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A LARGE-DEVIATION VIEW ON

DYNAMICAL GIBBS-NON-GIBBS TRANSITIONS

A.C.D. VAN ENTER, R. FERNÁNDEZ, F. DEN HOLLANDER, AND F. REDIG

Abstract. We develop a space-time large-deviation point of view on
Gibbs-non-Gibbs transitions in spin systems subject to a stochastic spin-
flip dynamics. Using the general theory for large deviations of function-
als of Markov processes outlined in a recent book by Feng and Kurtz,
we show that the trajectory under the spin-flip dynamics of the em-
pirical measure of the spins in a large block in Zd satisfies a large de-
viation principle in the limit as the block size tends to infinity. The
associated rate function can be computed as the action functional of a
Lagrangian that is the Legendre transform of a certain non-linear gen-
erator, playing a role analogous to the moment-generating function in
the Gärtner–Ellis theorem of large deviation theory when this is applied
to finite-dimensional Markov processes. This rate function is used to
define the notion of “bad empirical measures”, which are the disconti-
nuity points of the optimal trajectories (i.e., the trajectories minimizing
the rate function) given the empirical measure at the end of the tra-
jectory. The dynamical Gibbs-non-Gibbs transitions are linked to the
occurrence of bad empirical measures: for short times no bad empirical
measures occur, while for intermediate and large times bad empirical
measures are possible. A future research program is proposed to classify
the various possible scenarios behind this crossover, which we refer to
as a “nature-versus-nurture” transition.
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1. Introduction, Main Results and Research Program

1.1. Dynamical Gibbs-non-Gibbs transitions. Since the discovery of the Grif-
fiths–Pearce–Israel pathologies in renormalization-group transformations of Gibbs
measures, there has been an extensive effort towards understanding the phenome-
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non that a simple transformation of a Gibbs measure may give rise to a non-Gibbs
measure, i.e., a measure for which no reasonable Hamiltonian can be defined (see
van Enter, Fernández and Sokal [5], Fernández [13], and the papers in the EURAN-
DOM workshop proceedings [7]). From the start, R. L. Dobrushin was interested
and involved in this development; indeed, Dobrushin and Shlosman [2], [3] proposed
a programme of Gibbsian restoration, based on the idea that the pathological bad
configurations of a transformed Gibbs measure (i.e., the essential points of dis-
continuity of some of its finite-set, e.g., single-site, conditional probabilities) are
exceptional in the measure-theoretic sense (i.e., they form a set of measure zero).
This has led to two extended notions of Gibbs measures: weakly Gibbsian measures
and almost Gibbsian measures (see Maes, Redig and Van Moffaert [24]). Later,
several refined notions were proposed, such as intuitively weakly Gibbs (van Enter
and Verbitskiy [10]) and right-continuous conditional probabilities.

In van Enter, Fernández, den Hollander and Redig [4], the behavior of a Gibbs
measure µ subject to a high-temperature Glauber spin-flip dynamics was consid-
ered. A guiding example is the case where we start from the low-temperature
plus-phase of the Ising model, and we run a high-temperature dynamics, modeling
the fast heating up of a cold system. The question of Gibbsianness of the measure
µt at time t > 0 can then be interpreted as the existence of a reasonable notion
of an intermediate-time-dependent temperature (at time t = 0 the temperature is
determined by the choice of the initial Gibbs measure, while at time t = ∞ the
temperature is determined by the unique stationary measure of the dynamics).

For infinite-temperature dynamics, the effect of the dynamics is simply that of a
single-site Kadanoff transformation, with a parameter that depends on time. We re-
mind the reader that in such a Kadanoff transformation each spin is independently
copied with a certain error probability p (the parameter of the transformation).
For independent spin flips — the infinite-temperature Glauber dynamics — this pre-
cisely corresponds to a time-dependent choice of p.

The extension to high-temperature dynamics was achieved with the help of a
space-time cluster expansion developed in Maes and Netocný [23]. The basic picture
that emerged from this work was the following:

(1) µt is Gibbs for small t;
(2) µt is non-Gibbs for intermediate t;
(3) in zero magnetic field µt remains non-Gibbs for large t, while in non-zero

magnetic field µt becomes Gibbs again for large t.

A measure is called a Gibbs measure if there exists a regular (= absolutely sum-
mable) interaction associated to it, in the sense of the DLR equations, see, e.g.,
[15], [5]. Usually one has no explicit form for this interaction. Sometimes, but
not always, one has some control over a norm of this interaction, which has the
interpretation of an inverse temperature.

Further research went into several directions and, roughly summarized, gave the
following results:

(a) Small-time conservation of Gibbsianness is robust: this holds for a large
class of spin systems and of dynamics, including discrete spins (Le Ny and
Redig [20]), continuous spins (Dereudre and Roelly [1], van Enter, Külske,
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Opoku and Ruszel, [18], [8], [9], [25], [6]), which can be subjected to Glauber
dynamics, mixed Glauber/Kawasaki dynamics, and interacting-diffusion
dynamics, not even necessarily Markovian (Redig, Roelly and Ruszel [27]),
applied to a large class of initial measures (e.g., Gibbs measures for a finite-
range or an exponentially decaying interaction potential).

(b) Gibbs-non-Gibbs transitions can also be defined naturally for mean-field
models (see, e.g., Külske and Le Ny [16] for Curie–Weiss models subject
to an independent spin-flip dynamics). In this context, much more explicit
results can be obtained: transitions are sharp (i.e., in zero magnetic field
there is a single time after which the measure becomes non-Gibbs and stays
non-Gibbs forever, and in non-zero magnetic field there is a single time at
which it becomes Gibbs again). Bad configurations can be characterized
explicitly (with the interesting effect that non-neutral bad configurations
can arise below a certain critical temperature). For further developments
on mean-field results see also [17], [11].

(c) Gibbs-non-Gibbs transitions can also occur for continuous unbounded spins
subject to independent Ornstein–Uhlenbeck processes (Külske and Redig
[19]), and for continuous bounded spins subject to independent diffusions
(van Enter and Ruszel [8], [9]), even in two dimensions where no static
phase transitions occur.

Bad configurations can be detected by looking at a so-called two-layer system: the
joint distribution of the configuration at time t = 0 and time t > 0. If we condition
on a particular configuration η at time t > 0, then the distribution at time t = 0
is a Gibbs measure with an η-dependent Hamiltonian Hη, which is a modification
of the original Hamiltonian obtained by adding single-site external fields with signs
determined by η and strengths detemined by t to the H of the starting measure.
If, for some η, Hη has a phase transition, then this η is a bad configuration (see
Fernández and Pfister [14]).

1.2. Nature versus nurture. While these results led to a reasonably encompass-
ing picture, we were unsatisfied with the strategy of the proofs for the following
reason. All proofs rely on two fortunate facts: (1) the evolutions can be described in
terms of space-time interactions; (2) these interactions correspond to well-studied
models in equilibrium statistical mechanics. In particular, although the most del-
icate part of the analysis — the proof of the onset of non-Gibbsianness — was ac-
complished by adapting arguments developed in previous studies on renormaliza-
tion transformations, the actual intuition that led to these results relied on entirely
different arguments, based on the behavior of conditioned trajectories. These in-
tuitive arguments, already stated without proof in our original work [4], can be
summarized as follows:

(I) If a configuration η is good at time t (i.e., is a point of continuity of the
single-site conditional probabilities), then the trajectory that leads to η is
unique, in the sense that there is a single distribution at time t = 0 that
leads to η at time t > 0. In particular, if t is small, then this trajectory
stays close to η during the whole time interval [0, t].
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(II) If a configuration η is bad at time t (i.e., is a point of essential discontinu-
ity of the single-site conditional probabilities), then there are at least two
trajectories compatible with the occurrence of η at time t. Moreover, these
trajectories can be selected by modifying the bad configuration η arbitrarily
far away from the origin.

(III) Trajectories ending at a configuration η at time t are the result of a com-
petition between two mechanisms:

Nature: The initial configuration is close to η, a configuration which
is not necessarily typical for the initial measure; η-like characteristics are
preserved by the dynamics up to time t.

Nurture: The initial configuration is typical for the initial measure and
the system builds η in a short interval prior to time t.

As an illustration, let us consider the low-temperature zero-field Ising model
subject to an independent spin-flip dynamics. In [4] we proved that the fully al-
ternating (chessboard) configuration becomes and stays bad for large t although at
short times it cannot be bad, as then all configurations are good. This fact can be
understood according to the preceding paradigm in the following way. Short times
do not give the system occasion to perform a large number of spin-flips. Hence,
the most probable way to see the alternating configuration at small time t is when
the system started in a zero-magnetization-like state and the evolution kept the
magnetization zero up to time t. This is the nature-scenario! For larger times
t, a less costly alternative is to start in a less atypical manner, and to arrive at
the alternating configuration following a trajectory that stays close for as long as
possible to the unconditioned dynamical relaxation. This is the nurture-scenario!
In this situation, we can start either from a plus-like state or a minus-like state, as
the difference in probabilistic cost between these two initial states is exponential in
the size of boundary, and thus is negligible with respect to the volume cost imposed
by a constrained dynamics. It is then possible to select between the plus-like and
the minus-like trajectories by picking the alternating configuration in a large block,
then picking either the all-plus or the all-minus configuration outside this block,
and letting the block size tend to infinity.

We see that the above explanation relies on two facts:

(i) The existence of a nature-versus-nurture transition, as introduced in [4].
(ii) The existence of several possible trajectories (once the system is in the

nurture regime), all starting from configurations that are typical for the
initial measure (modulo an boundary-exponential cost). These trajectories
evolve to the required bad configuration over a short interval prior to time t.

1.3. Large deviations of trajectories. The goal of the present paper is to put
rigor into the above qualitative suggestions. We propose two novel aspects:

(1) the development of a suitable large deviation theory for trajectories, in order
to estimate the costs of the different dynamical strategies;

(2) the use of empirical measures instead of configurations, in order to express
the conditioning at time t.
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For a translation-invariant spin-flip dynamics and a translation-invariant initial
measure, nothing is lost by moving to the empirical measure because the bad con-
figurations form a translation-invariant set. Instead, a lot is gained because, as we
will show, the trajectory of the empirical measure satisfies a large deviation princi-
ple under quite general conditions on the spin-flip rates (e.g., there is no restriction
to high temperature). Moreover, the question of uniqueness versus non-uniqueness
of optimal trajectories (i.e., minimizers of the large deviation rate function) can be
posed and tackled for a large class of dynamics, which places the dynamical Gibbs-
non-Gibbs-transition into a framework where it gains more physical relevance.

Here is a list of the results presented in the sequel.

(A) Existence of a large deviation principle for trajectories. We apply the the-
ory developed in Feng and Kurtz [12, Section 8.6]. The rate function is the
integral of the Legendre transform of the generator of the non-linear semi-
group defined by the dynamics. In suitably abstract terms, this generator
can be associated to a Hamiltonian, and the rate function to the integral
of a Lagrangian (Sections 2–5).

(B) Explicit expression for the generator of the non-linear semigroup of the
dynamics. These are obtained in Theorems 3.1–3.2 below (Section 3).

(C) Rate functions for trajectories and associated optimal trajectories. The gen-
eral Legendre-transform prescription is explicitly worked out for a couple of
simple examples, and optimal trajectories are exhibited (Sections 4.2–4.3).

(D) Relation with thermodynamic potentials. Relations are shown between the
non-linear generator and the derivative of a “constrained pressure”. Simi-
larly, the rate function per unit time is related to the Legendre transform
of this pressure (Section 5.2).

(E) Definition of bad measures. This definition, introduced in Section 6, is the
transcription to our more general framework of the notion of bad configu-
ration used in our original work [4]. In Section 7 we discuss the possible
relations between these two notions of badness.

1.4. Future research program. The results in (A)–(E) above are the prelim-
inary steps towards a comprehensive theory of dynamical Gibbs-non-Gibbs tran-
sitions based on the principles outlined above. Let us conclude this introduction
with a list of further issues which must be addressed to develop such a theory:

• Definition of “nature-trajectories” and “nurture-trajectories”. This is a
delicate issue that requires full exploitation of the properties of the rate
function for the trajectory. It must involve a suitable notion of distance
between conditioned and unconditioned trajectories.

• Relation between nature-trajectories and Gibbsianness. It is intuitively
clear that Gibbsianness is conserved for times so short that only nature-
trajectories are possible. A rigorous proof of this fact would confirm our
intuition and would lead to alternative and less technical proofs of short-
time Gibbsianness preservation.

• Study of nurture-trajectories. We expect that nurture-trajectories start
very close to unconstrained trajectories, and move away only shortly before
the end in order to satisfy the conditioning. For the case of time-reversible
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evolutions, the time it takes to get to the nurture-regime should be the
same as the initial relaxation time to (almost) equilibrium.

• Study of nature-nurture transitions. Transitions from nature to nurture
should happen only once for every conditioning measure (i.e., there should
be no nature-restoration). Natural questions are: Does the time at which
these transitions take place depend on the conditioning measure and if
so, how? Is there a common time after which every trajectory becomes
nurture?

• Case studies of trajectories leading to non-Gibbsianness. These should de-
termine “forbidden regions” in trajectory space. Natural questions are:
How do these regions evolve? Are they monotone in time?

• Relation between nurture-trajectories and non-Gibbsianness. While we ex-
pect that “all trajectories are nature” implies Gibbsianness of the evolved
measure, we do not expect that“some trajectories are nurture” leads to non-
Gibbsianness. Examples are needed to clarify this asymmetry. The case
of the Ising model in non-zero field, in which Gibbsianness is eventually
restored, should be particularly enlightening.

1.5. Outline. Our paper is organized as follows. In Section 2, we consider the
case of independent spin-flips, as a warm-up for the rest of the paper. In Section 3,
we compute the non-linear generator for dependent spin-flips, which plays a key
rol in the large deviation principle we are after. In Sections 4 and 5, we compute
the Legendre transform of this non-linear generator, which is the object that enters
into the associated rate function, as an action integral. In Section 4 we do the
computation for independent spin-flips, in Section 5 we extend the computation
to dependent spin-flips. In Section 6, we look at bad measures, i.e., measures at
time t > 0 for which the optimal trajectory leading to this measure and minimizing
the rate function is non-unique. In Section 7, we use these results to develop our
large-devation view on Gibbs-non-Gibbs transtions. In Appendix A we illustrate
the large deviation formalism in Feng and Kurtz [12], which lies at the basis of
Sections 2–5, by considering a simple example, namely, a Poisson random walk
with small increments. This will help the reader not familiar with this formalism
to grasp the main ideas.

Acknowledgments. The authors are grateful for extended discussions with Chri-
stof Külske. We also thank Victor Ermolaev for a helpful correction in the manu-
script.

2. Independent Spin-Flips: Trajectory of the Magnetization

2.1. Large deviation principle. As a warm-up, we consider the example of N
Ising spins subject to a rate-1 independent spin-flip dynamics. Write PN to denote
the law of this process. We look at the trajectory of the magnetization, i.e., t 7→
mN (t) = N−1

∑N
i=1 σi(t), where σi(t) is the spin at site i at time t. A spin-flip from

+1 to −1 (or from −1 to +1) corresponds to a jump of size −2N−1 (or +2N−1) in
the magnetization, i.e., the generator LN of the process (mN (t))t>0 is given by

(LNf)(m) = 1+m
2 N [f(m− 2N−1)− f(m)] + 1−m

2 N [f(m+ 2N−1)− f(m)] (2.1)
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for m ∈ {−1, −1 + 2N−1, . . . , 1−2N−1, 1}. If limN→∞mN = m and f is C1 with
bounded derivative, then

lim
N→∞

(LNf)(mN ) = (Lf)(m) with (Lf)(m) = −2mf ′(m). (2.2)

This is the generator of the deterministic process m(t) = m(0)e−2t, solving the
equation ṁ(t) = −2m(t) (the dot denotes the derivative with respect to time).

The trajectory of the magnetization satisfies a large deviation principle, i.e., for
every time horizon T ∈ (0, ∞) and trajectory γ = (γt)t∈[0,T ],

PN
(
(mN (t))t∈[0,T ] ≈ (γt)t∈[0,T ]

)
≈ exp

[
−N

∫ T

0

L(γt, γ̇t) dt

]
, (2.3)

where the Lagrangian t 7→ L(γt, γ̇t) can be computed following the scheme of Feng
and Kurtz [12], Example 1.5. Indeed, we first compute the so-called non-linear
generator H given by

(Hf)(m) = lim
N→∞

(HNf)(mN ) with (HNf)(mN ) =
1

N
e−Nf(mN ) LN (eNf )(mN ),

(2.4)
where limN→∞mN = m. This gives

(Hf)(m) = m+1
2 (e−2f ′(m) − 1) + 1−m

2 (e2f ′(m) − 1), (2.5)

which is of the form

(Hf)(m) = H
(
m, f ′(m)

)
(2.6)

with

H(m, p) = m+1
2 (e−2p − 1) + 1−m

2 (e2p − 1). (2.7)

Because p 7→ H(m, p) is convex, we have

H(m, p) = sup
q∈R

[pq − L(m, q)] (2.8)

with

L(m, q) = sup
p∈R

[pq −H(m, p)]

=
q

2
log

(
q +

√
q2 + 4(1−m2)

2(1−m)

)
− 1

2

√
q2 + 4(1−m2) + 1. (2.9)

Hence, using the theory developed in Feng and Kurtz [12, Chapter 1, Example 1.5]
we indeed have the large deviation principle in (2.3) with L(γt, γ̇t) given by (2.9)
with m = γt and q = γ̇t.

2.2. Optimal trajectories. We may think of the typical trajectories (mN (t))t∈[0,T ]

as being exponentially close to optimal trajectories minimizing the action func-

tional γ = (γt)t∈[0,T ] 7→
∫ T

0
L(γt, γ̇t) dt. The optimal trajectories satisfy the Euler–

Lagrange equations
d

dt

∂L

∂γ̇t
=
∂L

∂γt
(2.10)
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or, equivalently, the Hamilton–Jacobi equations corresponding to the Hamiltonian
in (2.7),

ṁ =
∂H

∂p
, ṗ = −∂H

∂m
, (2.11)

which gives

ṁ = −m(e2p + e−2p) + (e2p − e−2p), ṗ = 1
2 (e2p − e−2p). (2.12)

Putting h = tanh(p) and integrating the second equation in (2.12), we obtain

h(t) = C e2t. (2.13)

Using that arctanh(x) = 1
2 log( 1+x

1−x ), we get

ṁ = −m 2 + 2h2

1− h2
+

4h

1− h2
, (2.14)

which can be integrated to yield the solution

m(t) = C1e
2t + C2e

−2t, (2.15)

where the constants C1, C2 are determined by the initial magnetization and the cor-
responding initial momentum. One example of an optimal trajectory corresponds
to the dynamics starting from an initial magnetization m0, giving m(t) = m0e

−2t,
i.e., C1 = 0 and C2 = m0. Another example of an optimal trajectory is the reversed
dynamics arriving at magnetization mT at time T , giving m(t) = mT e

2(t−T ), i.e.,
C2 = 0 and C1 = mT e

−2T .
Yet another example is the following. Suppose that we start the independent

spin-flip dynamics from a measure under which the magnetization satisfies a large
deviation principle with rate function, say, I, e.g., a Gibbs measure. If we want to
arrive at a given magnetization mT at time T , then the optimal trajectory is given
by (2.15) with end condition m(T ) = mT and satisfying the open-end condition
relating the Lagrangian L at time t = 0 to the rate function I at magnetization
m = γ0 as follows: [

∂L(γt, γ̇t)

∂γ̇t

]
t=0

= −
[
∂I(m)

∂m

]
m=γ0

. (2.16)

This condition is obtained by minimizing γ 7→ I(γ0)+
∫ T

0
L(γt, γ̇t) dt (see Ermolaev

and Külske [11]).

3. Trajectory of the Empirical Measure for Dependent Spin-Flips

We will generalize the computation in Section 2 in two directions. First, for
dependent spin-flips we are confronted with the problem that the rate at which the
average of a local observable changes in general depends on the average of other
observables. Second, for dependent spin-flips even the trajectory of the magnetiza-
tion is not Markovian. Therefore, we are obliged to consider the time evolution of
all spatial averages jointly, i.e., the empirical measure.
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3.1. Setting and notation. For N ∈ N, let TdN be the d-dimensional N -torus
(Z/(2N + 1)Z)d. For i, j ∈ TdN , let i + j denote coordinate-wise addition modulo
2N+1. We consider Glauber dynamics of Ising spins located at the sites of TdN , i.e.,

on the configuration space ΩN = {−1, 1}TdN . We write Ω = {−1, 1}Zd to denote
the infinite-volume configuration space. Configurations are denoted by symbols like
σ and η. For σ ∈ ΩN , σi denotes the value of the spin at site i. We write M1(Ω)
to denote the set of probability measures on Ω, and similarly for M1(ΩN ).

The dynamics is defined via the generator LN acting on functions f : ΩN → R
as

(LNf)(σ) =
∑
i∈TdN

ci(σ) [f(σi)− f(σ)], (3.1)

where σi denotes the configuration obtained from σ by flipping the spin at site i.
The rates ci(σ) are assumed to be strictly positive and translation invariant, i.e.,

ci(σ) = c0(τiσ) = c(τiσ) with (τiσ)j = σi+j . (3.2)

We think of the dynamics with generator LN as a finite-volume version with periodic
boundary condition of the infinite-volume generator

(Lf)(σ) =
∑
i∈Zd

ci(σ) [f(σi)− f(σ)], (3.3)

where now f is supposed to be a local function, i.e., a function depending on a finite
number of σj , j ∈ Zd. We denote by (St)t>0 with St = etL the semigroup acting
on C(Ω) (the space of continuous functions on Ω)) associated with the generator
in (3.3), and similarly (SNt )t>0 with SNt = etLN . For µ ∈ M1(Ω), we denote by
µSt ∈ M1(Ω) the distribution µ evolved over time t, and similarly for µNS

N
t and

µN ∈M1(ΩN ).
We embed TdN in Zd by identifying it with ΛdN = ([−N, N ] ∩ Z)d. Through

this identification, we give meaning to expressions like
∑
i∈TdN

f(τiσ) for σ ∈ Ω and

f : Ω→ R. In this way we may also view local functions f : Ω→ R as functions on
ΩN as soon as N is large enough for ΛdN to contain the dependence set of f . For a
translation-invariant µ ∈M1(Ω), we denote by µN its natural restriction to ΩN .

By the locality of the spin-flip rates, the infinite-volume dynamics is well-defined
and is the uniform limit of the finite-volume dynamics, i.e., for every local function
f : Ω→ R and t > 0,

lim
N→∞

‖SNt f − Stf‖∞ = 0. (3.4)

See Liggett [22, Chapters 1 and 3] for details on existence of the infinite-volume
dynamics.

3.2. Empirical measure. For N ∈ N and σ ∈ ΩN , the empirical measure asso-
ciated with σ is defined as

LN (σ) =
1

|TdN |
∑
i∈TdN

δτiσ. (3.5)
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This is an element of M1(ΩN ) which acts on functions f : Ωn → R as

〈f, LN 〉 =

∫
ΩN

f dLN =
1

|TdN |
∑
i∈TdN

f(τiσ). (3.6)

As already mentioned above, a local f : Ω → R may be considered as a function
on ΩN for N large enough. A sequence (µN )N∈N with µN ∈ M1(ΩN ) converges
weakly to some µ ∈M1(Ω) if

lim
N→∞

∫
ΩN

f dµN =

∫
Ω

f dµ for all local f. (3.7)

For σ ∈ Ω, we define its periodized version σN as σNi = σi for i = (i1, . . . , id) with
−N 6 ik < N for k ∈ {1, . . . , d}, and σNi = σimod (2N+1) otherwise, which can be
viewed both as an element of Ω and as an element of ΩN .

If µ is ergodic under translations, then by the locality and the translation in-
variance of the spin-flip rates also µSt is ergodic under translations. Let µN be the
distribution of σN (viewed as elements of ΩN ) when σ is drawn from µ. Since the
semigroup (SNt )t>0 uniformly approaches the semigroup (St)t>0 as N → ∞, the
ergodic theorem implies that, for all t > 0, with probability one w.r.t. the joint law
of {σN (t) : N ∈ N, t > 0},

LN (σN (t))→ µSt weakly as N →∞, (3.8)

where σN (t) denotes the random configuration that is obtained by evolving σN over
time t in the process with generator LN .

The deterministic trajectory t 7→ µSt is the solution of the equation

dµt
dt

= L∗µt, (3.9)

where L∗ denotes the adjoint of the generator acting on the space of finite signed
measures M(Ω). Thus, we can view (3.8) as an infinite-dimensional law of large
numbers, where the random measure-valued trajectory (LN (σN (t)))t∈[0,T ] con-
verges to the deterministic measure-valued trajectory (µSt)t∈[0,T ]. It is therefore
natural to ask for an associated large deviation principle, i.e., does there exist a
rate function γ 7→ I(γ) such that

PN
(
(LN (σN (t))

)
t∈[0,T ]

≈ γ
)
≈ exp[−|TdN |I(γ)]? (3.10)

Inspired by the example of the magnetization described in Section 2, we expect the
answer to be yes and the rate function to be of the form

I(γ) =

∫ T

0

L(γt, γ̇t) dt (3.11)

for some appropriate Lagrangian L. In order to compute L, we must first find the
generator of the non-linear semigroup.
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3.3. The generator of the non-linear semigroup. In our setting the non-linear
generator is defined as follows:

(HNF )(LN (σ)) =
1

|TdN |
e−|T

d
N |F (LN (σ))LN

(
e|T

d
N |(F◦LN )

)
(σ). (3.12)

If the expression in (3.12) has a limit (HF )(µ) as N →∞ when LN (σ)→ µ weakly,
then a candidate rate function can be constructed via Legendre transformation (see
Section 5).

To compute the limit operator, we start with a simple function of the form

F (LN (σ)) = 〈f, LN (σ)〉, (3.13)

where f : Ω → R is a local function. Such f ’s are linear combinations of the
functions

HA(σ) =
∏
i∈A

σi, A ⊆ Zd finite, (3.14)

which live on ΩN for N large enough.

Theorem 3.1. For all local f ∈ Ω and N large enough,

1

|TdN |
e−|T

d
N |〈f,LN (σ)〉 LN

(
e|T

d
N |〈f,LN 〉

)
(σ) =

〈
c(eDNf − 1), LN (σ)

〉
, (3.15)

where c is defined in (3.2), and where DN is the linear operator, acting on functions
on ΩN , defined via

DN1 = 0, DNHA =
∑
r∈−A

(−2)HA+r for A ⊆ TdN , (3.16)

where the N -dependence refers only to the fact that the addition A + r is modulo
2N + 1.

Proof. Using the definition of the generator LN in (3.1), we write (recall (3.2))

e−|T
d
N |〈f,LN (σ)〉 LN

(
e|T

d
N |〈f,LN 〉

)
(σ)

=
∑
k∈TdN

c(τkσ)

{
exp

[ ∑
j∈TdN

[
f(τj(σ

k))− f(τj(σ))
]]
− 1

}
. (3.17)

Since

(DkNf)(σ) =
∑
j∈TdN

[
f(τj(σ

k))− f(τj(σ))
]

(3.18)

is a linear operator, it suffices to prove that

(DkNf)(σ) = (DNf)(τkσ) for f = HA, (3.19)
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where DNf is given by (3.16) for f = HA (note that if f = HA, then f(σk) =
−HA(σ) for k ∈ A and f(σk) = f(σ) otherwise). Hence

(DkNHA)(σ) =
∑
j∈TdN

(∏
i∈A

(σk)i+j −
∏
i∈A

σi+j

)
=
∑
j∈TdN

1{k−j∈A} (−2)
∏
i∈A

σi+j

=
∑
j∈TdN

1{j∈−A+k} (−2)
∏
i∈A

σi+j = (−2)
∑
r∈−A

∏
i∈A

σi+r+k

=

(
(−2)

∑
r∈−A

HA+r

)
(τkσ). (3.20)

�

Remark. Note that, in the limit as N →∞, DN becomes an unbounded operator,
defined on local functions f : Ω→ R via

D1 = 0, D
(∑

A

αAHA

)
=
∑
A

HA

( ∑
r∈−A

(−2)αA−r

)
. (3.21)

The domain of D can be extended to functions f =
∑
A αAHA for which∑

A

∑
r∈−A

|αA−r| <∞. (3.22)

The dual operator D∗ acts on M(Ω), the space of finite signed measures on Ω,
and since D1 = 0, D∗ has the measures of total mass zero as image set. The
intuitive idea is that when the dynamics starts from the empirical measure µ, after
an infinitesimal time t the empirical measure is µ+ tD∗µ+ o(t).

Remark. From Theorem 3.1 it follows that, for f =
∑N
i=1 λifi,

LN
(
e|T

d
N |

∑N
i=1 λi〈fi,LN 〉

)
(σ)

= |TdN | e|T
d
N |

∑n
i=1 λi〈fi,LN (σ)〉〈c(e∑n

i=1 λiDfi − 1
)
, LN (σ)

〉
. (3.23)

The right-hand side is a function of LN . By taking derivatives with respect to the
variables λi, we see that the generator maps any function of LN into a function of
LN . This shows that (LN (σN (t)))t>0 is a Markov process. Roughly speaking, this
Markov process can be viewed as a random walk that makes jumps of size 1/|TdN | at
rate |TdN |. Of course, the problem is that this random walk is infinite-dimensional,
and therefore we cannot directly apply standard random-walk theory.

Theorem 3.1 shows that the operator H defined by

(HF )(µ) = lim
N→∞

(HNF )(LN (σ)) when lim
N→∞

LN = µ weakly (3.24)

is well-defined for F (µ) = 〈f, µ〉. We next extend Theorem 3.1 to F of the form

F (µ) = Ψ
(
〈f1, µ〉, . . . , 〈fn, µ〉

)
, (3.25)

where Ψ: Rn → R is C∞ with uniformly bounded derivatives of all orders.
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Theorem 3.2. If limN→∞ LN = µ and F is of the form (3.25), then (with the
same notation as in (3.12))

(HF )(µ) = lim
N→∞

(HNF )(µ)

=

〈
c

(
exp

[
n∑
i=1

∂Ψ

∂xi

(
〈f1, µ〉, . . . , 〈fn, µ〉

)
Dfi

]
− 1

)
, µ

〉
. (3.26)

Proof. Compute

1

|TdN |
e−|T

d
N |F (LN (σ)) LN

(
e|T

d
N |F (LN )

)
(σ)

=
∑
k∈TdN

c(τkσ)
(

exp
[
|TdN |

(
F (LN (σk))− F (LN (σ))

)]
− 1
)
. (3.27)

Next, use the fact that

〈f, LN (σk)〉 − 〈f, LN (σ)〉 =
1

|TdN |
(DNf)(τk(σ)) (3.28)

to see that

Ψ
(
〈f1, LN (σk)〉, . . . , 〈fn, LN (σk)〉

)
−Ψ

(
〈f1, LN (σ)〉, . . . , 〈fn, LN (σ)〉

)
=

n∑
i=1

∂Ψ

∂xi

(
〈f1, LN (σ)〉, . . . , 〈fn, LN (σ)〉

)
(Dfi)(τkσ) + o

( 1

|TdN |

)
. (3.29)

Combine (3.27) and (3.29) and take the limit N →∞, to obtain (3.26). �

Remark. For

F (µ) = Ψ
(
〈f1, µ〉, . . . , 〈fn, µ〉

)
, (3.30)

the functional derivative of F with respect to µ is defined as

δF

δµ
=

n∑
i=1

∂Ψ

∂xi

(
〈f1, µ〉, . . . , 〈fn, µ〉

)
fi. (3.31)

We may therefore rewrite (3.29) as

H(F )(µ) =

〈
c

(
exp

[
D
(
δF

δµ

)]
− 1

)
, µ

〉
. (3.32)

4. The Rate Function for Independent Spin-Flips

4.1. Legendre transform. Having completed the computation of the non-linear
generator in Section 3, we are ready to compute its Legendre transform. As a
warm-up, we will first do this for independent spin-flips, i.e., when c ≡ 1 in (3.2).
In Section 5 we will extend the calculation to general c, which will not represent a
serious obstacle.

The non-linear generator in (3.26) is of the form

(HF )(µ) = H
(
µ,

δF

δµ

)
, (4.1)
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where, for µ ∈M1(Ω) and f : Ω→ R continuous,

H(µ, f) = 〈c(eDf − 1), µ〉. (4.2)

By the convexity of f 7→ H(µ, f), we have

H(µ, f) = sup
α∈M(Ω)

[∫
Ω

f dα− L(µ, α)

]
(4.3)

with

L(µ, α) = sup
f∈C(Ω)

[∫
Ω

f dα−H(µ, f)

]
(4.4)

the Lagrangian appearing in the large deviation rate function in (3.11). As ex-
plained in Feng and Kurtz [12, Section 8.6.1.2], the representation of the generator
in (4.1), where H(µ, f) is a Legendre transform as in (4.3), implies that the gener-
ator in (4.1) generates a non-linear semigroup, called the Nisio control semigroup,
associated with the function L (see [12, Section 8.1]).

Remark. The operator D has the property

Df0 = −2f0, f0(σ) = σ0, (4.5)

i.e., f0 is an eigenfunction of D. We recover the Hamiltonian in (2.7) (associ-
ated with the large deviation principle of the magnetization) from the infinite-
dimensional Hamiltonian in (4.2) via the relation

H(µ, pf0) = H(〈f0, µ〉, p). (4.6)

Remark. The infinite-dimensional Hamiltonian in (4.2) can be thought of as a
function of the “position” variable µ and the “momentum” variable f . The corre-
sponding Hamilton–Jacobi equations read

µ̇ =
δH

δf
, ḟ = −δH

δµ
. (4.7)

These give a closed equation for f , because the Hamiltonian in (4.2) is linear in µ.
If we can solve the latter equation to find f , then we can integrate the equation for
µ and find the solution for µ. This is precisely the same situation, but now infinite-
dimensional, as we encountered in (2.12), where the equation for p was closed and
could be integrated to give the solution for m.

4.2. Computation of the Lagrangian. To find L, the function appearing in the
rate function in (3.11), we have to compute the Legendre transform in (4.4). To do
so, we first consider the finite-dimensional analogue. We start with rates c ≡ 1, for
which (4.4) becomes

L(µ, α) = sup
f∈Rn

[
n∑
i=1

fiαi −
n∑
i=1

(
e
∑n
j=1Dijfj − 1

)
µi

]
,

µ = (µ1, . . . , µn), α = (α1, . . . , αn), f = (f1, . . . , fn),

(4.8)

where µi ∈ (0, ∞),
∑n
i=1 µi = 1, αi ∈ R, fi ∈ R, and Dij ∈ R. The matrix D has

the additional property that D(1) = 0, where 1 is the vector with all components
equal to 1. Hence

∑n
i=1(DTµ)i = 0, i.e., the transposed matrix DT maps any vector
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to a vector with zero sum. For a vector α, we say that (DT )−1α is well-defined if
there exists a unique vector ν = ν(α) with sum equal to 1 such that DT ν = α. For
two column vectors α, β ∈ Rn, let αβ be the vector with components αiβi, α/β the
vector with components αi/βi. For f : R→ R, write f(α) to denote the vector with
components f(αi). Then the equation for the maximizer f = f∗ of (4.8) becomes

αk =

n∑
i=1

µi e
∑n
j=1Dijf

∗
j Dik, k = 1, . . . , n, (4.9)

which in vector notation reads

α = DT (µeDf
∗
). (4.10)

If (DT )−1α is well-defined, then we can rewrite the latter equation as

Df∗ = log

[
(DT )−1α

µ

]
, (4.11)

and for this f∗ we have

n∑
i=1

f∗i αi = 〈f∗, α〉 =

〈
log

[
(DT )−1α

µ

]
, (DT )−1α

〉
(4.12)

and
n∑
i=1

(
e
∑n
j=1Dijf

∗
j − 1

)
µi = 0, (4.13)

because the total mass of µ and (DT )−1 are both equal to 1. Hence, inserting (4.12)
and (4.13) into (4.8), we obtain the expression

L(µ, α) =

〈
log

[
(DT )−1α

µ

]
, (DT )−1α

〉
, (4.14)

which is the relative entropy of (DT )−1α with respect to µ. The intuition behind
(4.14) is that L(µ, α) is the cost under the Markovian evolution for the initial
measure to have derivative α at time zero.

Let us next consider the infinite-dimensional version of the above computation.
First, for α ∈ M(Ω) with total mass zero, we declare (D∗)−1α = ν to be well-
defined if there exists a probability measure ν such that, for all f in the domain
of D,

〈ν, Df〉 = 〈α, f〉. (4.15)

If α is translation-invariant, then also (D∗)−1α is translation-invariant. For trans-
lation-invariant µ, ν ∈ M(Ω), we denote by s(ν|µ) the relative entropy density of
ν with respect to µ, i.e.,

s(ν|µ) = lim
N→∞

1

|TdN |
∑
σTd
N

ν(σTdN ) log

[
ν(σTdN )

µ(σTdN )

]
. (4.16)

Note that this limit does not necessarily exist. But if µ is a Gibbs measure, then
for all translation-invariant ν both s(ν|µ) and s(ν|µt) exist, where µt is µ evolved
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over time t (see van Enter, Fernández and Sokal [5], Le Ny and Redig [21]). The
rate function which is the analogue of (4.14) is now given by

L(µ, α) = s((D∗)−1α|µ) (4.17)

with the same interpretation as for (4.14): (D∗)−1α produces derivative α at time
zero for the trajectory of the empirical measure, and its cost is the relative entropy
density of this measure with respect to the initial measure µ.

4.3. Optimal trajectories. In order to gain some intuition about the rate func-
tion corresponding to the Lagrangian in (4.17), we identify two easy optimal tra-
jectories.

First, we consider a trajectory that starts from a product measure νx0
and ends at

a product measure νxt with xt = x0e
−2t. The typical trajectory is then simply the

product-measure-valued trajectory γt = νxt with xt = x0e
−2t. We can easily verify

that this trajectory has zero cost. Indeed, 〈γt, HA〉 = x
|A|
t , and hence 〈γ̇t, HA〉 =

|A|x|A|−1
t ẋt. On the other hand, 〈D∗(γt), HA〉 = −2|A|x|A|t and, since ẋs = −2xt,

we thus see that 〈γ̇t, HA〉 = 〈D∗(γt), HA〉. Therefore (D∗)−1(γ̇t) = γt, and (4.17)
gives

L(γt, γ̇t) = s((D∗)−1(γ̇t)|γt) = s(γt|γt) = 0. (4.18)

Note that this is the only product-measure-valued trajectory that has zero cost.
Indeed, if γt = νxt has zero cost, then from the requirement that 〈γ̇t, HA〉 =

〈D∗(γt), HA〉 = −2|A|x|A|t we find that ẋt = −2xt. For a general starting mea-
sure µ, the trajectory that has zero cost satisfies 〈γ̇t, HA〉 = −2|A| 〈γt, HA〉, which
has as solution 〈γt, HA〉 = 〈µ, HA〉 e−2|A|t, corresponding to the Markovian inde-
pendent spin-flip evolution started from µ. Note that, for a general trajectory γ,
〈(D∗)−1(γ̇t), HA〉 = −2|A|〈γ̇t, HA〉.

Second, we consider the case where µ = µy is a product measure with

〈µy, HA〉 = y|A|, −1 < y < 1, (4.19)

and α = αx is the derivative at time zero of another product measure, i.e.,

〈αx, HA〉 = −2|A|x|A|, −1 < x < 1. (4.20)

In that case D∗α = νx with νx the translation-invariant product measure with
〈νx, HA〉 = x|A|. The latter follows from the identity〈[∑

i∈A
HA(σi)−HA(σ)

]
, νx

〉
= −2|A|x|A|, (4.21)

and the rate function becomes

L(µy, αx) =
1 + x

2
log
(1 + x

1 + y

)
+

1− x
2

log
(1− x

1− y

)
. (4.22)
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5. The Rate Function for Dependent Spin-Flips

5.1. Computation of the Lagrangian. For general spin-flip rates c in (3.2), let
us return to the matrix calculation in (4.8) and (4.9). Equation (4.8) has to be
replaced by

L(µ, α) = sup
f∈Rn

[
n∑
i=1

fiαi −
n∑
i=1

ci
(
e
∑n
j=1Dijfj − 1

)
µi

]
, (5.1)

where ci > 0, i = 1, . . . , n. Put Cµ =
∑n
i=1 ciµi. In the calculation with ci = 1,

i = 1, . . . , n, this “total mass” does not depend on µ and is equal to 1. Now,
however, it becomes a normalization that depends on µ. We say that (DT )−1(α, µ)
is well-defined if there exists a non-negative vector ν = ν(α, µ) = (ν1 . . . , νn) with
sum Cµ such that DT ν = α. The analogue of (4.14) reads

L(µ, α) =

〈
log

[
(DT )−1(α, µ)

µ

]
, (DT )−1(α, µ)

〉
. (5.2)

In order to find the analogue of this expression in the infinite-dimensional set-
ting, we proceed as follows. For two finite positive measures µ, ν of equal total
mass M , we define S(µ|ν) to be the relative entropy density of the probabil-
ity measures µ/M, ν/M , i.e., S(µ|ν) = s(ν/M |µ/M). For µ ∈ M1(Ω), we de-
fine the c-modification of µ as the positive measure defined via

∫
Ω
f(σ) dµc(σ) =∫

Ω
c(σ)f(σ) dµ(σ). For a signed measure of total mass zero and µ ∈M1(Ω), we say

that (D∗)−1(α, µ, c) = ν is well-defined if there exists a positive measure ν of total
mass equal to that of µc such that D∗(ν) = α. Then the analogue of (5.2) becomes

L(µ, α) = s
(
(D∗)−1(α, µ, c)|µc

)
. (5.3)

5.2. The non-linear semigroup and its relation with relative entropy.
The non-linear semigroup with generator (3.12) is defined as follows. Let P inv(Ω)
be the set of translation-invariant probability measures on Ω. For local functions
f1, . . . , fn : Ω→ R and a C∞-function Ψ: Rn → R, we define an associated function

F f1,...,fNΨ : P inv(Ω)→ R via

F f1,...,fnΨ (µ) = Ψ

(∫
Ω

f1 dµ, . . . ,

∫
Ω

fn dµ

)
. (5.4)

Since 〈fi, LN 〉 is well-defined for N large enough, we can define F f1,...,fnΨ (LN ) for
N large enough as well. This allows us to define a non-linear semigroup (V (t))t>0

via(
V (t)F f1,...,fnΨ

)
(µ) = lim

N→∞

1

|TdN |
logEσN

(
exp
[
|TdN |F

f1,...,fn
Ψ

(
LN (σN (t))

)])
, (5.5)

where EσN denotes expectation with respect to the law of the process starting
from σN , and the limit is taken along a sequence of configurations (σN )N∈N with
σN ∈ ΩN such that the associated empirical measure LN (σN ) converges weakly
to µ as N → ∞. If V (t) exists, then it defines a non-linear semigroup, and the
generator of V (t) is given by (3.32).

Conversely, if H in (3.32) generates a semigroup, then this must be (V (t))t>0.
The fact that this semigroup is well-defined is sufficient to imply the large deviation
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principle for the trajectory of the empirical measure (Feng and Kurtz [12, Theorem
5.15]). Technically, the difficulty consists in showing that the generator in (3.32)
actually generates a semigroup.

We now make the link between the non-linear semigroup, its generator and
some familiar objects of statistical mechanics, such as pressure and relative entropy
density.

Definition 5.1. The constrained pressure at time t associated with a function
f : Ω→ R and a Gibbs measure µ ∈ P inv(Ω) is defined as

pt(f |µ) = lim
N→∞

1

|TdN |
logEσN

(
e
∑
x∈TN

τxf(σt)
)
, (5.6)

where the limit is taken along a sequence of configurations (σN )N∈N with σN ∈ ΩN
such that the associated empirical measure LN (σN ) converges weakly to µ as N →
∞.

In particular, p0(f |µ) =
∫

Ω
f dµ. The relation between the non-linear semigroup

in (5.5) and the constrained pressure at time t reads

(V (t)〈f, · 〉)(µ) = pt(f |µ). (5.7)

The pressure at time t is defined as

p(f |µt) = lim
N→∞

1

|TdN |
logEµ

(
e
∑
x∈TN

τxf(σt)
)
. (5.8)

This is well-defined as soon as the dynamics starts from a Gibbs measure µ0 = µ
(see Le Ny and Redig [21]). The relation between the pressure and the constrained
pressure reads

p(f |µt) = sup
ν∈Pinv(Ω)

[pt(f |ν)− s(ν|µ)]. (5.9)

On the other hand, the pressure at time t is the Legendre transform of the relative
entropy density with respect to µt, i.e.,

p(f |µt) = sup
ν∈Pinv(Ω)

[∫
Ω

f dν − s(ν|µt)
]
, (5.10)

where the relative entropy density s(ν|µt) exists because µt is asymptotically de-
coupled (see Pfister [26]) as soon as µ0 = µ is a Gibbs measure (see Le Ny and
Redig [21]).

The relation between the non-linear generator and the constrained pressure is
now as follows. Define the Legendre transform of the constrained pressure as

p∗t (ν|µ) = sup
f∈C(Ω)

[∫
f dν − pt(f |µ)

]
. (5.11)

Then the relation with the Hamiltonian in (4.2) and the Lagrangian in (5.3) is

H(µ, f) =

[
d

dt
pt(f |µ)

]
t=0

(5.12)

and

L(µ, α) = lim
t→0

1

t
p∗t (µ+ tα|µ). (5.13)
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Remark. The operator D, acting on the space C(Ω) of continuous functions on Ω,
has a dual operator D∗, acting on the space M(Ω) of finite signed measures on Ω,
defined via

〈f, D∗µ〉 = 〈Df, µ〉. (5.14)

In order to gain some understanding for D∗ (which will be useful later on), we first
compute D∗ for a Gibbs measure µ ∈ P inv(Ω). Without loss of generality we may
assume that the interaction potential of µ is a sum of terms of the form Φ(A, σ) =
JAH(A, σ), A ⊆ Zd finite, where JA is translation invariant, i.e., JA+k = JA,
k ∈ Zd. We also assume absolute summability, i.e.,∑

A30

|JA| <∞. (5.15)

Remember that

(Df)(σ) =
∑
j∈Zd

[
f(τj(σ

0))− f(τj(σ))
]
. (5.16)

Therefore, for the Gibbs measure µ under consideration, we have

〈µ, Df〉 =

∫
Ω

( ∑
j∈Zd

dµ0

dµ
◦ τ−j − 1

)
f dµ, (5.17)

where µ0 denotes the distribution of σ0 when σ is distributed according to µ. Note
that the sum in the right-hand side of (5.17) is formal, i.e., the integral is well-
defined due to the multiplication with the local function f . In terms of JA, A ⊆ Zd
finite, we have( ∑

j∈Zd

dµ0

dµ
◦ τ−j − 1

)
(σ) =

∑
j∈Zd

(
e−

∑
A30−2JAH(A−j,σ) − 1

)
, (5.18)

where, once again, this expression is well-defined only after multiplication with a
local function and integrated over µ.

6. Bad Empirical Measures

In Section 7 we will see what consequences the large deviation principle for the
trajectory of the empirical measure derived in Sections 3 and 5 has for the question
of Gibbs versus non-Gibbs. This needs the notion of bad empirical measure, which
we define next.

If we start our spin-flip dynamics from a Gibbs measure µ ∈ P inv(Ω), then a
probability-measure-valued trajectory γ = (γt)t∈[0,T ] has cost

Iµ(γ) = s(γ0|µ) +

∫ T

0

L(γt, γ̇t) dt, (6.1)

where the term s(γ0|µ) is the cost of the initial distribution γ0. We are interested in
the minimizers of Iµ(γ) over the set of trajectories γ that end at a given measure ν.
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Let

KT (µ′, ν) = inf
γ: γ0=µ′,γT=ν

∫ T

0

L(γt, γ̇t) dt

= − lim
N→∞

1

|TdN |
logPµ (LN (σT ) = ν|LN (σ0) = µ′) . (6.2)

Then e|T
d
N |−KT (µ′,ν) can be thought of as the transition probability for the empirical

measure LN to go from µ′ to ν, up to factors of order eo(|T
d
N |). Hence

− 1

|TdN |
logPµ (LN (σ0) = µ′|LN (σT ) = ν)

= [s(µ′|µ) +KT (µ′, ν)]− inf
µ′∈Pinv(Ω)

[s(µ′|µ) +KT (µ′, ν)]. (6.3)

Let M∗(µ, ν) be the set of probability measure µ′ for which the infimum in the
right-hand side of (6.3) is attained. We can then think of each element in this set
as a typical empirical measure at time t = 0 given that the empirical measure at
time T is ν. When M∗ is a singleton, we denote its unique element by µ∗(µ, ν).

Definition 6.1. (a) A measure ν is called bad at time t if M∗(µ, ν) contains at
least two elements µ1 and µ2 and there exist two sequences (ν1

n)n∈N and (ν2
n)n∈N,

both converging to ν as n→∞, such that µ∗(µ, ν1
n) converges to µ1 and µ∗(µ, ν2

n)
converges to µ2.

(b) A measure ν that is bad at time t has at least two possible histories, stated
as a two-layer property: seeing the measure ν at time t is compatible (in the sense
of optimal trajectories) with two different measures at time t = 0.

Badness of a measure can be detected as follows.

Proposition 6.2. A measure ν is bad at time t if there exists a local function
f : Ω→ R, two sequences (ν1

n)n∈N and (ν2
n)n∈N both converging to ν, and an ε > 0

such that∣∣E(f(σ(0)) | LN (σ(t)) = (ν1
n)N

)
− E

(
f(σ(0)) | LN (σ(t)) = (ν2

n)N
)∣∣ > ε (6.4)

for all N, n ∈ N, where (νn)N denotes the projection of νn on TdN .

7. A Large Deviation View on Dynamical Gibbs-Non-Gibbs
Transitions

In van Enter, Fernández, den Hollander and Redig [4] we studied the evolution
of a Gibbs measure µ under a high-temperature spin-flip dynamics. We showed
that the Gibbsianness of the measure µt at time t > 0 is equivalent to the absence
of a phase transition in the double-layer system. More precisely, conditioned on
end configuration η at time t, the distribution at time t = 0 is a Gibbs measure µη

with η-dependent formal Hamiltonian

Hη
t (σ, η) = H(σ) + ht

∑
i∈Zd

σiηi, (7.1)

where t 7→ ht is a monotone function with limt↓0 ht = ∞ and limt→∞ ht = 0. If
the double-layer system has a phase transition for an end configuration η, then η
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is called bad. In that case η is an essential point of discontinuity for any version of
the conditional probability µt(σΛ = · |σΛc), Λ ⊆ Zd finite.

The relation between the double-layer system and the trajectory of the empir-
ical distribution is as follows. Suppose that the double-layer system has no phase
transition for any end configuration η. If we condition the empirical measure at
time t > 0 to be ν, then (by further conditioning on the configuration η at time
t > 0) we conclude that at time t = 0 we have the measure

∫
Ω
µην(dη). Hence the

optimizing trajectory is unique. Conversely, if there exist a bad configuration η,
then (because of the translation invariance of the initial measure and of the dynam-
ics) all translates of η are bad also. Hence we expect that a translation-invariant

measure ν arising as any weak limit point of |TdN |
−1∑

x∈TdN
δτxη is bad also.

As an example, let us consider a situation studied in [4]. The dynamics starts
from µ+

β , the low-temperature plus-phase of the Ising model with zero magnetic
field, and evolves according to independent spin-flips. Then, from some time on-

wards, the alternating configuration ηalt(x) = (−1)
∑d
i=1 |xi| becomes bad. The same

is true for −ηalt, and so the translation-invariant measure

ν = 1
2 (δηalt + δ−ηalt) (7.2)

has the property that, for ν-a.e. configuration η, the double-layer system has a
phase transition when the end configuration is η. Moreover, the Hamiltonian Hη

t

has a plus-phase µ+
η and a minus-phase µ−η . Therefore, when we condition on the

empirical measure in (7.2) we get two possible optimal trajectories, one starting
at 1

2 (µ+
η + µ+

−η) and one starting at 1
2 (µ−η + µ−−η). To realize the approximating

measures of Proposition 6.2, we choose ν1
n, ν

2
n to be the randomized versions of ν

where we first choose a configuration according to ν and then independently flip
spins with probability 1/n, to change either from minus to plus or stay plus if it was
plus to begin with, respectively to change to minus or stay minus. Clearly, by the
FKG-inequality, when conditioning on ν1

n, respectively, ν2
n as empirical distribution,

we get a measure at time t = 0 that is above µ+
η +µ+

−η, respectively, below µ−η +µ−−η.
Hence (6.4) holds with f(σ) = σ0, and ν is bad.

We summarize this discussion in a theorem:

Theorem 7.1. Let {σ(t) : t > 0} be independent spin-flip dynamics, with initial
distribution µ+

β : the plus-phase of the Ising model at inverse temperature β. There
exists β0 > 0 such that for all β > β0 there exists t0 > 0 such that for all t > t0,
the measure

ν = 1
2 (δηalt + δ−ηalt) (7.3)

is bad at time t.

Appendix A. A Simple Example of the Feng–Kurtz Formalism

A.1. Poisson walk with small increments. In order to introduce the general
formalism developed in Feng and Kurtz [12], let us consider a simple example where
computations are simple yet the fundamental objects of the general theory already
appear naturally.
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Let XN = (XN (t))t>0 be the continuous-time random walk on R that jumps
N−1 forward at rate bN and −N−1 backward at rate dN , with b, d ∈ (0, ∞). This
is the Markov process with generator

(LNf)(x) = bN
[
f(x+N−1)− f(x)

]
+ dN

[
f(x−N−1)− f(x)

]
. (A.1)

Clearly, if limN→∞XN (0) = x ∈ R, then

lim
N→∞

XN (t) = x+ (b− d)t, t > 0, (A.2)

i.e., in the limit as N →∞ the random process XN becomes a deterministic process
(x(t))t>0 solving the limiting equation

ẋ = (b− d), x(0) = x. (A.3)

For all N ∈ N, we have

XN (t) = N−1
[
N+(Nbt)−N−(Ndt)

]
=

N∑
i=1

(Xbt
i − Y dti ) (A.4)

with N+ = (N+(t))t>0 and N− = (N−(t))t>0 independent rate-1 Poisson pro-
cesses, and Xt

i , Y
t
i , i = 1, . . . , N , independent Poisson random variables with

mean bt, respectively, dt. Consequently, we can use Cramér’s theorem for sums of
i.i.d. random variables to compute

I(at) = − lim
N→∞

1

N
logPN

(
XN (t) = at | XN (0) = 0

)
= sup
λ∈R

[
atλ− F (λ)

]
, (A.5)

where

F (λ) = lim
N→∞

1

N
logEN

(
eλNXN (t)

)
= bt(eλ − 1) + dt(e−λ − 1). (A.6)

Thus, we see that

I(at) = tL(a) (A.7)

with

L(a) = sup
λ∈R

[
aλ− b(eλ − 1)− d(e−λ − 1)

]
. (A.8)

Using the property that the increments of the Poisson process are independent over
disjoint time intervals, we can now compute

lim
N→∞

1

N
logPN

(
(XN (t))t∈[0,T ] ≈ (γt)t∈[0,T ]

)
= lim
n→∞

n∑
i=1

lim
N→∞

1

N
logPN

(
XN (ti)−XN (ti−1) ≈ γ̇ti−1

(ti − ti−1)
)

= lim
n→∞

n∑
i=1

(ti − ti−1)L(γ̇ti−1
) =

∫ T

0

L(γ̇t) dt, (A.9)

where L is given by (A.8) and ti, i = 1, . . . , n, is a partition of the time interval
[0, T ] that becomes dense in the limit as n→∞.
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We see from the above elementary computation that, in the limit as N →∞,

PN
(
(XN (t))t∈[0,T ] ≈ (γ(t))t∈[0,T ]

)
≈ exp

[
−N

∫ T

0

L(γt, γ̇t) dt

]
, (A.10)

where the Lagrangian L only depends on the second variable, namely,

L(γt, γ̇t) = L(γ̇t) (A.11)

with L given by (A.8). We interpret (A.10) as follows: if the trajectory is not
differentiable at some time t ∈ [0, T ], then the probability in the left-hand side of
(A.10) decays superexponentially fast with N , i.e.,

lim
N→∞

1

N
logPN

(
(XN (t))t∈[0,T ] ≈ (γt)t∈[0,T ]

)
= −∞, (A.12)

and otherwise it is given by the formula in (A.10) (read in the standard large-
deviation language).

The Lagrangian in (A.8) is the Legendre transform of the Hamiltonian

H(λ) = b(eλ − 1) + d(e−λ − 1). (A.13)

This Hamiltonian can be obtained from the generator in (A.1) as follows:

H(λ) = lim
N→∞

1

N
e−Nfλ(x) (LNe

Nfλ)(x), fλ(x) = λx. (A.14)

More generally, by considering the operator

(Hf)(x) = lim
N→∞

1

N
e−Nf(x)(LNe

Nf )(x) = b(ef
′(x) − 1) + d(e−f

′(x) − 1), (A.15)

we see that the Hamiltonian equals

H(λ) = (Hfλ)(x), (A.16)

and that, by the convexity of λ 7→ H(λ),

(Hf)(x) = H(f ′(x)) = sup
a∈R

[af ′(x)− L(a)]. (A.17)

The operator H is called the generator of the non-linear semigroup.

A.2. The scheme of Feng and Kurtz. The scheme that produces the La-
grangian in (A.8) from the operator in (A.15) actually works in much greater
generality. Consider a sequence of Markov processes X = (XN )N∈N with XN =
(XN (t))t>0, living on a common state space (like R, Rd or a space of probability
measures). Suppose that XN has generator LN and in the limit as N → ∞ con-
verges to a process (x(t))t>0 which can be either deterministic (as in the previous
example) or stochastic. We want to identify the Lagrangian controlling the large
deviations of the trajectories:

PN
(
(XN (t))t∈[0,T ] ≈ (γt)t∈[0,T ]

)
≈ exp

[
−N

∫ T

0

L(γt, γ̇t) dt

]
. (A.18)

Omitting technical conditions, we see that this can be done in four steps:

(1) Compute the generator of the non-linear semigroup

(Hf)(x) = lim
N→∞

1

N
e−Nf(x)(LNe

Nf )(x). (A.19)
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(2) Look for a function H(x, p) of two variables such that

(Hf)(x) = H(x, ∇f(x)). (A.20)

What ∇f means depends on the context: on Rd it simply is the gradient of
f , while on an infinite-dimensional state space it is a functional derivative.

(3) Express the function H as a Legendre transform:

H(x, p) = sup
p

[〈p, λ〉 − L(x, λ)] . (A.21)

What 〈·〉 means also depends on the context: on Rd it simply is the inner
product, while in general it is a natural pairing between a space and its
dual, such as 〈f, µ〉 =

∫
f dµ.

(4) The Lagrangian in (A.18) is the function L with x = γt and λ = γ̇t.
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