero only on markers n = (xg, ..., zx) with all ; € A
(0 <i < k). For such 7, the presence of the factors I}, changes nothing. ad

We also have the following property concerning convolutions with m:

Lemma 4.7. Let A C X, and let u > 0 be a cloud. Then the following are
equivalent:

(a) w is carried by A.
(b) p*ma is carried by A.

Proof. (a) = (b) follows from Lemma 4.5(c,e).

(b) = (a): Suppose that p is not carried by A, i.e. that there exists a
marker n = (zo,21,...,2x) and an index j < k such that z; € A® # @ and
w(n) > 0. If zx € A°, we have (u*mp)(n) > p(n) > 0; if zx € A, we have
(wxmp)(n') > u(n) >0 for ' = (xo,x1,...,2k,y) with any y € A¢; either way
we conclude that p * 7y is not carried by A. O

Remark. The implication (b) = (a) is false if u is not assumed nonnegative.
To see this, consider X = {z,y} and A = {z}, and set u(yz) = 1, p(yz*y) = —1
for all k > 1, and g = 0 on all other markers. Then it is not hard to verify that
pxma = 0. But p is not carried by A.

For certain pairs of clouds carried by A, we can prove an inequality going
in the opposite direction to Proposition 4.10, provided that we look only at
markers ending outside A; moreover, this inequality holds pointwise. Let us
recall that OA denotes the set of markers of the form n = (xo,...,zx) [k > 0]
for which zg,...,xr_1 € A and x; € A°.

Proposition 4.11. Let A C X, and let p,v > 0 be clouds carried by A. Sup-
pose further that f(n) < v(n) for all markers n € OA. Then the following are
equivalent:

(a) p <.
(b) wx Iy <wv=xIf for every f satisfying xa < f < 1.

(C) pwx Iy Jvxly.
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(d) p(n) < v(n) for every marker n having all its elements inside A.

Moreover, if A # X and u(n) = v(n) for all n € OA, then (a)—(d) are equiva-
lent to

(€) pxIpe > v Ipe.

Proof. Since pu and v are carried by A, the hypothesis implies that i(n) < 7(n)
for every marker n having at least one element outside A. It follows that (a) is
equivalent to (d).

On the other hand, the inequalities expressing (a)—(c) are all identical when
evaluated on markers 7 having all their elements in A: they simply assert (d).
So we have (b) = (¢) = (d), and it suffices now to show that (a) implies
the inequality (b) when evaluated on markers 7 having at least one element
outside A. So let 1 be such a marker, and let o be its unique ancestor in JA.
Then

—_~—

(x 1)) = (u*17)(0) = filo™) + f(last (o)) ()
= [1 = f(last (o))]a(0™) + f(last (0))7(0)

and likewise for v. [Recall that if n = (xo,...,zx), then n~ := (xo,...,Tx_1).]
It follows, by taking a convex combination of inequalities, that (a) implies (b).

Since p is carried by A, the cloud p* Ixc is supported on A, and for n € OA
we have

(ko Iae)(n) = p(n) — p(n~) (4.75)
and likewise for v. If fi(n) = v(n) for all n € JA, then (e) is equivalent to

p(n~) <v(n~) (4.76)

for all n € OA. But since A # X, every marker o with all its elements in A is of
the form 7~ for some 1 € JA, so this is equivalent to (d). O

Corollary 4.10. Let A C X, and let p,v > 0 be clouds carried by A and
belonging to the class S, (cf. Definition 4.4) for the same constant a. If u < v,
then

(1) M*IAC ZV*IAC ,
(ii) p* I <wvxly for every f satisfying xa < f < 1.

This is an immediate consequence of Proposition 4.11 together with the
definition of S,, which entails that M,(n) = M,(n) = a for all markers 7.
Corollary 4.10 applies in particular (with a = 1) if p and v are of the form
Bhy * ... x By, with all supp(h;) C A.
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4.6. A-regular clouds

Definition 4.6. We say that cloud p > 0 is A-regular in case it satisfies the
following two conditions:

pa(n) <1 for all markers n [ie. [[|ulll < 1], (4.77)
a(n) =1 for all n € JA. (4.78)

Lemma 4.8. Let A C X, and let u > 0 be a cloud.

(a) If A # X, then p is A-regular if and only if it is carried by A and belongs
to the class S;.

(b) If A = X, then p is A-regular if and only if ||| < 1.

Proof. (a) If 4 € S1, then (4.77) clearly holds. If, in addition, p is carried by A,
we have [i(n) = M,(n) = 1 whenever n has at least one element outside A, so
that (4.78) holds.

Conversely, suppose that p is A-regular and that A # X. If n has all its
entries in A, then it is a proper ancestor of some o € JA (since A # X), and
we have M, (n) > (o) = 1. If n has at least one entry outside A, then it has a

(unique) marker o € JA as an ancestor, in which case M, (n) > 1(n) > (o) =
On the other hand, by (4.77) we always have M, (n) < 1, hence M,(n) =
for all n and thus p € &;. Finally, if n has some proper ancestor o € 6
then (4.77), (4.78) imply 1 > fi(n) = p(n) + (o) = p(n) + 1, hence p(n) =
so that u is carried by A.

(b) If A = X, the condition (4.78) is empty. O

Corollary 4.11. Let A C X. Then:
(a
(b

) The cloud p° (indicator of level 0) is A-regular.
)

(¢) The cloud wp: is A-regular if and only if A’ C A.
)

The cloud By is A-regular if and only if supp(f) C A.

(d) If u and v are A-regular, then u * v is A-regular.

Proof. This is an immediate consequence of Lemma 4.8 along with Proposi-
tion 4.9 and Lemma 4.5; for part (c) one has to think separately about the
cases in which A and/or A’ is equal or not equal to X. o

Corollary 4.12. Let A C X, and let u be a A-regular cloud. Then

IAc * U= IAc, (479)
IA*M*IAZ[J,*IA. (480)



50 T. de la Rue, R. Ferndndez and A.D. Sokal

Proof. We begin by proving (4.79). The claim is trivial if A = X, so assume
A # X. By Lemma 4.8, p is carried by A, so it must vanish on all markers of
the form (zo,...,zx) with 2y € A€ and k > 1. But then, since u belongs to Si,
it must give mass 1 to each marker of the form (x¢) with zg € A°.

(4.80) follows from (4.79) by convoluting on the right with I, and rearrang-
ing. O

Corollary 4.13. Let A C X, and let u,v be A-regular clouds. If p < v, then
(i) pxIpe > v*Ipe.
(i) pw* I <v=Iy for every f satisfying xa < f < 1.
Proof. If A # X, this is an immediate consequence of Lemma 4.8 and Corol-
lary 4.10. If A = X, the claims are trivially true. a

4.7. Comparison of T}, with ITx

We recall that the cloud 7y, which is the indicator of JA, is associated to
the operator II5. This cloud plays a special role among A-regular clouds, by
virtue of its minimality with respect to <:

Lemma 4.9. Let A C X, and let u be a A-regular cloud. Then:
(a) p*Ine <mp < p < p0.
(b) If A # X and p is supported on levels < N, then mp < BY < pu.

Proof. (a) Let p be any A-regular cloud and let n be any marker. Then either
there exists o < n with o € 9A, in which case fi(n) and 75 (n) are both equal
to 1; or else there does not exist such a o, in which case w4 (n) = 0 < fz(n). This
proves that mp < . Then, Corollary 4.13 gives p * Ixe < mp * Ipne = mp. The
inequality p < pY is trivial.

(b) Corollary 4.11(b,d) shows that 3% is A-regular, so the relation w5 < BY
follows from (a). For the second inequality, observe first that for each marker n
of level < N, we have 8% (n) = ma(n), hence

BN (n) = 7x(n) < Fil), (4.81)

where the last inequality again uses (a). On the other hand, if level(n) > N,
since ﬁf\V and p are A-regular clouds supported on levels < N, we always have

BY () = 1= (), (4.82)

where the last inequality uses g € S from Lemma 4.8(a). This proves that
By < p. o
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Lemma 4.10. Let A C X, and let > 0 be a cloud. Consider the following
statements:

(a) p is A-regular.

(b) p*mpA = TA.

(C) TA K= TA.
Then (a) implies both (b) and (c); and if A # X, then (b) implies (a) as well.
Proof. Suppose first that p is A-regular. Then by Lemma 4.9, we have my <
i< pP. Since mp € R, we can right-convolute this inequality with 75 to obtain
A Quxma < 7p (since mp xmA = wp), thus proving (b). Likewise, since mp > 0,
we can left-convolute with 75 to prove (c).

Now suppose that p* mp = mp. By Lemma 4.7 we deduce that p is carried
by A. Moreover, if n € OA, we have

L= ma() = (e ma)m) = 3 wl@)man\ o) = 3 ulo) = fitn).  (4.83)

When A # X, it easily follows that u is A-regular. o

Remark. The implication (¢) == (a) is false when A # ©@: consider, for
instance, p = Ipne. Indeed, (¢) does not even imply that u is carried by A:
consider, for instance, p = Ire 4 Ip * p! % Ipne * pl.

We now examine the deviation y—my, and prove analogues of Proposition 3.6
and Lemma 3.5:

Lemma 4.11 (Comparison with wa). (FH) Let p be a A-regular cloud.
Then:

(a) The cloud p — w5 can be decomposed in the form

p—ma = (u—ma)*Ip + (p— mp) * Ipc (4.84)
=pxIp — (mpA — px Ipe) (4.85)
=px Iy — px Iy *my (4.86)

where

(i) = In is nonnegative and is supported on markers all of whose entries are
in A;

and

(ii) ma — p* Ixc is nonnegative, is < p*Ix, and is supported on markers in OA.
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(b) For any vector ¢ > 0, we have

(T = Tl = eTudallw + le(Ta = Tplae)llw < 2 ¢Tulpllw. — (4.87)

(c) We have
HTN — A llw—w < 2||TMIAHwHw~ (4.88)

Proof. (a) The equalities (4.84), (4.85) are trivial, and (4.86) follows by using
Lemma 4.10: mp — ok Ipe = ppxmp — pox Iye xmp = ok Ip * mp. The inequalities
0 <mp —p*Ipe <pxly are an immediate consequence of Lemma 4.9(a).

(b) The equality is an immediate consequence of the identity, sign and sup-
port properties from part (a). The inequality comes from 0 < 7o —pxIpe < pxlp
together with Proposition 4.10.

(c) For a general vector ¢, we can always write

(T = 1)l < el [Ty = T Jluw (4.89)
— el Tudallw + 11 el(Ta = TuIae) s
and the result then follows from part (b). O

Proposition 4.12 (Comparison of cleaners). (FH) Let u and v be A-regu-
lar clouds, with p < v. Then:

(a) We have
wxIpn Jvxly, (4.90)
/,L*IAC ZV*IAC, (491)
A — ok Ine <A — vk Ipe. (4.92)

(b) For any vector ¢ > 0, we have

(T — 1Al < [le(Ty — Tp) [fws (4.93)
cTyIne > Ty pe. (4.94)

Proof. (a) is a restatement of Corollary 4.13. (b) then follows by using the
equality in (4.87) together with Proposition 4.10, exploiting the nonnegativity
of all the operators in question. O

Proposition 4.13 (Comparison of cleaning sequences). Let (i, )n>1 and
(Vn)n>1 be sequences of nonnegative clouds, with p,, A-regular and p, < v,
for all n. If v, converges pointwise to ma [i.e. im, oo n(n) = ma(n) for all
markers n], then u, also converges pointwise to mx.
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Proof. Since py, < vy, we have py, < v,. The pointwise convergence of v, to mx
is equivalent to the pointwise convergence of v, to w4, where

) (4.95)
1 otherwise

— 0 if n has all its entries in A,
Ta(n) =
(that is, 74 = 1 — 1,). Hence i, (n) — 0 if n has all its entries in A; and for all
other markers n we have 1,(n) = 1 for all n by A-regularity. Hence i, — 7z,
ie. fbn — mA. O

4.8. Convergence of cleaning operators

We are now ready to study the convergence of cleaning operators 3y, - - - On,,
to IIa, analogously to what was done in Section 3.5. But in the cloud context
we can shed additional light on this convergence by dividing our analysis into
two parts:

(1) Let (pn)n>1 be a sequence of clouds that converges, in some suitable
topology, to a limiting cloud p,. Under what conditions can we show that
the operators 7T}, converge, in some correspondingly suitable topology,
to Tp..7

(2) Consider the special case p, = Bp, * ... * Bp,. Under what conditions
on the sequence (h,) does p,, converge to ma in the topology needed in
part (1)?

We shall carry out this two-part analysis in two versions:

(a) Pointwise convergence p, — [l entails vector-norm convergence T}, —
T,

oo

(b) Uniform-on-levels convergence p, — poo entails operator-norm conver-
gence Ty, — T} ..

In each case we shall require, as was done in Section 3.5, that (Inaly)* — 0 in
a suitable topology.

4.8.1. Pointwise (vector-norm) version

We begin with the pointwise (vector-norm) version of the convergence theo-
rems. So let (pn)n>1 be a sequence of clouds such that, for each marker n, the
sequence p,(n) converges to a limit ps (7). In order to control the convergence
of the T},,, we shall assume that all the clouds u, are A-regular (for some fixed
set A C X). It is immediate from Definition 4.6 that the limiting cloud poo is
likewise A-regular.



54 T. de la Rue, R. Ferndndez and A.D. Sokal

Theorem 4.1. (Convergence theorem, pointwise version). (FH) Let
(n)n>1 be a sequence of A-regular clouds satisfying, for each marker 1,

Ha(n) — oo (). (4.96)

n—oo

Then, for any vector ¢ > 0 with cI, € I*(w) and satisfying

le(Taadn)* |l — 0, (4.97)
we have
16Ty = Tl — 0. (4.98)

The proof of Theorem 4.1 will be based on the following lemma:
Lemma 4.12. Let p and v be A-regular clouds. Then
i —v| Q20— o] L. (4.99)
Proof. We shall prove that
| — v| * Tae < p—v| % 14, (4.100)

which is obviously equivalent to (4.99). Since p is A-regular, p % Ine charges
only markers in A, and for o € OA we have

(0 Ine)(0) = (o) = 1= 3 ulo’) =1 - (u+1n) (o). (4.101)

o' <o

The same result also holds for v, so that any marker o € A we have

(ljp—v| *Ipe)(o) < (Ju—v| * In)(0). (4.102)

Now, for any marker 7, either n has all its entries lying in A, in which case

—_—~
—_~—

(I = vl Ine ) (m) = 0 < (I — v+ In) (), (4.103)

or else there exists a unique o < 1 with ¢ € JA, and then we have

(In = vl % Ine)(n) = (| — v] % Ine)(0) (4.104)
< (lw=vl*In)(0) < (Ju—v|*Ia) ().
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Proof of Theorem 4.1. Fix any € > 0, and choose k so that
le(Iaalp)¥|lw <e. (4.105)
It is easy to see that for all j > 1 we have
(In* pt x I\ S Iy x pt x 1)) < ... <Dy (4.106)

therefore, by Proposition 4.10, the sequence (||c(Iaalp)? Ip||w) >0 is decreasing.
In particular, the hypothesis c¢Iy € I*(w) ensures that all these quantities are
finite. Therefore we can find a finite subset A’ C A such that for every j in the
interval 0 < 5 < k we have

||c(IAo<IA)jIA\A/||w <e/(k+1). (4.107)
Using Lemma 4.12 and Proposition 4.10, we get

(T = Tuc) lw < €T —poell < 201€T 1, oo | 1 - (4.108)

n

Furthermore, by the A-regularity of u,, and p, the cloud |, — fteo|* Ia charges
only markers with all their entries lying in A. Let us now divide the set of such
markers into three classes as follows:

Class 1: Markers of level < k with all their entries lying in A’.

Class 2: Markers of level < k with at least one entry lying in A\ A’.
Class 3: Markers of level > k.

We can then decompose any cloud g, * Iy (ftx = fn O pioo) in the form
pl+ 2 + p3 so that pl charges only markers of class i. The triangle inequality
yields

€T i —poeIA Nl < NeTipn -t llw + 1Tz llw + |z, llw (4.109)
+ ||CT;L$;||w + ||CTM§°||wa

and we will now bound these contributions separately as follows:

Class 1. Since class 1 is a finite set of markers, condition (4.96) ensures that
L1 _ (]|l can be bounded by ¢ if n has been chosen large enough.
[ — 3o |

Class 2. We compare the cloud p? (which stands for either u2 or p2,) with
the cloud

k

1/2 = Z(IA*pl*IA)j*IA\A/' (4].].0)
7=0
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For each marker 7, either there exists some o < 1 with o € A’ and level(o) < k,

in which case v2(n) =1 > /E(n), or else p2(n) = 0 (remember that u? charges
only markers of class 2). Hence, we have

u? Qv (4.111)
Then, Proposition 4.10 and (4.107) together give
k: .
leTyz llw < le(Taadn)Y Iy llw < €. (4.112)
j=0

Class 3. The cloud p? (standing for p or p3.) satisfies

pd < (I * pt x Ip)E. (4.113)

Applying again Proposition 4.10 gives, by (4.105),
€Ty |lw < lle(Inalp)||w < e. (4.114)
O

Example 4.5. It is natural to ask whether the hypothesis of A-regularity in
Theorem 4.1 can be weakened to assuming that the pu,, are carried by A, with
llznlll = 1 for all n (or even |||pyl||| uniformly bounded). The answer is no, at
least when A€ is infinite and A # 0: it suffices to choose ¢y € A and a sequence
of distinct elements y1, yo, ... € A¢, and to let p,, be the cloud taking the value 1
on the marker (zoy,) and 0 on all other markers. Then u, — 0 pointwise; but
if we take ¢ = 04, w =1 and a = (1/2)1, we have ||cT}, ||l» = 1/2 for all n. So
the role played by Lemma 4.12 in handling markers ending in A€ is apparently
crucial.

Here is one natural context in which a sequence of clouds (i) has a point-
wise limit poo: Suppose that (u,) is a sequence of nonnegative clouds that is
decreasing in the sense of <, i.e.

v Dty D Do Do (4.115)

Then for each marker n the sequence 1, (n) is decreasing and bounded below
by 0, hence has a limit. Since p,(n) = pn(n) — pn(n™), we deduce that for
each 7 the sequence i, () converges as well, to a limit which we call p (7).
In particular, we get a sequence of A-regular clouds satisfying (4.115) by
considering
Pn = Ppy * ... % B, (4.116)

where (hy)n>1 is a sequence of functions taking values in [0, 1] and supported
on A. We are mainly interested in the case where the limit puo, of the se-
quence (4.116) is equal to m5. The following proposition gives a necessary and
sufficient condition on the functions (h,,) for this to happen:
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Proposition 4.14. (Conditions on cleaning sequences, pointwise ver-
sion). Let (h,)n>1 be a sequence of functions satisfying 0 < h,, < xa, and
define

tn i= Bhy % ... % Pp, . (4.117)

Then pu,, converges pointwise to wp if and only if
Z h, =00 on A. (4.118)
n=1

Proof. Let us prove first that the condition (4.118) is necessary. Suppose that
there exists x € A such that

ihn(x) < 00, (4.119)

n=1

and let N be an integer such that

> h(x) < 1. (4.120)

n>N

We first claim that we can find a marker  with last () = = such that uy(n) > 0.
Indeed, since ppn is supported on finitely many levels, let us choose a marker o
of maximum level with px (o) > 0. Then every marker n obtained from o by
changing its last entry — in particular the one with last(n) = z — satisfies
un(n) = pn(o) > 0 (this is a consequence of the fact that uy € Sy).

Now, for each n > N, we have

() = (UN * Bry g * - % Br,)(0) (4.121)
> unm) (1= hysa(@) - (1= ha(2)) > pn(n) (1 -y hk(x))-
k=N-+1
It follows that
pn(n) > 0= ma (). (4.122)

This proves the necessity of (4.118).

Conversely, assume that (4.118) is satisfied, and let us prove that peo = 7a.
Since each g, is A-regular, it is enough to verify that for each marker n =
(Yo, - - -, yx) with all y; € A, we have

pin(n) — 0. (4.123)

n—oo

We fix such a marker and set

N = {yo, ..., yx} (4.124)
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Now, let N be a large enough integer (to be made precise later). Hypothe-
sis (4.118) ensures that if n is large enough, we can find indices 0 = ng <

ny < ...<mny = n such that for each j =1,..., N and each y € A’, we have
1-— hi(y) > =. 4.125
RRINRIUES (4125)

Then Corollaries 4.8 and 4.6 imply that

pn DBy ek R By ey D8, (4.126)
where 1
h=Sxa (4.127)
Hence o
fin(n) < (Br)*N (n). (4.128)
But an easy induction shows that for each j =0,...,k, we have
* N —N N
(Br)™" ™ (Yo, -+, y;) =2 Py (4.129)
Thus, p,(n) can be made arbitrarily small if we take N large enough. O

Combining Theorem 4.1 and Proposition 4.14, we obtain Theorem 3.2 as an
immediate corollary.

We can also obtain, as an easy corollary of Proposition 4.14, the following
generalization of it:

Corollary 4.14 (Cleaning by clouds). Let (v,),>1 be a sequence of A-re-
gular clouds satisfying

[1—vp((x)] =00 forallzeA. (4.130)

M8

n=1

Then vy * ... * v, converges pointwise to my .

Conversely, if v1 * ... * v, converges pointwise to mo and the (vy)n>1 are
all supported on finitely many levels and belong to Sy (this last is automatic if
A # X)), then (4.130) holds.

Proof. Define h,(x) = 1 — v,((z)). By Lemma 4.3 we have v; < §p,,. By
Corollary 4.7 we have vy *...%v, < By, *...% [, . The result then follows from
Propositions 4.14 and 4.13.

The converse holds under the specified conditions, by exactly the same proof
as in Proposition 4.14. O
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Remark. For the converse, the hypothesis that the (v,),>1 be supported on
finitely many levels (and belong to 81 if A = X) is essential: a counterexample
isvy=mp, 2o =v3=---=1.

We can also weaken the condition on the sequence (v,) if we look only at
the dust that stays inside A:

Corollary 4.15. (Generalized cleaning by clouds, behavior inside A).
Let (vn)n>1 be a sequence of nonnegative clouds that are carried by A and
satisty |||vnl]| < 1 and

i[l —vp((z))] =00 forallx € A. (4.131)
n=1

Then vy * ... *x vy, x I\ converges pointwise to zero.

Proof. Note first that, by Lemma 4.6, the cloud vy * ... % v, % I is supported
on markers having all their entries in A. Now define h,(z) = 1 — v, ((x)); again
by Lemma 4.3 we have v; < (y,, and by Corollary 4.7 we have vy * ... x v, <
Bhy *...% By, . By Proposition 4.14, we have Oy, * ... * 85, — 7 pointwise, so
that

P

(Bhy * -« B, ) () — 0 (4.132)

for all markers n having all their entries in A. Since vy *...%xvy, < By, *...% 0, ,
it follows that, for such markers,

(.. %) (1) — 0 (4.133)

and hence also (v1 *...%vy,)(n) — 0. ]

Remark. Here there is no converse: one could take, for instance, v1 = I and
V2:V3:"':I.

4.8.2. Uniform (operator-norm) version

Let us now consider the uniform (operator-norm) version of the convergence
theorems. We shall assume that u,, converges to pio, uniformly on all markers
of a given level, i.e.

sup  |pn(n) — proc(n)] — 0 (4.134)

level(n)=¢ n—oo

for each ¢ > 0. In this case it is not necessary to assume that the pu, are A-
regular; it suffices to assume that they are carried by A and uniformly bounded
in norm.
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Theorem 4.2. (Convergence theorem, uniform version). (FH) Let
(tn)n>1 be a sequence of clouds carried by A and satisfying a uniform bound
lgenlll < M < oco. Suppose further that

tn(n) — poo(n) uniformly for all n of a given level (4.135)
and that
178 0Zp)* s — 0. (4.136)
Then
1T = Tpoe lw—w — 0. (4.137)

Proof. We proceed as in the proof of Theorem 4.1, but here the reasoning is
much simpler since the uniform-convergence hypothesis (4.135) allows us to
avoid the introduction of the subset A’. We begin by observing that peo is
carried by A and satisfies

ool < lima inf [ | < A2 (4.138)

Now fix any € > 0, and choose k so that
| (Iaodp) ¥ w—w < /M. (4.139)
We divide the set of all markers into two classes:

Class 1: Markers of level < k.
Class 2: Markers of level > k.

We decompose any cloud pis (fs = fin OF o) in the form ul + p? so that ul
charges only markers of class i. The triangle inequality yields

||Tﬂnfﬂoo||w4’w < ”TI,u}l—,ugo\”wHw + ”TI,u%IHwHw + ||T\u?x,\||me (4~140)

and these contributions may be bounded separately as follows:
Class 1. The cloud |u} — pl, | charges only markers of level < k. By (4.135),
if n is large enough we have

|, — ] < %H(p°+pl+---+p’“), (4.141)
so that ||| |py, — i ][Il < e. Therefore, by Proposition 4.1, [ T},1 1 {llw—w < €
as well.

Class 2. Since 1. (= fn, OF liso) is carried by A, any marker n = (xg,...,z¢)
charged by p2 must have £ > k and o, ..., zx € A. Since |[|u.]]| < M, it follows
that

|| S M (Ip % p** Ip)E. (4.142)

By Proposition 4.10 we have [|T},2||lw—w < M|[(Iacdp)*|lw—w < & by (4.139).
O
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In the uniform case we have the following analogue of Proposition 4.14:

Proposition 4.15. (Conditions on cleaning sequences, uniform ver-
sion). Let (h,)n>1 be a sequence of functions satisfying 0 < h,, < xa, and
define

tn i= Bhy *...% Pp, . (4.143)

Then the following are equivalent:
(a) pn, converges uniformly-on-levels to my.
(b) >°% | h; converges uniformly (as n — 00) to +00 on A.

(b") There exist § > 0 and a sequence 0 = ng < ny < ng < ... satisfying

> hi>6éxa (4.144)
i:TLj71~‘r1
for all j.
(b") For all § < oo, there exists a sequence 0 = ng < ny < ng < ... satisfy-

ing (4.144) for all j.

Proof. Since the h; are bounded, it is easy to see that (b), (b’) and (b”) are all
equivalent.

The proof of (b”) = (a) is a straightforward adaptation of the corre-
sponding proof in Proposition 4.14. Indeed, we want to show here that the
convergence (4.123) holds uniformly for all markers of a given level. With the
hypothesis (b”), we can repeat the end of the proof of Proposition 4.14 with
A’ = A instead of (4.124), which gives the result.

Conversely, let us prove that (a) = (b). Suppose that Y., ; h; does not
converge uniformly to 400 on A. Then there exists M < oo such that, for any
n > 1, we can find z € A with

> hi(z) < M. (4.145)

For such n and x, we consider the markers 1 whose entries are all equal to z,
and we denote by 7 the only such marker that lies on level k. For 0 < 57 < n
and k > 0, let us define

pj(k) = 11 (nr), (4.146)
where g := p°. We have pg(0) = 1, po(k) = 0 for each k& > 0, and for j > 1

pj(k) = [1—hj(x)]pj—1(k) + hj(x)pj—1(k —1). (4.147)
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(The preceding equation holds also for k = 0 if for each j we set p;j(—1) :=0.)
Observe that for each j we always have ), p;(k) = 1. Let us introduce the
barycenter

Gj=Y kp;(k). (4.148)
k
We obviously have Gy = 0, and a direct calculation gives, for j > 1,
Gj =Gj-1 + hj(z). (4.149)
Therefore, we have .
Gn=> hj(x) <M. (4.150)
j=1

By the Markov inequality, this implies that

oM 2M 1
> i) =D pn(k) > 5, (4.151)
k=0 k=0

which clearly prevents pu,, from converging uniformly to 7y . O

Combining Theorem 4.2 and Proposition 4.15, we obtain Theorem 3.1 as an
immediate corollary.

4.8.3. Some final remarks

There are three natural topologies for convergence of clouds: ||| - ||| norm;
uniform-on-levels; and pointwise. Norm convergence of the u,, implies operator-
norm convergence of the T}, without any hypothesis on o beyond the Fun-
damental Hypothesis (cf. Proposition 4.1). Uniform-on-levels convergence is
weaker than norm convergence in that the mass of p, — pieo can run “upwards
to infinity”, as in the example 3} — ma. This is handled in Theorem 4.2 by
assuming that ||(Iyalp)¥|lw—w — 0; then the T}, converge in operator norm.
Finally, pointwise convergence is still weaker than uniform-on-levels convergence
because mass can also run “outwards to infinity” (when X is infinite), as in the
example Br, — (O with A, T A and all A,, € A. This is handled in Theo-
rem 4.1 by working on a fixed vector ¢ € I!(w) and demanding convergence only
in vector norm (not operator norm); the upwards-running mass is handled by
assuming that ||c(Iaalp)* ||, — 0.

4.9. Some further identities and inequalities

Let us now present some further identities and inequalities that will play an
important role in Section 6. Our first result is a cloud analogue and extension
of Lemmas 3.8 and 3.9:



Probabilistic Potential Theory and the Dobrushin Uniqueness Theorem 63

Lemma 4.13.

(a) Let h: X — [0,1] and set A := supp h. Then we have the identity
> BiF I, = 14 (4.152)
k=0

[ Recall that 1, is the cloud that takes the value 1 on markers having all
their entries in A, and 0 elsewhere. ]

(b) Let v > 0 be a cloud satisfying |||v||| < 1. Set h(z) := 1 — v((z)). Then
we have the inequality

S vk <1 (4.153)
k=0

Proof. (a) The proof of Lemma 3.8 is in fact a proof of the cloud identity (4.152):
no more need be said. But just for completeness, here is an alternate proof:
Let p be any cloud; then by (4.36) we have

—_—~—

wk Iy = — p* By (4.154)

Now set = ;% and sum from k = 0 to N: we get

N
S gk sn, =1 gy (4.155)
k=0
(since E,*;B = ;?J =1). Now take N — oo: by Proposition 4.14, ﬂZ(NH) converges
pointwise to 7, hence ﬂ;;(NH) converges pointwise to m1a = 1 — 14. This

proves (4.152).
(b) By Corollary 4.4 we have, for any cloud p > 0,

(wxv)(n) < ™) + pn)v((ast (1)) = A(n) — [1—v((last (7)))] u(n)

(4.156)
and hence
pxly <fi— ¥, (4.157)
Now take p = v** and sum from k = 0 to N:
N
> ovtsal, <1—prNHD <1 (4.158)

k=0

(since 0 — p? = 1). Taking N — oo gives the result. a
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We also have the following curious collection of inequalities and identity
involving the cloud p := 1 — v. These too will play a central role in Section 6;
what makes them so powerful is that the inequalities go in both directions.

Lemma 4.14. Let v > 0 be a cloud satistying |||v|| < 1. Define h(z) =
1—v((z)) and p:=1—7.

(a) We have I, < u <1 and
Z vV < 1. (4.159)
n=0

(b) Ifv is carried by A and satisfies v((x)) < 1 for all z € A [i.e. supph = A],
then

Zl/*"*uZlA. (4.160)
n=0

(¢) Ifv is A-regular and satisfies v((x)) < 1 for all z € A, then p is supported
on markers having all their entries in A (so that I, < p < 1,) and

Z(IA*V*IA)*"*;L:ZV*”*M:1A. (4.161)
n=0 n=0

(d) Ifv belongs to S and is supported on levels < K, then p is supported on
levels < K — 1.

Please note that since g > I, Lemma 4.14(a) is a strengthening of Lem-
ma 4.13(b). Furthermore, if v = G, then p = I, so that Lemma 4.14(c) is a
direct generalization of Lemma 4.13(a).

Proof of Lemma 4.14. (a) Since |||v||| < 1, we have p > 0. Since v > 0, we have
@ < 1. Finally, since pu((z)) =1 —v((z)) = h(x), we have p > Ty,

Let us now observe that y:=1—7 = (p° — v) * 1 and perform the following
calculation:

N-1 N-1
ZV*"*;L: v (P =) x1=(p" — M) x1=1—vN  (4.162)
n=0 n=0

<1. (4.163)

Now take N — oo: since u,v > 0, the left-hand side increases pointwise to a
limiting cloud Y2, v*" %  whose values lie in [0,1] by (4.163).

(b) Now suppose that v is carried by A and that v((z)) < 1 for all € A.
Then Corollary 4.15 implies that v*¥ (o) — 0 for all markers o ending in A,
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hence v*N(n) — 0 for all markers n having all their entries in A. By (4.162) this
implies (4.160).

(c) Since v is A-regular, we have 7(n) = 1 whenever 7 has at least one entry
outside A; hence p is supported on markers having all their entries in A. Since
in addition v((x)) < 1 for all € A, we can apply Corollary 4.14 to conclude

that v*N — 75 pointwise, i.e. v*N — T pointwise. But

(4.164)

() 0 if n has all its entries in A,
i =
AT 1 otherwise,

so that 1A = 1 — 15. By (4.162) this proves the second equality in (4.161).
Since p = Ip % px Ip, we have v*™ x = (Ip x v [5)* % u by Lemma 4.6, which
proves the first equality.

(d) If v € S is supported on levels < K, it follows that 7(n) = 1 whenever
level(n) > K, hence p is supported on levels < K — 1. O

Remark. At a formal level, the computation (4.162)—(4.163) is inspired by the
(admittedly meaningless) “identity”

iy*n _ (PO _ V)il.
n=0

Another, more physical, way of expressing the intuition behind (4.162)—(4.163)
is to observe that

VAT s = pin — () (4.165)

so that (v*" x u)(n) measures the mass that lies < 1 after n steps but gets
pushed above (or out) at the (n + 1)st step. Summing over n, we should get 1
whenever 7 has all its entries in A, since by Corollary 4.15 all the mass should
eventually be pushed out.

5. Alternate sufficient conditions for cleanability

In this section we do not assume the Fundamental Hypothesis. Rather, our
goal is to examine briefly the conditions under which cleaning can be assured
even in the absence of the Fundamental Hypothesis. Please note that we are
entitled to use here those results of Section 4 that refer only to clouds. How-
ever, we must scrupulously avoid using those results which, like Propositions 4.1
and 4.10, refer to operators and therefore depend on the Fundamental Hypoth-
esis.

First, we need a few definitions. Let a = (agy)syex be any nonnegative
matrix (in practice, we will take a to be either o or Inaly). For any marker
n = (xo,...,x), we define

all = Azowy Azizsy """ Awg_y a0y (51)
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We then define the spaces of clouds [!(a) and [°°(a) by the norms
Wlia =" a"lvml, (5.2)
n

[Wlloc,a i= sup |w(n)]. (5.3)

n:an>0

If © and v are clouds, we write

()2 =Y a"u(n)v(n) (5.4)

whenever this sum has an unambiguous meaning; in particular, if u, v > 0, then
(u, V) is well-defined though it may be +oo.
If v is a cloud, we would like to define an operator 7}, , by the usual formula

Ty,a = Z u(n)I{IO}aI{rl}a---aI{zkfl}aI{zk}. (5.5)
n=(x0,..., )

[When a = «, we write simply 7,.] The trouble is that, in the absence of
the Fundamental Hypothesis or its equivalent for a, it is difficult to guarantee
that this sum is well-defined (compare Proposition 4.1). We therefore restrict
ourselves in this section to nonnegative clouds v and consider (5.5) as defining
a matrix T, , whose elements lie in [0, +00]. Of course, when necessary we shall
verify a posteriori that the elements of T), , are finite.

Finally, if ¢ > 0 and w > 0 are vectors, we define a nonnegative cloud fic ., by

/Lc,w((mﬂa sy ka)) = CgoWgy, - (56)
It is easily checked that for any nonnegative cloud v we have
CTv,aw - <,uc,w7 V>a- (57)

(We define 0- oo = 0; this may be needed to interpret the inner product ¢T), ,w.)
In particular, taking v = p*, we have

cafw = Z a" e (n) (5.8)

level (n)=k

and hence that

o0
ankw = ||tte,wll1,a- (5.9)
k=0

The following theorem and its corollary give a sufficient condition for a dust
vector ¢ to be cleanable in [ (w) sense by every cleaning process that visits each
site infinitely many times. The proofs are almost trivial, now that we have the
results of Section 4 in hand.
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Theorem 5.1. Let a be a nonnegative matrix, let © be a nonnegative cloud
belonging tol'(a), and let (v,,),>1 be a sequence of nonnegative clouds satisfying
a uniform bound ||vp]|ce,a < M < oo and tending pointwise a-a.e. to zero [i.e.
limy, .00 5 (n) = 0 for each marker 1 having a" > 0]. Then
lim (p, v )a = 0. (5.10)
n—oo
Proof. An immediate consequence of Lebesgue’s dominated convergence theo-
rem. O

Corollary 5.1 (Sufficient condition for universal cleaning). Let A C X,
and let ¢ > 0 and w > 0 be vectors satisfying

ZC(IAaIA)kw < 0. (5.11)
k=0

If (fn)n>1 are functions X — [0, 1], supported in A and satisfying > fn, = 400
everywhere on A, we have

lim ¢By, -+ By, Iaw = 0. (5.12)

More generally, if (wp)n>1 are nonnegative clouds carried by A that satisfy
llwnlll <1 and )", [1 —wn((z))] = 400 for all z € A, we have

nlgréo Ty - T, Inw = 0. (5.13)
Proof. This is simply the special case of Theorem 5.1 in which a = Iyaly,
= fhew and Vp = wy k- - xwp, x Ipn: by (5.9), the hypothesis (5.11) guarantees
that fic., € [}(a). [Using Lemma 4.6 to rewrite vy, as Ip xwy* Iy« Ip*wp Iy,
we see that (lc.w,Vn)a = (Hew, Vn)Irals-] We can take M = 1. The fact that
vn(n) — 0 for all i is an immediate consequence of Corollary 4.15. O

In view of Theorem 4.1, it is natural to wonder whether the hypothesis
Y hecafw < oo in Corollary 5.1 can be weakened to assuming that ca*w is
finite for every k and tends to zero as k — oo. It turns out that this is not
the case; indeed, the following example shows that Corollary 5.1 is in a certain
sense sharp:

Example 5.1. Let (pr)r>0 be any sequence of positive numbers satisfying
Y peo pr = 0o. Then, on a countably infinite state space X, we can construct a
matrix a > 0 and vectors ¢, w > 0 such that

k

(a) ca”w = py, for every k > 0.

(b) There exists a sequence x1, 2, ... € X in which each element of X occurs
infinitely often, and for which we have lim,,_,o ¢z, - - - Bg, w = 00.
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(4,6)

Figure 4. The directed graph associated to the matrix a in Example 5.1. The
vertices of this graph correspond to the points of X, and the edges correspond
to the nonzero matrix elements of «.

To see this, take X = {0} U {(k,¢): 1 < k < ¢}, and define the matrix « by

ao,(1,0 = p1/(2°po), (5.14)
ko), (k+1,0) = 2pk41/pe for 1<k <€-—1, (5.15)

with all other coefficients of o set to 0. The state space X can be visualized
as a tree with root 0 and branches numbered ¢ = 1,2,... (see Figure 4). Now
consider the vector ¢ = pgdy, which puts a mass pg of dirt on site 0 and nothing
elsewhere, and the vector w = 1. It is easy to see that, for each k > 1, the vector
ca® is supported on sites (k,£) [¢ > k] and takes there the values pj/2/~*+1.
Hence ca*w = py, for all k. In order to construct the sequence z1, s, .. ., let us
first consider the following two sequences of sites:

AL = (L 2)7 (L 3)7 (2a 3)7 (174)5 (274)3 (374)a (17L)7 RS (L - 17L)a

Br :=1(1,1),(2,2),(3,3),...,(L, L)
so that Ay, (resp. By,) sweeps, in order, the non-summit (resp. summit) sites of
the branches 1 through L. Now let us define our sweeping process x1, 2, ... as

follows:
0,Ar,,B1,Ar,,Bs, AL, Bs, ...

where the indices L1 < Lo < ... will be chosen in a moment. After the first
step (z1 = 0), we have a mass p1/2¢ of dust on each site (1,¢). After the
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sequence Ay, we end up with a mass py/2 on each site (¢,¢) for 1 < ¢ < Ly.
The step B; then destroys the mass p;/2 that sat on the site (1,1). After the
sequence Ar,, we end up with a mass p;/2 on each site (¢,¢) for 2 < £ < Lo.
The step B then destroys the mass ps/2 that sat on the site (2,2). And so
forth. If we choose each L, so that

10" + —, (5.16)

then we are assured of having a total mass at least 10" on the summit sites at
each step after the operation Ar, has been completed. Hence ¢, - -5z, w— o0.

This example shows that ca*w being finite for every k and tending to zero
as k — oo is not sufficient to ensure that every cleaning process that visits
each site infinitely many times will succeed in removing the dirt in /! (w) sense.
Nevertheless, this hypothesis turns out to be sufficient to ensure that there exists
a successful cleaning process:

Theorem 5.2 (Sufficient condition for existence of cleaning). Let A C
X, and let ¢ > 0 and w > 0 be vectors satisfying

(a) c(Iralp)*w < oo for allk >0
and

(b) limg—oo c(Ipadp)*w = 0.
Then it is possible to find a sequence of sites x1,x2,... € A and a sequence of
numbers €1, €2, ... € (0,1] such that lim,_, Bers,, = Beps,, Inw = 0.
Question 5.1. Can we always take ¢; = 17

The proof of this theorem will be based on a simple lemma;:

Definition 5.1. We say that a cloud v/ > 0 arises from a cloud v > 0 by
a single-marker update acting at the marker n if there exists a real number
k € [0,v(n)] such that

o V(n) =v(n)—r,
o V(o)
o V(1)

Lemma 5.1 (Imitation Lemma). Suppose that the cloud v’ > 0 arises from
the cloud v > 0 by a single-marker update acting at the marker n. Let y =

last (n). Then, for any vector ¢ > 0, we can find a number ¢ € [0, 1] (depending
on ¢, v and V') such that

v(o) + k for each child o of 7,

v(t) for every other marker 7.

cly = cl,Bes,. (5.17)
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Proof. Let k = v(n) — V' (n). If kK = 0, we can take £ := 0; so let us assume
henceforth that v(n) > k > 0. We then have, for all z € X,

(T Be5. )e = (cT0)z +e(cTy)yays if © # y, (5.18)
vPesy )z (1—e)(cT)y +e(cly)yayy ifx=y, .
whereas
Tl/ x T, x if s
((T)o = { e TRl et (5.19)
(cTy)y — K(cTy)y + K(cTy)yoyy  ifz=y.

Therefore, to satisfy (5.17), we proceed as follows: if (¢T},), = 0 we set ¢ := 0; if
(cTy)y > 0, we set € := k{(cTy)y/(cT,)y}- In the latter case we have (cT} ), >
v(n)(cTy)y > k(cTy)y > 0, so that e < 1. O

Proof of Theorem 5.2. Since Be,s,, = Be,o,, In = InBey6,, In - InBe,6,, In by
Lemma 3.1, everything in both hypothesis and conclusion takes place within A,
so we can assume for notational simplicity that A = X.

By virtue of the Imitation Lemma, it suffices to find a sequence (vy,)n>0
of nonnegative clouds, with vy = p°, such that each v, arises from v, by a
single-marker update, and which satisfy

T, w — 0. (5.20)
n—oo

We shall construct these clouds to be {0, 1}-valued and lie in Sy. In particular,
updating the marker 7 at step n will mean that v,,(n) = 1 and v,41(n) = 0, and
for each child o of n, v,(0) =0 and vy, 41(0) = 1.

Since for each k¥ > 0 we have

cofw = Z e (n) < 00, (5.21)
level (n)=k

for each € > 0 we can find a finite subset M. j of the set of all markers of level k,
such that -
Z alpew(n) < SR (5.22)
level (n)=k
n¢Me
Furthermore, we can arrange for these subsets to be nested, i.e. M. C M.
whenever ¢ > ¢’.
We now fix a sequence (g;) of positive numbers decreasing to 0, and we
choose a sequence of integers N; < Ny < ... such that cafw < €; whenever
k> N;. Let S;, denote the set of all markers of level £ which are ancestors of

any marker in UkNiOM‘E k- By construction, all these sets are finite. We then
define the sequence (v,)n>1 of clouds by a sequence of single-marker updates
starting from vy = p°, visiting the markers in the following order:

S1,0, S1,15 -+ 5 SN0 52,00 52,15 -+, S2Ng, -
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(the markers within each S, ¢ being updated in an arbitrary order).

Let now j > 1, and consider any stage in this process while we are updating
the markers in Ué\/:ja’l j+1,6- At such a stage, the cloud v, is always supported
on three kinds of markers:

e Markers lying on levels k& < N; but outside M., . [Since at stage j we

updated all the ancestors of markers in UgiOMsj,k, it is impossible for
subsequent operations to place mass on any of those markers.]

e Markers lying on two successive levels N and N + 1 strictly above Nj.
[This happens while we are updating markers in S n.]

e Markers lying on levels N; < k < N;41 but outside M,

j+1,k-

The first kind of markers contributes to ¢TI}, w at most ¢;, the second at
most 2¢;, and the third at most €;4;. This proves that (5.20) holds. ad

The following example shows that there cannot be any converse to Theo-
rem 5.2 that refers only to the behavior of the sequence (ca*w)y>o:

Example 5.2. Let (px)r>0 be any sequence of positive numbers (in particular,
it can tend to +oo, or oscillate, or whatever). Then, on a countably infinite
state space X, we can construct a matrix a > 0 and vectors ¢, w > 0 such that

(a) ca®

w = py, for every k > 0.
(b) There exists a sequence yi, ¥y, ...€X for which lim, . ¢By, - - - By, w=0.

We shall use the same state space X = {0} U {(k,¢): 1 < k < ¢} as in Exam-
ple 5.1 (cf. Figure 4) but shall make a slightly different choice of the matrix a.

Start by choosing any sequence of positive numbers (oy),>1 satisfying
limy.co¢ = 0 and > 2,00 = oo (e.g. o = 1/¢ will do). Then it is not
hard to see that we can find positive numbers (yx¢)1<k<¢ such that

(1) Yke S gy for all k,f

(ii) Z;ik Yre = pg for all k.

(For instance, for each k we could choose inductively

-1
1
’ka = Inin |:O'g, 5 <pk — Z ’ykg/):|
=k
for £ > k.) Now define the matrix o by

Q0,(1,6) = Y1/ po, (5.23)
Q(,0),(k41,0) = Vhr1,e/ Yoo for 1 <k <41, (5.24)
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with all other coefficients of « set to 0. Choose once again ¢ = ppdp and w = 1.
Now choose the sequence y1,¥s, ... to be

0,(1,1),(1,2),(2,2) (1,3),(2,3),(3,3),...

It is easy to see that, at any stage after the site (¢, ) has been swept and before
the site (£ + 1,¢ + 1) has been swept, the total quantity of dirt cfy, --- By, w
does not exceed op41 + ZZOZHQ 71,5 and this tends to zero as ¢ — oo.

It is worth remarking that if (and only if) Y7, pr = 0o, then it is possible
to choose first the (oy) and then the (vx¢) so that, in addition to properties (i)
and (ii), we have

() 372, 70e = oo.

Indeed, let (o )k>1 be any sequence of positive numbers satisfying klim 0, =0
— 00

and Y, min(py,0%) = co.” Then the preceding construction yields vy, =
min(og, (1/2)pk), so that > r-; Ykx = co. In this way we can find a matrix «
that serves simultaneously for Example 5.1 and the present example: that is,
there exists both a sequence z1,xs2,... € X in which each element of X oc-
curs infinitely often and such that lim, o ¢B, - - Be, w = 00, and a sequence
Y1,Y2, ... € X such that lim,, . cBy, - - By, w = 0.

6. Converse results

In this section we do not assume the Fundamental Hypothesis. Rather, our
goal is to study what happens in case the Fundamental Hypothesis fails. As
before, we are entitled to use here those results of Section 4 that refer only to
clouds, but must avoid using those results that refer to operators.

6.1. General result

Our main result is the following:

Theorem 6.1. Let X be a finite or countably infinite set, let A C X, and
let ¢ > 0 and w > 0 be vectors that are strictly positive on A. Consider the
following conditions on a matrix o:

(a) Dopqc(Iaady)*w < oo.

(b) For all h: X — [0,1] with supp h = A such that h > exa for some € > 0,
we have > p  c(IpBpIr)Fw < cc.

7Given any sequence (Pr)k>1 of positive numbers satisfying >r2 Pr = 00, we can always
find a sequence (o )r>1 such that 0 < oy, < py, for all k, limy_, oo 0, =0 and Y 72, 0, = oo.
To see this, note first that pj, := min(py, 1) also satisfies Y32 ; p}, = 0o. Now let oy, := p}, /(1+

k 1/2 . 1/2

J=1 p;) /2, Clearly limy_, o 0 = 0, and szvzl o) > (szvzl AVAVES Zgil %) 2 500
as N — oo.
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(b') Thczre exists h: X — [0,1] with supph = A such that Y ;- c(IrB %
In)*w < oo.

(c) For every finite sequence f1, ..., fm of functions X — [0,1] with
supp(fi) C A such that Y, f; > exa for some e > 0, we have >, c(Ix %
ﬁfl : --ﬁfmIA)kw < 0.

(¢) There exists a finite sequence fi,..., fm of functions X — [0,1] with
supp(f;) C A such that Y ;o c(IpBs -+ By, In)*w < oo.

(d) For every cloud v > 0 that is carried by A and satisfies |||v]]] < 1 and
v((z)) <1—¢ for every x € A (for some € > 0), we have Y _po , c(IaT), x
In)*w < .

(d") There exists a cloud v € Sy that is carried by A and supported on finitely
many levels, such that > o, c(InT, Ix)*w < oco.

Then (a) < (b) < (V) <= (¢) < (d) = () = (d'); and for
matrices « satisfying the additional hypothesis

There exists a constant C' < oo such that Iyalyw < Cw (6.1)
all seven conditions are equivalent.

Proof. (d) = (¢) = (b) = (V) = (¢/) = (d') is trivial. So it
suffices to prove (a) = (d) and (b’) = (a), as well as to prove (d') = (a)
under the hypothesis (6.1).

(a) = (d): Since v is carried by A, for k > 1, (In * v x I5)* charges only
markers with all their entries in A. Lemma 4.13(b) then implies that

- 1
D axvxIy)F < “la+Iae <2 ZIA*;)*IA) (6.2)
k=0
(here € < 1). Passing from clouds to operators, we have
> AT, Iz w < = Z (Inodp)fw < oo, (6.3)
k=0 k=0

(b') = (a) and (d’) = (a): Let us start with hypothesis (d’), and
observe that hypothesis (b’) is merely the special case in which v = fp,.

Note first that we must have v((z)) < 1 for every marker (z) of level 0 with
x € A, since otherwise c¢(I5T,I5)*w could not tend to zero as k — co. (Here
we have used the strict positivity of ¢ and w on A.)

Now define p := 1 — 7. By Lemma 4.14(c), p takes values in [0,1] and is
supported on markers having all their entries in A. By Lemma 4.14(d), if v is
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supported on levels < K, then p is supported on levels < K — 1. Putting these
facts together, we obtain

K-1

0<u<IA*(Z (In % p* % Ip) >>|<IA. (6.4)
k=0

By Lemma 4.14(c) we then have

00 oo K-1
1A:<Z(IA*I/*IA )*u<(ZIA*V*IA ) <Z Iy * pt x 1)) )

n=0 n=0

Passing now to operators, we have

i(IAaIA)k < <i(IATuIA)n) * (KZI(IAaIA)k). (6.6)

k=0 n=0 k=0

Now sandwich this between nonnegative vectors ¢ and w. If v = B, [case (b)],
then K = 1, so that the second large parenthesis on the right-hand side of (6.6)
is the identity operator. In case (d’), we use hypothesis (6.1). Either way, we
find that

> claaly)fw < CY 7 e(INT,In) " w (6.7)
k=0 n=0
for a finite constant C’. This completes the proof. O

Please note that hypothesis (6.1) is automatic whenever A is a finite set. On
the other hand, Examples 3.2 and 3.3 show that, when A is infinite, hypothe-
sis (6.1) cannot be dispensed with in proving that (¢/) = (a) [or, a fortiori,
@) = (a)]

The following example shows that the hypothesis that v is supported on
finitely many levels cannot be dispensed with in proving that (d') = (a),
even in the presence of the Fundamental Hypothesis [which is much stronger
than (6.1)]:

Example 6.1. Let A = X = {1,2,3,...}. Let o be right shift (acting on dirt
vectors), i.e. a; ;41 = 1 for all i > 1 and all other matrix elements of a are 0. Set
c=1and let w; = 1/j2. Note that cw < w. Then (afw); = w1, = 1/(i + k)2,
so that

oo

- 1 1 ‘
Z(akw)i = Z (e ~ < a8l 0o, (6.8)

k=0 k=0
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and hence Y7, ca®w = +oo. On the other hand, let us take v to be the cloud

v(n) = {1 if level (n) = first (n), 6.9)

0 otherwise.

(In other words, for dirt starting at site 4, v sends it upwards ¢ levels.) For this
choice of a we have (TFw); = wqr; = 47%/i%, so that > p cTkw < o0.

In view of Theorem 3.2, which guarantees cleaning whenever h is strictly
positive on A — without any need for uniformity — one might be tempted to
remove the uniformity hypothesis in condition (b), i.e. to replace (b) by

(b*) For all h: X — [0,1] with supph = A, we have Y7, c(IaBrIr)*w < o0.

But neither (a) nor any conceivable stronger hypothesis can possibly imply this,
as Example 3.1 shows. The upshot is that, without a uniformity hypothesis on h,
one can conclude in some cases that c(Ix8,1a)*w tends to zero as k — oo [cf.
Theorem 3.2 and Corollary 5.1], but one cannot conclude anything about the
rate of convergence — in particular, one cannot conclude that this sequence is
summable in k.

6.2. Finite A

If A is a finite subset of X (and in particular if X is finite), then all choices
of strictly positive vectors ¢ and w are equivalent, and Theorem 6.1 can be
rephrased in a simpler form, in terms of the spectral radii of the various matrices.
The main idea is that if the spectral radius of Iyaly is > 1, then there is no
way to clean the set A completely.

Let us recall that the spectral radius (= largest absolute value of an eigen-
value) of a finite matrix A satisfies spr(A4) = lim, .o |A™||*/"; in particular,
the latter limit is independent of the choice of norm. It is well known (and easy
to prove using || A" ™| < ||A™]|||A™]]) that spr(4) < 1 <= lim,_ ||A™]| =0
— > llA"|| < co. Finally, on a finite set the convergence of sequences
of vectors or matrices can be understood either pointwise or in norm; the two
notions are equivalent.

Since the uniformity conditions on h, etc. in Theorem 6.1 are trivially sat-
isfied when A is finite, we can state the following immediate corollary of Theo-
rem 6.1:

Corollary 6.1. Let X be a finite or countably infinite set, and let A C X be a
finite subset. Then the following conditions on a matrix « are equivalent:

(a) spr({aalp) < 1.
(b) For all h: X — [0,1] with supph = A, we have spr(Ia0,Ip) < 1.
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(b") There exists h: X — [0,1] with supp h C A such that spr(IxSBpIp) < 1.

(c) For every finite sequence fi,...,fm of functions X — [0,1] with
supp(>oit, fi) = A, we have spr(Ipf3y, -+ By, In) < 1.
(¢") There exists a finite sequence f1,..., fm of functions X — [0,1] with

supp(f;) € A such that spr(IaBy, - -- By, In) < 1.

(d) For every cloud v > 0 that is carried by A and satisfies ||v]|| < 1 and
v((x)) <1 for every x € A, we have spr(I\T,I5) < 1.

(d") There exists a cloud v € Sy that is carried by A and supported on finitely
many levels, such that spr(IzT,Ip) < 1.

(e) For every infinite sequence f1,f2,... of functions X — [0,1] with
supp(fi) € A such that ), fi = oo everywhere on A, we have lim,, o Ix x

ﬁfl...ﬂfn[A:O,

(f) For every infinite sequence vy, Vs, ... of nonnegative clouds carried by A
and satisfying |||v;]|| < 1 and > ,[1 — v;((x))] = oo for all x € A, we have
limnﬂoo IAT,,1 s TanA =0.

Proof. The equivalence of (a), (b), (b’), (c), (¢), (d) and (d’) is an immediate
consequence of Theorem 6.1 specialized to A finite. The implication (a) = (f)
follows from Corollary 5.1, and (f) = (e) is trivial. Finally, (¢) = (c) [or
(f) = (d)] is easy: just consider the sequence f1,..., fm, repeated infinitely
many times and use Lemma 4.6. O

The following example shows that, when X is infinite, the behavior of the
matrix « is not completely controlled by that of the matrices Iyaly for all
finite A:

Example 6.2. We shall exhibit a nonnegative matrix « satisfying spr(/aaly) <
1 for all finite A C X — so that in particular the Fundamental Hypothesis holds
for all the matrices Iyalpn — but for which the Fundamental Hypothesis does
not hold, i.e. we cannot find a vector w > 0 satisfying aw < w.

Take X ={1,2,...} and 0 < e <1, and set ;1 :=¢, a1 ; := 1 for all j > 2,
ait1,; =2 for all 1 > 2, and o ; := 0 elsewhere:

(6.10)

SO O M
oON O
N OO
oo O
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If we could find a w > 0 such that cw < w, we would have w;y; > 2w, for
all 4 > 2. Since wy > 0, this would imply w; — 400 as i — oco. But aw < w
implies also that wy > Y .2, w;, which is impossible.

Now let us show why spr(/aaly) < 1 for all finite A C X. Set m := max A.
Then, for any vector v and any j > m — 1, we have (Inaly)v € span(e;) where
e :=(1,0,0,...). Since ae; = €eq, it follows that

e ifleA,

0 if1¢A. (6.11)

spr(faady) = {

In particular, by taking e = 0 we can even arrange to have spr(Iaaly) =0 [i.e.,
Inaly is nilpotent] for every finite A.
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