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We study the asymptotic hitting time τ (n) of a family of Markov pro-
cesses X(n) to a target set G(n) when the process starts from a “trap” defined
by very general properties. We give an explicit description of the law of X(n)

conditioned to stay within the trap, and from this we deduce the exponen-
tial distribution of τ (n). Our approach is very broad—it does not require re-
versibility, the target G does not need to be a rare event and the traps and the
limit on n can be of very general nature—and leads to explicit bounds on the
deviations of τ (n) from exponentially. We provide two nontrivial examples to
which our techniques directly apply.

1. Introduction.

1.1. Scope of the paper. Metastability and related phenomena are associated
to systems “trapped” for a long time in some part of their phase space, from which
they emerge in a random time—the exit time—expected to have an asymptotic
exponential distribution. They are the subject of many current studies in the math-
ematical and mathematical physics literature. This recent activity is motivated, on
the one hand, by the confirmation of their widespread occurrence in most evolu-
tions and, on the other hand, on the emergence of a host of new techniques for their
rigorous analysis—cycle decomposition [15–17, 27, 29–31, 36], potential theoretic
techniques [8, 9, 11, 12], renormalization [33, 34], martingale approach [5–7]. In
this article, we focus on an essential component of a metastability analysis: the
description of the state of a system trapped in a region A and the estimation of the
law of the exit time from this (meta)stable trap to a target set G. These times are
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the building blocks for studies of evolutions through arbitrarily complex scenar-
ios involving many of these traps. Our treatment is inspired by the first rigorous
paradigm proposed for this type of studies—the path-wise approach introduced in
[15] and developed, for instance, in [27, 29–31].

In the remaining part of the Introduction, we discuss in detail the main ad-
vantages of our approach, but here is a brief summary: (i) We do not make any
assumption on the nature of the limit process involved, in particular it applies to
fixed-temperature, infinite-volume limits. (ii) The process is not assumed to be
reversible, and the traps do not need to be narrowly supported. (iii) (Meta)stable
states are described by measures, not just through a few reference configurations.
Furthermore, the different natural candidate measures are shown to provide equiv-
alent descriptions within explicit error bounds. (iv) There is no constraint on the
exterior G of the trap—in particular, it does neither need to be a rare set, nor to
be associated to a stable state. (v) Exit laws are precisely estimated with explicit
bounds on deviations from exponentiality. (vi) Our approach relies on a novel type
of proof based on controlling the proximity to the quasi-stationary measure. This
simplifies proofs and strengthens results.

1.2. Issues addressed by this approach. Let us first discuss in some detail the
issues we deal with.

General traps. In many visualisations of a trap, authors have in mind some
energy profile associated to the invariant measure of the process defining the evo-
lution. A trap corresponds, in this case, to an energy well, and metastability refers
to the exit from such a well to a deeper well, leading to stability, that is, corre-
sponding to the asymptotic support of the invariant measure. This point of view is
fully exploited, for instance, in the reference book [31]. It is important to keep in
mind, however, that this is only one of many possible metastability (or tunneling)
scenarios. Indeed, in many simple examples, the invariant measure is not linked
to any useful “energy” profile. For instance, any shuffle algorithm for a pack of
cards leaves the uniform measure invariant. This measure corresponds to “flat,”
well-less energy profile. Yet, in this paper we show that for the well-known Top-
In-At-Random model, the time it takes an initially well-shuffled pack to attain a
particular order is exponentially distributed (see Section 4.2). In this example, the
“well” A is entropic in nature. More generally, processes can define free-energy
wells. We stress that our setup relies on hypotheses insensitive to the nature of the
“well.”

Measures associated to traps. States are probability measures, and hence tran-
sitions between trapped states have to correspond to transitions between mea-
sures (asymptotically) supported by these traps. Nevertheless, in many instances
metastable states are associated to individual configurations marking the “bot-
tom of the trap.” Such studies are suited to traps that become, asymptotically,
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abrupt enough to allow only small fluctuations in the trapped state. A more gen-
eral scenario should involve “wide traps” corresponding to measures with an ex-
tended support and a corresponding thermalization scale. For a given trap, there
are three natural candidate measures: the restriction of the invariant measure, the
quasi-stationary measure and the empirical measure of the process before exiting
the trap. These measures have complementary properties; in particular, the quasi-
stationary measure automatically leads to exponential exit times. In this paper, we
shed light on the links between these measures in our framework.

General assumptions. Our approach for metastability includes the following
features.

• No need of reversibility: Many approaches depend crucially of the reversible
character of the invariant measure. This is, in particular, true in the funding
literature of the subject by Keilson [23] and Aldous and Brown [1, 2]. Until
the recent paper [24], where potential theoretic tools were used to prove the
metastable behavior for a nonreversible dynamics, it was also a prerequisite for
the application of potential theory. Nevertheless, many examples (we deal with
one such example in Section 4.2) show that this hypothesis is not necessary to
observe exponential escape times.

• General nature of the target set G: Exit times are defined by hitting times to a
certain “boundary set” G which, in many instances, is associated to the saddle
points, or bottlenecks that the system has to cross on its exit trajectories. As
such, it is often assumed that the set G is asymptotically negligible. Alternative
metastability (and tunneling) studies use G as the support of the stable measure
(= bottom of deeper wells). In these cases, the set G has asymptotically full
measure, which is in sharp contrast with the previous ones. These two cases
show that, for general exit times studies, the set G should simply be associated
with the exterior of the well, without any assumption on its asymptotic measure.

The nature of the asymptotic regime. Metastability, and the exponential escape
law, only appear asymptotically in appropriate parameters that gauge the nature
and depth of the trap. The type of parametrization determines how the metastable
regime is approached. Some approaches, for example, low-temperature limits in-
volve traps that become asymptotically more abrupt. Others, for example, card
shuffling of larger packs—keep the geometry of the trap fixed but make the exter-
nal set G progressively farther from the “bottom” of the trap. In more complicated
situations, the limit involves both a change in depth and the complexity of the
traps. This happens, for instance, in the study of fixed-temperature spin systems
in the thermodynamic limit, for which the changes in the volume lead to a more
complex trap scenario with an associated proliferation (“entropy effect”) of escape
routes (e.g., location of “critical droplets”). Our approach applies equally well to
these different limits.
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The type of transition probabilities. In many standard metastability studies,
the stochastic evolution is itself defined through an energy function (identical or
closely related to the one defined by the invariant measure). This is the case, for
instance, in the Metropolis algorithm, in which transition probabilities are propor-
tional to the exponential of the positive part of energy differences. A related feature
of these models is the fact that the “barriers” between traps—determining, for in-
stance, the mean escape time—are proportional to the energy differences between
configurations marking the bottom and the top of energy wells. In the framework
of statistical mechanics models, an important family of models excluded by this
setup are the cellular automata [18]. It turns out that the parallel character of their
dynamics leads to the existence of a large number of paths between any two con-
figurations. The probabilistic barrier characterizing each of these paths cannot be
described only by energy differences.

The particular form of the transition probabilities plays no special role in our
general approach.

1.3. Main features of our approach. Here is how we deal with the issues dis-
cussed above.

General traps and asymptotic regime. We consider a family of continuous time
irreducible Markov chains X

(n)
t on finite state spaces X (n). The asymptotic regime

is associated to n → ∞, but we do not need to specify the nature of the parameters
involved. Particular relevant examples are the case where the limit may involve
the divergence of the cardinality of the state spaces, and/or some parameter in
the transition probabilities such as the inverse temperature. For each n the state
space is divided into a trap A(n) and its complementary set G(n) = C(n) \ A(n). We
do not assume any particular property of G(n); exit times are only determined by
the evolution inside A(n) and the structure of G(n) is irrelevant for the exit times.
The traps include sets B(n) ⊂ A(n) of configurations—associated to “bottoms of
the well”—which can have arbitrary size as long as they satisfy certain natural
assumptions.

More precisely, the definition of trap is contained in three physically natural
hypotheses—spelled out in Section 3.1 below—that can be roughly described as
follows:

Fast recurrence: For any initial configuration, the process falls within a controlled
time R(n) either in B(n) or in G(n). This recurrence time acts as a reference time
for the whole of the analysis.

Slow escape: Starting from configurations in B(n), the time τ (n) the process takes
to hit G(n) is much larger than the recurrence time R(n).

Fast thermalization: A process started in B(n) achieves “local thermalization”
within B(n)—in a time much shorter than the escape time τ (n).
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The two time scales—escape and local thermalization—actually define the trap
and the limit process. This definition is sufficiently general to accommodate dif-
ferent types of traps (e.g., energy, entropy- or free-energy driven) and asymptotic
limits (e.g., low temperature, large volume or combinations of both). The scales
do not need to be asymptotically different; a fact that allows the consideration of
less abrupt traps. The recurrence hypothesis controls, in particular, the presence of
complicated landscapes in A(n) \ B(n). As discussed below, this control is not nec-
essary if G(n) is a rare set. Furthermore, in concrete examples it is usually not hard
to achieve recurrence at some appropriate time scale, due to the submultiplicative
property of the probability of nonrecurrence

sup
x∈X (n)

P
(
τx
G(n)∪B(n) > kt

) ≤ sup
x∈X (n)

P
(
τx
G(n)∪B(n) > t

)k
.

Metastable states. Our approach is based on the fact that, with the above def-
inition of a trap, the three possible notions of trapped state—the restriction of the
invariant measure, the quasi-stationary measure and the empirical measure of the
process before exiting the trap—are largely equivalent and can be used indistinc-
tively. In fact, our proof provides explicit bounds on the asymptotic behavior of
their distances. Therefore, metastable states can be defined by any of them and are
endowed with the physical properties associated to each of them. Mathematically,
this equivalence leads to precise quantitative estimates on the distribution of the
first hitting time of G(n), through notoriously simplified proofs.

General target set G(n). Except for the recurrence hypothesis, the structure of
the set G(n) plays no role in our theory. It can, therefore, correspond to rare or
nonrare parts of the configuration space. Furthermore, this generality makes our
results applicable to a wide type of phenomena. Indeed, in a truly metastability
scenario the trap corresponds to an asymptotically unlikely family of configura-
tions and the escape is followed by a fall into the true support of the stable phase.
In other cases, however, the escape may be followed by a visit to an equally likely
set of configurations; a situation more appropriately referred to as tunneling. This
phenomenon occurs, for instance, if stable states are supported in several asymp-
totically disconnected regions and interest focuses on the way the system migrates
from one of these regions to another one. Hence, the insensitivity to the scenario
after the exit leads to results useful for the study of metastability, tunneling or any
evolution involving traps.

Application to nonreversible dynamics. Other than the preceding assumptions,
we do not assume any particular property of the transition probabilities, nor do we
assume reversibility. This work is, hence, part of the so far quite reduced circle
of metastability results in the nonreversible case. Until the work [24], lack of re-
versibility was precluding the potential theoretical approach, and relevant publica-
tions are very recent [6, 20]. In particular, the convergence in law of escape times
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has been obtained in [7], but assuming that G(n) is a rare event. In [28], the author
provides a control on tail distributions that is close to ours, yielding an error of the
form exp(O(ε)t) instead of our O(ε) exp(−t) [see also (ii) in Remark 3.9].

The technique of cycle decompositions [17, 30] applies also to nonreversible dy-
namics for chains with exponentially small transition probabilities at fixed-volume
in the low-temperature limits.

General assumptions on the asymptotic regime. We do not make any assump-
tion on the nature of the limiting process involved. In particular, we cover the case
of fixed temperature and infinite volume limit, where it naturally arises an impor-
tant entropic contribution. There are only few studies that deal with the latter for
specific models under reversible dynamics. They consider the case in which the
volume grows exponentially with the inverse temperature [10, 21, 22]. In [32], the
authors consider the kinetic Ising model at infinite volume, fixed temperature and
asymptotically vanishing external magnetic field.

Summary of results. For systems satisfying the three hypotheses above, we
prove that the first hitting times to G(n) are asymptotically exponentially dis-
tributed, within explicitly bounded error terms. Furthermore, we get explicit con-
trol of the variational distance between the quasi-stationary measure and the
evolved measure of the process conditioned to stay within A(n). The exponen-
tial law is subsequently deduced from the properties of the quasi-stationary mea-
sure. This approach leads to stronger control on the distribution of the hitting time
than the one obtained in [28]. In fact, our estimations are valid for every starting
point in A(n), and hence yield a precise description of the empirical measure of
the chain up to its first escape from A(n). This approach is different—and more
effective—than the one adopted in a precedent paper [19], which was restricted to
traps characterized by a single-configuration bottom.

Intuitively, the picture we obtain is the following: in a time of the order of the
recurrence time R(n) the process chooses, depending on its starting point, whether
it reaches directly G(n) or whether it visits B(n) before. Once in B(n), the process
reaches in a very short time a metastable equilibrium within A(n) that is accu-
rately described by the quasi-stationary measure. Due to Markovianness and the
long mean exit times, the process requires an exponential time to exit from this
temporary equilibrium.

In the second part of the paper, we illustrate the power of our results through ap-
plications to two interesting models. Both models have features that put them out-
side most general theories. The first model is a reversible birth and death process
issued from the context of dynamical polymer models. It has the particularity that
its energy profile exhibits a double well, but separated by an energy barrier that
is only logarithmic. Our second example is the well-known Top-In-At-Random
(TIAR) model, which has a uniform invariant measure. This is an example of non-
reversible dynamics with a purely entropic barrier. As far as we know, this is the
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first time this model has been shown to exhibit exponential behavior of the hitting
time to a rare set.

Outline of the paper: in Section 2, we give the main definitions and recall some
well known results, and in Section 3 we precise the hypotheses and detail our
results. Applications are discussed in Section 4. Finally, Section 5 is devoted to the
proofs.

2. Setting. Let X (n) be a sequence of finite state space depending on a pa-
rameter n and X

(n)
t be a sequence of continuous time irreducible Markov chains

on them. We are interested in the asymptotics n → ∞. We should typically think
of n as being related to:

1. The cardinality of |X (n)|. This is typically the case for large size physical
systems, and our hope would be that the techniques developed in this paper apply
to the infinite volume of well-known models issued from statistical physics.

2. The inverse temperature in a Freidlin–Wentzell setup. This issue has been
very studied; classical references by now are [31] and [16].

We denote by Q(n) the matrix of transition rates on X (n) generating the chain
X

(n)
t and by (π(n), n ≥ 1) the corresponding sequence of invariant measures. The

family of Markov chains X
(n)
t could be equivalently defined in terms of their ker-

nels

P (n) = 1 + Q(n),(2.1)

and via their continuous time semigroup

H
(n)
t f := etQ(n)

f = e−t
∑
k≥0

tk(P (n))k

k! f.(2.2)

We do not assume reversibility so that the adjoint kernels (P (n))∗ defined by

(
P (n))∗(x, y) = π(n)(y)

π(n)(x)
P (n)(y, x)(2.3)

do not necessarily coincide with P (n). We will denote by X
←(n)
t the corresponding

time reversal processes.
Discrete time Markov chains are covered by our techniques and we could also

consider more general cases but for an easier presentation of our results, we prefer
to restrict our analysis to this setup.

We denote by P(·) and E(·) generic probabilities and mean values. We will spec-
ify in the events and in the random variables the initial conditions of the process,
so that, for instance, for A(n) ⊂ X (n) we define the first hitting time to A(n) for the
chain X

(n)
t starting x ∈ X (n):

τ
(n),x

A(n) = inf
{
t ≥ 0 :X(n),x

t ∈ A(n)}.(2.4)
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We also use the small-o notation o(1) to denote a positive quantity which has
limit 0 as n → ∞.

We will prove our results keeping in mind the asymptotic regime n → ∞. Nev-
ertheless, we stress that most of our estimates go beyond asymptotics, and more
precisely we were able to show our main results with explicit error terms. We
choose to write the major part of this article for a fixed value of n (and as a con-
sequence and for lightness of notation, from now on, we drop this explicit de-
pendence from the notations, except in some particular cases like Corollary 3.10),
denoting by small Latin letters quantities which should be thought of as asymptoti-
cally o(1). For example, the quantity f in (3.3) should be thought of as a sequence
fn = o(1).

For positive sequences an, bn, we will also use the standard notation an ∼ bn as
soon as limn→∞ an/bn = 1, and an � bn if bn/an = o(1).

The notation X = (Xt)t∈R is used for a generic chain on X .

2.1. Measures and distances. Let Xt be an irreducible continuous time
Markov chain on X with stationary measure π and transition rates Q, and let
A ⊂ X be a given set. From now on, we denote by G the complementary of A,
and we define the following measures:

– The invariant measure restricted on A:

πA(·) := 1

π(A)
π(·)1{·∈A}.(2.5)

– The measure of evolution: for any t ≥ 0 and x ∈ X let

μx
t (·) := P

(
Xx

t = ·),(2.6)

and more generally for any probability measure ν on X :

μν
t (·) := P

(
Xν

t = ·) := ∑
x∈X

ν(x)P
(
Xx

t = ·).(2.7)

– The conditioned evolution measure on A: for any t ≥ 0 and x ∈ A the evolu-
tion measure conditioned to A is defined as

μ̃x
A,t (·) := P

(
Xx

t = ·|τx
Ac > t

) = P(Xx
t = ·, τ x

Ac > t)

P(τ x
Ac > t)

,(2.8)

and more generally for any probability measure ν on X :

μ̃ν
A,t (·) := ∑

x∈X
ν(x)μ̃x

A,t (·).(2.9)

– Quasi-stationary measure on A: the quasi-stationary measure μ∗
A(·) is a clas-

sical notion; it can be defined, for example, in the following way:

μ∗
A(·) := lim

t→∞ μ̃
πA

A,t (·).(2.10)
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We recall the following elementary property about μ∗
A; this is a classical result

which can be found, for example, in [35], and which states that starting from μ∗
A,

the exit law from A is exactly exponential (no correction is needed). Here and in

the rest of the paper, we set E[τμ∗
A

G ] =: T ∗.

PROPOSITION 2.1. For any t ≥ 0, the following equality holds:

P
[
τ

μ∗
A

G /T ∗ > t
] = e−t .(2.11)

– The empirical measure on A: for any x ∈ A, by denoting with ξx
G(y) the local

time spent in y before τG starting at x we can define the empirical measure:

μ
(em)x
A (y) = Eξx

G(y)

Eτx
G

.(2.12)

– Total variation distance: given two probability measures π1 and π2 on X , we
define

dTV(π1, π2) := 1

2

∑
x∈X

∣∣π1(x) − π2(x)
∣∣ = max

A⊂X

∣∣π1(A) − π2(A)
∣∣

and

d(t) = max
x∈X dTV

(
μx

t ,π
)
, d̄(t) := max

x,x′ dTV
(
μx

t ,μ
x′
t

)
.(2.13)

It is well known (see, e.g., [4]) that d̄ is submultiplicative; namely, for m,n > 1

d̄(m + n) ≤ d̄(m)d̄(n)(2.14)

and

d̄(t) ≤ d(t) ≤ 2d̄(t).

For a given set K ⊂ X , we introduce the quantity

d̄K(t) := max
x,x′∈K

dTV
(
μx

t ,μ
x′
t

)
.(2.15)

A submultiplicative property such as (2.14) does not hold in general for the
quantity d̄K(t).

3. Results. We present in this section our main results on the asymptotic
vicinity of the conditioned measure and the conditioned invariant one. As a corol-
lary, we can prove exponential behavior of the first hitting time of G with accurate
control on the error terms.
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3.1. Hypotheses. Let G ⊂ X be a set representing “goals” for the chain Xt ,
and define A := X \ G, so that τx

G represents the first exit time from A and τ←x
G is

the first exit time from A for the time reversal process X←
t . To observe asymptotic

exponentiality of the hitting time of G, we need to make a couple of assumptions
on the set A; define the quantity

fA(t) := P
(
τ

πA

G ≤ t
) = 1

2

∑
x∈A

πA(x)
[
P

(
τx
G ≤ t

) + P
(
τ←x
G ≤ t

)]
.(3.1)

Indeed one readily realizes that P(τ
πA

G > t) = P(τ
←πA

G > t) using time reversal:

P
(
τ

←πA

G ≤ t
)

= ∑
x,y∈A

∑
x1,...,xt−1∈A

π(x)

π(A)
P ∗(x, x1) · · ·P ∗(xt−2, xt−1)P

∗(xt−1, y)

(3.2)

= ∑
y,x∈A

∑
x1,...,xt−1∈A

π(y)

π(A)
P (y, xt−1)P (xt−1, xt−2) · · ·P(x1, x)

= P
(
τ

πA

G ≤ t
)

and (3.1) follows.
Note that we carried this proof in the discrete time setup for lightness of nota-

tion, the continuous time case works in the same way.
We need three natural assumptions on the behavior of the process.

E(R,f ) slow escape: on a time scale 2R, starting from the invariant measure
restricted to the set A, the process hits G with small probability; concretely, for
f ∈ (0,1) and R > 1, we say that the set A satisfies the hypothesis E(R,f ) if

fA(2R) ≤ f.(3.3)

If hypothesis E(R,f ) is verified, there exists a subset of A of large measure on
which the above control holds pointwisely. More precisely, consider an arbitrary
α ∈ (0,1) and define the following subset of A:

Bα := {
x ∈ A : 1

2

[
P

(
τx
G ≤ 2R

) + P
(
τ←x
G ≤ 2R

)] ≤ f α}
.(3.4)

The set Bα is almost of full measure within A, representing in some sense the
basin of attraction of the local equilibrium. Indeed using E(R,f ), one easily gets
that

πA(Bα) ≥ 1 − (f )1−α(3.5)

since

f ≥ fA(2R) ≥ 1

2

∑
x∈A\Bα

πA(x)
[
P

(
τx
G ≤ 2R

) + P
(
τ←x
G ≤ 2R

)]

≥ (f )απA(A \ Bα).
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T (R,d) fast thermalization in Bα : for d ∈ (0,1), we say that A satisfies the
thermalization condition T (R,d) if the process started from any point in Bα loses
memory of its initial condition within a time scale R; more precisely

d̄Bα (R) ≤ d.(3.6)

Rc(R, r) fast recurrence to the set Bα ∪ G: starting from anywhere inside of
the state space, X reaches either G or Bα with high probability within a time R;
namely, let r ∈ (0,1), we say that A satisfies the hypothesis Rc(R, r) if

sup
x∈X

P
(
τx
Bα∪G > R

)
< r.(3.7)

Note that both conditions T (R,d) and Rc(R, r) depend on the parameters f

and α since they depend on the set Bα . Both for lightness of notation and in view of
Proposition 3.2, which states that a control on the mixing time of the dynamics over
the whole state space coupled to E(R,f ) is sufficient to ensure that conditions
T (R,d) and Rc(R, r) hold with explicit parameters, we choose not to write this
dependence when refeering to fast thermalization and to fast recurrence.

HYPOTHESIS 3.1 (Hypothesis HpG). When the set A satisfies simultane-
ously the conditions E(R,f ), Rc(R, r) and T (R,d), we say that condition
Hp.G(R, d, f, r) is verified.

In words, condition Hp.G(R, d, f, r) for d,f, r small means that the time scale
R is large enough so that the process loses memory of its initial condition in Bα ,
but that within a time 2R the trajectories starting from the typical configurations
for πA inside of A still did not hit G, while hitting either Bα or G within the same
time scale occurs with high probability. This is a typical situation characterizing
metastability.

Before stating our main result, a couple of remarks are in order:

• The recurrence hypothesis Rc can be verified by changing the time scale R.
Indeed, if τ

πA

G is much larger than R, our process satisfies hypotheses E(R,f )

and T (R,d) within a time R+ � R. In this case, Rc(R+, r) holds with r =
(supx∈X P(τ x

Bα∪G > R))R+/R .
• In view of equation (3.5), it would seem natural to replace the thermalization

condition T (R,d) by d̄A(R) ≤ d . We stress that from a physical point of view,
this is requiring too much on the whole set of trajectories starting from A and
that in most applications there is a region (which is here the set A\Bα) in which
some trajectories might escape from A within a short time without thermalizing
afterward. The typical picture of a well in which trajectories thermalize is here
played by the basin of attraction Bα . In different words, with these hypotheses
we can apply our results also to cases in which the basin of attraction of the
stable state is not known in details.
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Nevertheless, in the (degenerate) case where thermalization occurs over the
whole set A, condition Hp.G(R, d, f ) can be verified. In this spirit, we state the
following result.

PROPOSITION 3.2. If A satisfies hypothesis E(R,f ) and

d̄A(R) ≤ d,(3.8)

then A satisfies condition Hp.G(R, d, f, d + f + f 1−α).

We now state our main technical result.

3.2. Convergence of measures. Define the following doubly conditioned
evolved measure on A: for any t ≥ 2R and x ∈ A the evolution measure condi-
tioned to A in [0, t] and to visit Bα within t − 2R is defined as

μ̂x
A,t (·) := P

(
Xx

t = ·|τx
G > t, τ x

G∪Bα
≤ t − 2R

)
(3.9)

and

μ̂
πA

A,t (·) := ∑
x∈A

πA(x)μ̂x
A,t (·).(3.10)

REMARK 3.3. For any x ∈ Bα we have μ̂x
A,t = μ̃x

A,t since τx
G∪Bα

= 0 and

dTV
(
μ̂

πA

A,t , μ̃
πA

A,t

) ≤ πA(A \ Bα) < f α.(3.11)

For x ∈ A \ Bα , the measures μ̂x
A,t and μ̃x

A,t can be different, even if the second
conditioning τx

G∪Bα
≤ t − 2R is an event of large probability when t > 3R. In

particular, they can be different for x and t such that P(τ x
G > t) < P(τ x

G∪Bα
≤

t − 2R).

THEOREM 3.4. Under hypothesis Hp.G(R, d, f, r), for every α ∈ (0,1), for d

and f such that r + 2f α < 1
4 , we define c̄ := 1

2 −
√

1
4 − c. The following vicinity of

the doubly conditioned evolution measure and the conditioned invariant one holds:

sup
x∈A

sup
t≥2R

dTV
(
μ̂x

A,t , πA

)
< 4

[
c̄ + 2f + f α + d

] =: ε1,(3.12)

sup
t>2R

dTV
(
μ̃

πA

A,t , πA

)
< 4

[
c̄ + 2f + f α + d

] + f 1−α

(3.13)
=: ε2 = ε1 + f 1−α.

Moreover,

sup
x∈A

sup
t≥2R

dTV
(
μ̂x

A,t ,μ
∗
A

)
< ε1 + ε2.(3.14)
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Roughly speaking, Theorem 3.4 states that after time 2R, the process thermal-
ized in the metastable states in the sense of the doubly conditioned measure; for
x ∈ Bα , this result justifies the definition of metastable state for the conditioned
evolved measure μ̃x

A,2R . The important consequence of these results is the fact
that the quasi-stationary measures and the conditioned invariant ones are asymp-
totically close in total variation.

The following is an immediate consequence of Theorem 3.4.

COROLLARY 3.5. Under the same hypotheses, then the ones of Theorem 3.4,
for any x ∈ Bα we have

dTV
(
μ

(em)x
A ,πA

)
< ε1.

Indeed for x ∈ Bα , we have

μ
(em)x
A (y) = Eξx

G(y)

Eτx
G

=
∫ ∞

0 μ̃x
A,t (y)P(τ x

G > t) dt

Eτx
G

= πA(y) +
∫ ∞

0 (μ̃x
A,t (y) − πA(y))P(τ x

G > t) dt

Eτx
G

.

3.3. Exponential behaviour. A consequence of the results of the previous sec-
tion is the following asymptotic exponential behavior.

THEOREM 3.6. Assume that hypothesis HpG is satisfied. There exists ε such
that ε = O(r + ε2) where ε2 has been defined in Theorem 3.4 such that the follow-
ing inequality holds for any t ≥ 0:∣∣∣∣P

[
τ

πA

G

E[τμ∗
A

G ]
≥ t

]
− e−t

∣∣∣∣ ≤ εe−t .(3.15)

A pointwise control also holds starting from Bα ; namely, for every t ≥ 0,

sup
x∈Bα

∣∣∣∣P
[

τx
G

E[τμ∗
A

G ]
≥ t

]
− e−t

∣∣∣∣ ≤ εe−t .(3.16)

Moreover, for x /∈ Bα ,∣∣∣∣P
[

τx
G

E[τμ∗
A

G ]
≥ t

]
− P

(
τx
G > 2R,τx

G∪Bα
≤ R

)
e−t

∣∣∣∣ ≤ εe−t .(3.17)

Let us mention some straightforward consequences of the strong control on
hitting times provided by Theorem 3.6. The first one states an equivalence of
time scales in our setup, and directly follows from integrating the relations (3.15)
and (3.16) for t ∈ R+.
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COROLLARY 3.7. For any x ∈ Bα , one has

E
[
τ

μ∗
A

G

] ∼ E
[
τ

πA

G

] ∼ E
[
τx
G

]
.(3.18)

The second one is an extension of (3.15) to a wide set of starting measures.

COROLLARY 3.8. For any probability measure μ such that Supp(μ) ⊂ Bα

and any t ≥ 0 ∣∣∣∣P
[

τ
μ
G

E[τμ
G] ≥ t

]
− e−t

∣∣∣∣ ≤ εe−t .(3.19)

In particular, the equivalence (3.18) also generalizes to any probability measure
μ such that Supp(μ) ⊂ Bα , namely

E
[
τ

μ∗
A

G

] ∼ E
[
τ

μ
G

]
.(3.20)

REMARK 3.9. The following observations are in order:

– The setting of Theorem 3.6 is quite general; in particular, it is a nonreversible
setup, and it is noteworthy to realize that the invariant measure of the set of goals
π(G) can be large. Roughly speaking, the goal set does not need to be a rare
event.

– The exponential control on the queues of distribution is exactly of order e−t for
t ≥ 0; in particular, we do not lose on the exponential controlling the error as in
[28], where the control on the queue is of the type e−(1−c)t where c is a small
constant not depending on t .

– Our results hold pointwise for a large set within the complement of G, and yield
an explicit control on the errors with respect to the hitting time.

– For x ∈ A \ Bα , the picture is intuitively the following: in a time of order R, the
process either thermalizes in Bα or hits the set G; in the first case, by Markov’s
property, we are back to the case of a process with starting point within Bα .

For practical purposes, we stress that a consequence of Theorem 3.6 can be de-
duced in the asymptotic regime of Section 2; more precisely, assume that hypothe-
ses E(Rn,fn), Rc(Rn, rn) and T (Rn, dn) hold for a family of Markov processes
(X n,Xn) with parameters fn, rn and dn which are o(1); then the following result
holds.

COROLLARY 3.10. Under hypothesis Hp.Gn, as n → ∞, the following con-
vergence in law holds:

τ
πA

G(n)/E
[
τ

πA

G(n)

] L→ E(1),(3.21)

where E(1) denotes a random variable which is exponentially distributed with
mean one.
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Furthermore, for any starting measure μ(n) with support contained in B
(n)
α , the

following convergence in law holds:

τ
μ(n)

G(n) /E
[
τ

μ(n)

G(n)

] L→ E(1).(3.22)

4. Applications. In this part, we discuss two examples.
Our first example originates from a model for dynamical polymers which was

first introduced and analyzed in [13]. The asymptotic exponentiality of the tunnel-
ing time was shown in [14] by considering in particular the death and birth process
of our first example.

The second case is a model of shuffling cards, well known as Top-In-At-
Random (TIAR). This is actually a case where the invariant measure is the uniform
one and the “potential barrier” is only entropic.

4.1. Birth and death processes with logarithmic barrier.

The model. In this part, c > 0 is a constant which may vary from line to line.
The (typically unique) crossing point of the interface of the dynamical polymer

model with the wall in the delocalized phase follows the law of the birth and death
process on {0, . . . , n} with invariant measure

π(x) := Z−1 1

(x ∨ 1)3/2((n − x) ∨ 1)3/2 ,

where Z = Z(n) is a normalization constant. We refer to [14], Section 1.2, for
details.

We note that it is easy to show that

Z(n) ∼ cn3/2.(4.1)

We consider the Metropolis dynamics associated to this invariant measure,
which means that the birth rate b(·) of the chain is given by

b(x) = min
{

1,
π(x + 1)

π(x)

}
,(4.2)

so that Q(x,x + 1) = b(x). Moreover, the death rate d(·) is given by

Q(x,x − 1) = d(x) = min
{

1,
π(x − 1)

π(x)

}
.(4.3)

This birth and death process has been introduced in [14] to describe the evolu-
tion of the (typically unique) crossing location of the pinning line by a polymer
chain in the delocalized regime.

From (4.2) and (4.3), one readily observes that for x ≤ n/2, the process exhibits
a small drift toward {0} since b(x) < 1 and d(x) = 1, while for x > n/2 there is a



CONDITIONED, QUASI-STATIONARY, RESTRICTED MEASURES 775

small drift toward {n} since b(x) = 1 and d(x) < 1. Otherwise stated, we are con-
sidering a one-dimensional random walk under a potential given by a symmetric
double well with minima in 0 and n and with a small logarithmic barrier at {n/2}.

It is shown in [14] that the mean time for the process starting from {0} to reach
{n/2}, and hence {n}, is of order n5/2; however, one directly observes that the ratio
π(0)

π(n/2)
= n3/2

8 . This entails that this model is a case where the metastable behavior
is much more delicate with respect to the Metropolis case where the tunneling time
is of order of the ratio of the value of the invariant measure between the bottom and
the top of the barrier; see [31], Chapter 6, Theorem 6.23, for details about this well-
known phenomenon; as a consequence, rough arguments based on reversibility
have to fail in this model, see in particular point (ii) in [31], Chapter 6,Theorem
6.23. The main result of this part is the following.

THEOREM 4.1. Define G := {n/2, n/2 + 1, . . . , n}, α ∈ (0,1) and n large
enough such that nα < n/2. HpG holds with n5/2−ε � R for small enough ε.

PROOF. Our aim is to exhibit a sequence (Rn)n≥0 such that the hypothesis of
Theorem 3.6 are satisfied. In fact, we will show that the stronger hypothesis of
Proposition 3.2 actually hold. We define the set

Bα := {
0, . . . , nα}

.(4.4)

Our first step is to show that for any x ∈ {0, . . . , n/2 − 1}, the following equiv-
alence holds as n → ∞:

P
(
τx

0 > τx
n/2

) ∼
(

2x

n

)5/2

.(4.5)

We first recall the classical notion of resistance between two states x and y:

R(x, y) = (
π(x)P (x, y)

)−1
.(4.6)

In this one-dimensional setup, it is a classical result that the resistances are
linked to the law of first hitting to a set through the basic relation (see, e.g., [26],
Chapter 2)

P
[
τx

0 > τx
y

] = R(x, y),(4.7)

where x < y and R(x, y) is obtained by summation from the R(k, k + 1), namely

R(x, y) =
y−1∑
k=x

R(k, k + 1).(4.8)

In our specific case, it is an easy computation to realize that, as x → ∞,

R(x, x + 1) =
(

π(x)

1 + (x/(x + 1))3/2

)−1

∼ x3/2 + (x + 1)3/2.(4.9)
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Indeed, representing the Markov chain like a series of resistances, we deduce
that

R(0, x) ∼ cx5/2

and the probability in (4.5) representing the potential at point x is given by

P
(
τx

0 > τx
n/2

) = V (x) = R(0, x)

R(0, n/2)
∼

(
2x

n

)5/2

.

From (4.5), one deduces that there exists a constant c > 0 such that

P
(
τnα

0 < τnα

n/2
) ≥ 1 − c

(
2nα−1)5/2

.(4.10)

Then we define two sequences of stopping times (τi) and (σi) in the following
way:

τ0 := inf{t :Xt = 0}, σi := inf
{
t > τi−1 :Xt = nα}

,

τi := inf{t > σi :Xt = 0}
and, for a given T > 0, we introduce

ν(T ) := max
{
i : τi < T ∧ τnα

n/2
}
.

For any x ≤ nα and N > 1, making use of (4.10), we can write

P
(
τx
n/2 > T

) ≥ P
(
τx
n/2 > T,ν(T ) < N

)
= P

(
τx
n/2 > T |ν(T ) < N

)
P

(
ν(T ) < N

)
(4.11)

≥ (
1 − (

2nα−1)5/2)NP
(
ν(T ) < N

)
.

On the other hand, we can show that

E
(
ν(T )

) ≤ T

E(τ 0
nα )

.(4.12)

Equation (4.12) is obtained in the following way: we consider the martingale
(Mk) defined by

Mk :=
k∑

i=1

[
τ 0
nα − E

(
τ 0
nα

)]
.(4.13)

Since T ≥ ν(T )τ 0
nα , we get the inequality

Mν(T ) ≤ T − ν(T )E
(
τ 0
nα

)
.(4.14)

Then we apply Doob’s optional-stopping theorem to M at time ν(T ), and (4.12)
follows.

Now we prove the equivalence:

E
(
τ 0
nα

) ∼ cn5α/2.(4.15)
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We make use of the equivalences (4.9) and (4.1) and we write

E
(
τ 0
nα

) =
nα−1∑
k=0

π(k)Rk
nα =

nα−1∑
k=0

π(k)

nα−1∑
i=k

Ri+1
i

(4.16)

∼ c

nα−1∑
k=0

π(k)

nα−1∑
i=k

i3/2 ∼ c

nα−1∑
i=0

i∑
k=0

i3/2 n3/2

(1 ∨ k)3/2(n − k)3/2 .

Since uniformly on k ∈ [0, nα], we have

n3/2

(n − k)3/2 ∼ 1,(4.17)

we deduce from (4.16) that

E
(
τ 0
nα

) ∼ c

nα−1∑
i=0

i3/2
i∑

k=0

1

(1 ∨ k)3/2 ∼ c

nα−1∑
i=0

i3/2 ∼ cn5α/2,(4.18)

and hence we recover (4.15).
Now we prove that the conditions of Proposition 3.2 hold.

Mixing condition. Fix ε > 0 sufficiently small and consider R = Rn =
n(5/2)−ε and N = n(1−α)(5/2)−ε/2. We first prove that dA(Rn) → 0 by using its
estimate in terms of coupling time (see, e.g., [25], Chapter 5, Theorem 5.2, for this
classical result):

d(Rn) ≤ P
(
τ

n/2
0 > Rn

) ≤ Eτ
n/2
0

Rn

.(4.19)

We show the bound

E
[
τ

n/2
0

] ≤ cn2.(4.20)

Indeed, we have the inequalities

E
[
τ

n/2
0

] =
n/2∑
k=0

π(k)Rk
0 ≤ c

n/2∑
k=0

1

(1 ∨ k)3/2

k∑
i=0

i3/2

≤ c

n/2∑
i=0

i3/2
n/2∑
k=i

1

(1 ∨ k)3/2 ∼ c

n/2∑
i=0

i3/2i−1/2 ∼ cn2,

from which (4.20) follows.
Hence, the quantity in the right-hand side of (4.19) vanishes as n → ∞, and

(3.8) holds with R = Rn.
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Slow escape. On the other hand, combining Markov’s inequality and (4.15),
we get

P
(
ν(T ) < N

) ≥ 1 − E(ν(T ))

N
≥ 1 − c

T

n5α/2N
= 1 − cn−ε/2.(4.21)

Finally, we combine (4.11) and (4.21) to deduce that, for any x ∈ Bα ,

P
(
τx
n/2 > T

) ≥ (
1 − cn−ε/2)(

1 − n−ε/2) ∼ 1 − Cn−ε/2.(4.22)

We finally conclude∑
x

π(x)P
(
τ

(n),x
n/2 ≤ 2Tn

) ≤ ∑
x≤nα

π(x)Cn−ε/2 + ∑
x>nα

π(x)

≤ Cn−ε/2 + C′n−α/2 → 0,

which achieves the proof of E(Rn,f ); thus we can apply Theorem 3.6 to deduce
Theorem 4.1. �

4.2. Top-In-At-Random, an entropic barrier. In this part, we apply the re-
sults of the Section 3.2 to the Top-In-At-Random model. The state space is
X (n) = {permutations of (1, . . . , n)} and it is called the “deck of n cards.” The dy-
namics is the following: at each step, we take the upper card and put it in a random
position; more precisely, we update the configuration x = (x1, . . . , xn) to a new
configuration xk = (x2, . . . , xk, x1, xk+1, . . . , xn), with k uniform in {1, . . . , n}. We
call the transition form x to xk a “shuffle.” By symmetry, it is straightforward to
realize that the invariant measure of this dynamics is uniform on X (n).

This model is well known, it is historically the first model which was shown to
exhibit cutoff [3]. Here, we will only use the fact that in the same paper the authors
show that Rn ∼ n log(n).

We consider G := {(1, . . . , n)} the ordered configuration, and we define a pro-
jection

σ(x) = max{i ≤ n,xi > xi+1}.(4.23)

It is easy to see that σ(x) measures the minimal number of shuffles to reach G

starting from x; in particular, σ(x) = 0 if and only if x = G.

LEMMA 4.2. The process σ(Xx
t ) is still Markovian with transition probabili-

ties given by

Pi,j := P
[
σ

(
Xx

t+1
) = j |σ (

Xx
t

) = i
] =

⎧⎨
⎩

1/n, if j = i − 1,
i/n, if j = i,
1/n, if j = i + 1, . . . , n.

(4.24)
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PROOF. Let y = Xx
t be the current configuration and k be the new position

for the first card, so that Xx
t+1 = yk . Let σ := σ(y). If the first card is inserted

above σ , namely if k < σ , then σ(yk) = σ . There are σ − 1 available choices.
Otherwise, consider the stack formed by the last n − σ cards of y plus the

card y(1). Each of the possible positions k ∈ {σ, . . . , n} corresponds to a different
σ(xk) ∈ {σ − 1, . . . , n− 1}. To see this, it is sufficient to observe that k −→ σ(xk)

is invertible in {σ, . . . , n}, the inverse application being {σ − 1, . . . , n − 1}. Let
k∗ := max{i ∈ {σ, . . . , n};y(i) < y(1)} be the “natural position” of the card x(1)

into this stack [notice that k∗ = σ if y(1) < y(σ + 1)].
We get the value σ(yk) = σ ′ ∈ {σ − 1, . . . , n − 1} by choosing

k
(
σ ′) =

⎧⎨
⎩

k∗, if σ ′ = σ − 1,
σ ′, if σ − 1 < σ ′ < k∗,
σ ′ + 1, if σ ′ ≥ k∗.

(4.25)

Thus, under the condition k ≥ σ , σ(Xx
t+1) takes the values in {σ −1, . . . , n−1}

with uniform probability. �

We denote by σ i(t) the Markov process with transition matrix P defined
in (4.24).

To show that HpG holds, we need to get good estimates on the hitting times τ k
0

of {0} for the projected chain σk .
Let ξ i

j (k) := |{t ≤ τ i
j , σ

i(t) = k}| be the local time spent in k before hitting j

when starting from i. We define ξ i
j := ξ i

j (i).
Since in the downward direction only one-step transitions are allowed, we have

E
[
τn−1

0

] = E

[
n−1∑
k=1

ξn−1
0 (k)

]

=
n∑

k=1

E
[
ξk

0
]
P

[
τn−1
k < τn−1

0

]

=
n∑

k=1

E
[
ξk

0
]
,

(4.26)

where we used the strong Markov property at time τ 0
k in the second identity.

Since

P
[
ξ i
j > n

] = P
[
τ i
i < τ i

j

]
P

[
ξ i
j > n − 1

]
= P

[
τ i
i < τ i

j

]n
,

(4.27)

ξ i
j is a geometric variable with mean P[τ i

j < τ i
i ]−1.
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Let I be a subset of {0, . . . , n − 1}. We recall the standard “renewal” identity

P
[
τ i

I < τi
j

] = P[τ i
I < τi

j∪i]
P[τ i

I∪j < τ i
i ]

.(4.28)

Our main estimate is contained in the following lemma.

LEMMA 4.3. For any k ∈ [1, n],
P

[
τ k

0 < τk
k

] ≤ (n − 1)(n − k − 1)!
n! .(4.29)

PROOF. By (4.28),

P
[
τ k

0 < τk
k

] = Pk,k−1P
[
τ k−1

0 < τk−1
k

]

= Pk,k−1
P[τ k−1

0 < τk−1
k,k−1]

P[τ k−1
0,k < τk−1

k−1 ] .
(4.30)

Since the downward moves are single-step, for k ≥ 1, we have

P
[
τ k−1

0 < τk−1
k,k−1

] = P
[
τ k−1

0 < τk−1
k−1

]
.(4.31)

On the other hand,

P
[
τ k−1

0,k < τk−1
k−1

] = P
[
τ k−1

0 < τk−1
k−1

] + P
[
τ k−1
k < τk−1

k−1 < τk−1
0

]
≥ P

[
τ k−1

0 < τk−1
k−1

] + 1 − Pk−1,k−2 − Pk−1,k−1,
(4.32)

where we used again the fact that downhill moves are unitary.
Let Ek := P[τ k

0 < τk
k ]−1. Plugging (4.31), (4.32) into (4.30), and using (4.24)

we get

Ek ≥ n + (n − k)Ek−1.(4.33)

Since E1 = p−1
1,0 = n, we prove inductively that

Ek ≥ n

k∑
j=1

(n − j − 1)!
(n − k − 1)! .(4.34)

Indeed, (4.34) holds for k = 1 and, by (4.33), (4.34),

Ek+1 ≥ n

(
1 + (n − k − 1)

k∑
j=1

(n − j − 1)!
(n − k − 1)!

)

= n

(n − k − 2)!
(
(n − k − 2)! +

k∑
j=1

(n − j − 1)!
)
.

(4.35)

By taking only the largest term in (4.34), (4.29) immediately follows. �
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LEMMA 4.4. The invariant measure of σ i is

μ̄(k) =

⎧⎪⎪⎨
⎪⎪⎩

1

n! , if k = 0,

n − k

(n − k + 1)! , if k > 0.
(4.36)

PROOF. Direct computation shows that, for k ∈ {0, . . . , n},

μ̄
({0, . . . , k}) = 1

(n − k)! ,(4.37)

and, therefore,

n∑
i=0

μ̄(i)Pi,j = 1

n

j+1∑
i=0

μ̄(i) + j − 1

n
μ̄(j)

= 1

n

1

(n − j − 1)! + j − 1

n
μ̄(j)

= 1

n

(
1

(n − j − 1)!
(n − j + 1)!

n − j
+ (j − 1)

)
μ̄(j)

= (n − j + 1) + (j − 1)

n
μ̄(j) = μ̄(j).

(4.38)

�

THEOREM 4.5. HpG holds in the TIAR model with n logn � Rn � (n − 2)!.

PROOF. We get

∑
x∈Xn

μ(x)P
(
τx
G < R

) =
n−1∑
k=0

μ̄(k)P
(
τ k

0 < R
)

≤
n−1∑
k=1

μ̄(k)P
(
ξk

0 < R
) + μ̄(0)

=
n−1∑
k=1

μ̄(k)
(
1 − P

[
τ k
k < τk

0
]R) + μ̄(0)

≤
n−1∑
k=1

μ̄(k)RP
[
τ k

0 < τk
k

] + μ̄(0),

(4.39)

where we used (4.27) in the third identity, combined with the fact that for r > 1
and for any x ∈ (0,1), one has the inequality

1 − xr ≤ r(1 − x).(4.40)
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By using Lemma 4.3 and Lemma 4.4, we get

r.h.s. of (4.39) ≤ R

n−1∑
k=1

n − k

(n − k + 1)!
(n − 1)(n − k − 1)!

n! + 1

n!

= R(n − 1)

n!
n∑

j=2

1

j
+ 1

n!

= Rn logn

n!
(
1 + o(1)

)
.

(4.41)

�

5. Proofs of Section 3.2.

5.1. Control on evolution measures for t ≤ 2R. We first prove that, starting
from πA, the law of X stays close to πA at least until time 2R.

LEMMA 5.1. If E(R,f ) holds, then for t ≤ 2R

dTV
(
μ

πA
t ,πA

) ≤ f.(5.1)

PROOF. We make use of the invariance of π and we write

dTV
(
μ

πA
t ,πA

) = 1

2π(A)

∑
y∈X

∣∣∣∣∑
x∈A

π(x)P
(
Xx

t = y
) − π(y)1{y∈A}

∣∣∣∣
= 1

2π(A)

∑
y∈X

∣∣∣∣∑
x∈A

π(x)P
(
Xx

t = y
) − ∑

z∈X
π(z)P

(
Xz

t = y
)
1{y∈A}

∣∣∣∣
≤ 1

2π(A)

[∑
y∈G

∑
x∈A

π(x)P
(
Xx

t = y
) + ∑

y∈A

∑
z∈G

π(z)P
(
Xz

t = y
)]

.

Recalling the definition of the time reversal process X←

π(z)P
(
Xz

t = y
) = π(y)P

(
X

←y
t = z

)
,

and noting that
∑

y∈G P(Xx
t = y) ≤ P(τ x

G ≤ t) (and that the same inequality holds
for the time reversal process), we get

dTV
(
μ

πA
t ,πA

) ≤ fA(t) ≤ f

as soon as t ≤ 2R. �

LEMMA 5.2. If E(R,f ) and T (R,d) hold, then for any t ∈ [R,2R], we have

sup
x∈Bα

dTV
(
μx

t ,μ
πA
t

) ≤ d + f 1−α.(5.2)
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PROOF. We directly get

sup
x∈Bα

dTV
(
μx

t ,μ
πA
t

)

= sup
x∈Bα

1

2

∑
y∈X

∣∣∣∣∑
z∈A

π(z)

π(A)
P

(
Xz

t = y
) − P

(
Xx

t = y
)∣∣∣∣

(5.3)

≤ sup
x∈Bα

sup
z∈Bα

1

2

∑
y∈X

∣∣P(
Xz

t = y
) − P

(
Xx

t = y
)∣∣ + π(A \ Bα)

π(A)

≤ d + f 1−α. �

PROOF OF PROPOSITION 3.2. Let us assume now that d̄A(R) ≤ d . We deduce

sup
x∈A

dTV
(
μ

πA
t ,μx

t

)
(5.4)

= sup
x∈A

1

2

∑
y∈X

∣∣∣∣∑
z∈A

π(z)

π(A)
P

(
Xz

t = y
) − P

(
Xx

t = y
)∣∣∣∣ ≤ d̄A(t) ≤ d

for t = R. By triangular inequality, combining Lemma 5.1 and equality (5.4), we
obtain that

sup
x∈A

dTV
(
πA,μx

R

) ≤ d + f.(5.5)

Hence, we get that

sup
x∈X

P
(
τx
Bα∪G > R

) = sup
x∈A

P
(
τx
Bα∪G > R

)
≤ sup

x∈A

(
1 − P

(
τx
Bα

≤ R
))

(5.6)

≤ sup
x∈A

(
1 − μx

R(Bα)
) ≤ d + f + f 1−α,

which proves Proposition 3.2. �

5.2. Proof of Theorem 3.4. The main point is the proof of (3.12). Indeed,
(3.13) follows from noting that (3.12) implies

sup
t>2R

dTV
(
μ̂

πA

A,t , πA

)
< ε1,

and then we combine (3.11) and the triangular inequality.
On the other hand, (3.14) will follow from (3.13), from the triangular inequality

and from the convergence

μ∗
A(y) = lim

t→∞ μ̃
πA

A,t (y),
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which, from (3.14), implies

dTV
(
πA,μ∗

A

)
< ε2.

The strategy to prove (3.12) is to use the recurrence in the set Bα ; let us first
define for each s ≥ 0 and x ∈ X

σx(s) := inf
{
s′ > s :Xx

s′ ∈ Bα ∪ G
}
.(5.7)

We will follow the general guideline:

1. We first control the distance between the conditioned and the restricted mea-
sures for starting points z ∈ Bα and t ∈ [R,2R].

2. Then we prove estimates on the distribution of τx
G in Lemma 5.4.

3. We complete the proof combining the previous ingredients and strong
Markov property at time σ(t − 2R).

4. Finally, we complete the proof for every starting point in A.

Note that these ingredients are frequently used in metastability in order to con-
trol the loss of memory with respect to initial conditions, and consequently to
deduce exponential behavior. We refer to [19] for similar results in finite state
space regime, where the basin Bα is replaced by a single metastable state and the
occurrences to it determine the loss of memory.

5.2.1. Control of the thermalization. We state the following result.

LEMMA 5.3. For t ∈ [R,2R], any z ∈ Bα and any y ∈ A let

gz
t (y) := P

(
Xz

t = y, τ z
G > t

) − πA(y),(5.8)

and define

g := sup
t∈[R,2R]

sup
z∈Bα

1

2

∑
y∈A

∣∣gz
t (y)

∣∣.(5.9)

The following inequality holds:

g ≤ d + f + f 1−α + 2f α.(5.10)

PROOF. We first note that

P
(
Xz

t = y, τ z
G > t

) = μz
t (y) − P

(
Xz

t = y, τ z
G ≤ t

)
,(5.11)

and since for any z ∈ Bα ,
∑

y∈A P(Xz
t = y, τ z

G ≤ t) ≤ P(τ z
G ≤ t) ≤ 2f α , Lem-

ma 5.3 will follow by triangular inequality once we prove that

sup
t∈[R,2R]

sup
z∈Bα

dTV
(
μz

t ,πA

) ≤ d + f 1−α + f.(5.12)

Combining Lemma 5.1, Lemma 5.2 and the triangular inequality, for t ∈
[R,2R], z ∈ Bα , we obtain (5.12). �
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5.2.2. Control of the recurrence time.

LEMMA 5.4. Assume that d and f are small enough for the quantity

c̄ := 1
2 −

√
1
4 − (

r + 2f α
)

(5.13)

to be well defined. Let t ≥ 2R and t ′ ≤ R; for any x ∈ Bα , one has the inequalities

1 ≤ P(τ x
G > t − t ′)

P(τ x
G > t)

≤ 1 + 2c̄,(5.14)

1 ≤ P(τ
πA

G > t − t ′)
P(τ

πA

G > t)
≤ 1 + 2c̄.(5.15)

PROOF. The lower bound is trivial. As far as the upper bound is concerned,
by monotonicity it is sufficient to prove that

P(τ x
G > t − R)

P(τ x
G > t)

≤ 1 + 2c̄.(5.16)

Define σ := σx(t − 2R) [see definition (5.7)] and apply Markov’s property to get

P
(
τx
G ∈ (t − R, t)

)
= P

(
τx
G ∈ (t − R, t), σ > t − R

) + P
(
τx
G ∈ (t − R, t), σ ≤ t − R

)
≤ P

(
τx
G > t − 2R

)[
sup
z∈X

P
(
τ z
G∪Bα

≥ R
) + sup

z∈Bα

P
(
τ z
G ≤ 2R

)]

≤ P
(
τx
G > t − 2R

)[
r + 2f α]

,

where we made use of the definition of Bα and of inequality (3.7). Defining

c := r + 2f α,

we get the inequality

P
(
τx
G > t − R

) ≤ P
(
τx
G > t

) + cP
(
τx
G > t − 2R

)
,(5.17)

from which we deduce

1 − c
P(τ x

G > t − 2R)

P(τ x
G > t − R)

≤ P(τ x
G > t)

P(τ x
G > t − R)

.(5.18)

For i ≥ 1, define the quantity

yi := P(τ x
G > iR)

P(τ x
G > (i − 1)R)

.(5.19)

Equation (5.18) entails that the sequence (yi)i≥1 satisfies the recursive inequal-
ity

1 − c

yi−1
≤ yi.
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This implies that for every i ≥ 1, one has

yi ≥ 1 − c̄.(5.20)

Let us show (5.20) by induction; if there exists i ≥ 1 such that yi ≥ 1 − c̄, then
for every j ≥ i, one has yj ≥ 1 − c̄. Indeed, making use of equation (5.2.2), we get

yi+1 ≥ 1 − c

yi

≥ 1 − c

1 − c̄
= 1 − c̄.

For the base of the induction, we note that

y1 = P
(
τx
G > R

) ≥ 1 − P
(
τx
G ≤ 2R

) ≥ 1 − sup
z∈Bα

P
(
τ z
G ≤ 2R

)
(5.21)

≥ 1 − 2f α > 1 − c > 1 − c̄.

In particular, this implies that for every t = kR, k ≥ 2

P(τ x
G > t − R)

P(τ x
G > t)

= 1

yk

≤ 1

1 − c̄
≤ 1 + 2c̄,(5.22)

since c̄ < 1
2 , which entails the claim of equation (5.16) in the case when t/R is an

integer.
Assume now that t/R is not an integer, and define k = �t/R�, so that t = kR+ t0

with t0 < R and define

yi(t0) := P(τ x
G > iR + t0)

P(τ x
G > (i − 1)R + t0)

.

For each t0 < R, we have the same recursive inequality for yi(t0) and again for the
base of the induction we have

y1(t0) := P(τ x
G > R + t0)

P(τ x
G > t0)

≥ P
(
τx
G > 2R

)
so that the induction still holds; this completes the proof of (5.16) for every t ≥ 2R.

The proof of (5.15) follows the same way, noting that one uses condition (3.1)
instead of (3.4) to initialize the recurrence. �

5.2.3. Proof of Theorem 3.4 for starting points z ∈ Bα . As before, considering
the time σx = σx(t − 2R), the following equality holds:

P
(
Xx

t = y, τx
G > t

)
= ∑

z∈Bα

∫ t−R

t−2R
P

(
Xx

s = z, τ x
G > s,σ x ∈ (s, s + ds)

)
P

(
Xz

t−s = y, τ z
G > t − s

)

+ P
(
Xx

t = y, τx
G > t, σ x > t − R

)
.
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By the definition of gz
t (y), we get

P
(
Xx

t = y, τx
G > t

)
= ∑

z∈Bα

∫ t−R

t−2R
P

(
Xx

s = z, τ x
G > s,σ x ∈ (s, s + ds)

)[
πA(y) + gz

t−s(y)
]

+ P
(
Xx

t = y, τx
G > t, σ x > t − R

)
so that∑

y∈A

∣∣μ̃x
t (y) − πA(y)

∣∣

≤ ∑
y∈A

∣∣∣∣P(τ x
G > σx,σ x ∈ [t − 2R, t − R])

P(τ x
G > t)

− 1
∣∣∣∣πA(y)

(5.23)

+ ∑
y∈A

∑
z∈Bα

∫ t−R

t−2R

P(Xx
s = z, τ x

G > t − 2R,σx ∈ (s, s + ds))

P(τ x
G > t)

∣∣gz
t−s(y)

∣∣

+ P(τ x
G > t − 2R,σx > t − R)

P(τ x
G > t)

=: I + II + III.

By using the Markov property, the estimates (5.14), (5.10) and the recursion in
Bα Rc(R, r), we complete the proof by estimating the three terms, I, II and III of
the r.h.s. of (5.23). Note that in what follows, we will make repeated use of the
monotonicity property.

The first term can be estimated by

I ≤ 2c̄ ∨ r(1 + 2c̄) ≤ 2c̄ ∨ 2r ≤ 2c̄.

Indeed, recalling that t ≥ 2R, one can apply Lemma 5.4 to get

P(τ x
G > σx,σ x ∈ [t − 2R, t − R])

P(τ x
G > t)

≤ P(τ x
G > t − 2R)

P(τ x
G > t)

≤ 1 + 2c̄.

On the other hand, making use of the Markov property at time t − 2R,

P(τ x
G > σx,σ x ∈ [t − 2R, t − R])

P(τ x
G > t)

≥ P(τ x
G > t − R,σx ∈ [t − 2R, t − R])

P(τ x
G > t)

≥ P(τ x
G > t − R)

P(τ x
G > t)

− P(τ x
G > t − 2R,σx > t − R)

P(τ x
G > t)

≥ 1 − P(τ x
G > t − 2R)

P(τ x
G > t)

sup
z∈X

P
(
τ z
Bα∪G > R

)
≥ 1 − r(1 + 2c̄).
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To deal with II, we use Lemma 5.3 to get

II ≤ g
P(τ x

G > t − 2R)

P(τ x
G > t)

≤ (
2f α + f 1α + f + d

)
(1 + 2c̄)

≤ 4
(
2f + f α + d

)
,

and similarly for III

III ≤ r(1 + 2c̄) ≤ 2c̄.

Finally, we prove (3.13); from (3.5), we obtain that for t ≥ 2R

dTV
(
μ̃

πA

A,t , πA

) = 1

2

∑
y∈X

∣∣∣∣∑
x∈A

πA(x)
[
μ̃x

A,t (y) − πA(y)
]∣∣∣∣

≤ 10c̄πA(Bα) + πA

(
Bc

α

)
≤ 10c̄ + f 1−α,

and finally we can conclude by making use of Remark 3.3.

5.2.4. Proof of Theorem 3.4 for starting points x ∈ A \ Bα . We consider t ≥
2R, x ∈ A \ Bα , y ∈ A and we make use of Markov’s property to get the equality

P
(
Xx

t = y, τx
G > t, τ x

G∪Bα
< t − 2R

)
=

∫ t−2R

0

∑
z∈Bα

P
(
Xx

s = z, τ x
G > s, τx

G∪Bα
∈ ds

)
(5.24)

× P
(
Xz

t−s = y, τ z
G > t − s

)
.

Since for z ∈ Bα , μ̃z
A,t and μ̂z

A,t coincide (see Remark 3.3), making use of (3.12)
for starting points z ∈ Bα , which we already proved in the previous section, we get
that for s ∈ [0, t − 2R], the quantity f z

s (y) defined by

f z
s (y) = μ̃z

t−s,A(y) − πA(y)(5.25)

satisfies

sup
s≤t−2R

sup
z∈Bα

∑
y∈A

∣∣f z
s (y)

∣∣ < ε1.(5.26)

On the other hand, as in (5.24), we get

P
(
τx
G > t, τ x

G∪Bα
< t − 2R

)
(5.27)

=
∫ t−2R

0

∑
z∈Bα

P
(
Xx

s = z, τ x
G > s, τx

G∪Bα
∈ ds

)
P

(
τ z
G > t − s

)
.
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Combining (5.24) and (5.27), we can write

P
(
Xx

t = y, τ x
G > t, τ x

G∪Bα
< t − 2R

) − πA(y)P
(
τx
G > t, τ x

G∪Bα
< t − 2R

)
(5.28)

=
∫ t−2R

0

∑
z∈Bα

P
(
Xx

s = z, τ x
G > s, τx

G∪Bα
∈ ds

)
(5.29)

× (
πA(y)P

(
τ z
G > t − s

) + f z
s (y)P

(
τ z
G > t − s

))
− πA(y)

∫ t−2R

0

∑
z∈Bα

P
(
Xx

s = z, τ x
G > s, τx

G∪Bα
∈ ds

)
(5.30)

× P
(
τ z
G > t − s

)
=

∫ t−2R

0

∑
z∈Bα

P
(
Xx

s = z, τ x
G > s, τx

G∪Bα
∈ ds

)
f z

s (y)P
(
τ z
G > t − s

)
.(5.31)

From the last equality and (5.27), we deduce that for any t ≥ 2R, x ∈ A \ Bα

and y ∈ A, ∣∣μ̂x
t,A(y) − πA(y)

∣∣ ≤ sup
s≤t−2R

sup
z∈Bα

∣∣f z
s (y)

∣∣,(5.32)

from which (3.12) follows from considering (5.26).

5.3. Proof of Theorem 3.6. We define

T ∗ = E
[
τ

μ∗
A

G

]
.(5.33)

For y ∈ A, we consider the quantity

δ(y) := 2dTV
(
μ̂

y
A,2R,μ∗

A

)
,(5.34)

and recalling (3.14), we have

δ := sup
y∈A

δ(y) ≤ ε1 + ε2.

We first show that the recurrence time is asymptotically negligible with respect
to T ∗.

LEMMA 5.5. There exists a constant C > 0 such that the following inequality
holds:

R

T ∗ ≤ C(f + δ).(5.35)

PROOF. By Proposition 2.1, we have

P
[
τ

μ∗
A

G > 2R
] = e−2R/T ∗

.(5.36)
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On the other hand, by making use of (3.14) and of E(R,f ),

P
[
τ

μ∗
A

G > 2R
] = ∑

z∈A

μ∗
A(z)P

[
τ z
G > 2R

]
(5.37)

= P
[
τ

πA

G > 2R
] + ∑

z∈A

[
μ∗

A(z) − πA(z)
]
P

[
τ z
G > 2R

]

≥ P
[
τ

πA

G > 2R
] − dTV

(
πA,μ∗

A

) ≥ 1 − f − δ,(5.38)

which proves the claim. �

LEMMA 5.6. The following holds for any k ≥ 0:

sup
y∈A

P
(
τ

y
G > 2kR

) ≤ e−k(2R/T ∗)
(

1 + O

(
δ + r + R

T ∗
))

.(5.39)

PROOF. Making use of Markov’s property at time 2R, we have for any t ≥ 2R

and y ∈ A

P
(
τ

y
G > t

) = P
(
τ

y
G > 2R,τ

y
Bα∪G ≤ R

) ∑
z∈A

μ̂
y
A,2R(z)P

(
τ z
G > t − 2R

)
(5.40)

+ ∑
z∈A

P
(
τ

y
G > 2R,τ

y
Bα∪G > R,X

y
2R = z

)
P

(
τ z
G > t − 2R

)
.(5.41)

By using Proposition 2.1 and the hypothesis Rc(R, r), we have the following
estimate:

P
(
τ

y
G > t

) ≤ P
(
τ

y
G > 2R,τ

y
Bα∪G ≤ R

)
×

[
e−(t−2R)/T ∗ + ∑

z∈A

(
μ̂

y
A,2R(z) − μ∗

A(z)
)
P

(
τ z
G > t − 2R

)]

+ r sup
z∈A

P
(
τ z
G > t − 2R

)
.

In particular, for t = 2(k + 1)R, we get∣∣P(
τ

y
G > (k + 1)2R

) − P
(
τ

y
G > 2R,τ

y
Bα∪G ≤ R

)
e−(t−2R)/T ∗ ∣∣

(5.42)
≤ (δ + r) sup

z∈A

P
(
τ z
G > k2R

)
and

sup
y∈A

P
(
τ

y
G > 2(k + 1)R

) ≤ e−k(2R/T ∗) + (δ + r) sup
z∈A

P
(
τ z
G > 2kR

)
.(5.43)

From (5.43), we prove by recurrence that

sup
y∈A

P
(
τ

y
G > 2kR

) ≤ (δ + r)k + e−k(2R/T ∗)

e−2R/T ∗ − (δ + r)
.(5.44)
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Indeed, by Lemma 5.5, as soon as R/T ∗, δ and r are small enough, (5.44) holds
for k = 0; assume (5.44) to be true for a given k ≥ 0. Using (5.43), we get that

sup
y∈A

P
(
τ

y
G > 2(k + 1)R

)
(5.45)

≤ e−(k+1)(2R/T ∗) + (δ + r)

(
(δ + r)k + e−k(2R/T ∗)

e−2R/T ∗ − (δ + r)

)

≤ (δ + r)k+1 + e−k(2R/T ∗)
(

e−2R/T ∗ − (δ + r) + (δ + r)

e−2R/T ∗ − (δ + r)

)
,(5.46)

which closes the recursion.
Now we note that (5.44) implies Lemma 5.6. �

PROOF OF THEOREM 3.6. For x ∈ A\Bα , (3.17) directly follows from (5.42)
and from (5.44). Note that one gets from a statement on a time scale 2R to a
statement on a generic time scale t ≥ 0 in a standard way and by using Lemma 5.5.

To get the statement (3.16), we note that for x ∈ Bα , we have∣∣P[
τx
G > 2R,τx

Bα∪G ≤ R
] − 1

∣∣ ≤ r + f α,(5.47)

and hence we are done.
Finally, in the same way, making use of the slow escape property E(R,f ), we

get that

P
(
τ

πA

G > t
) = e−t/T ∗

(
1 + O

(
δ + R

T ∗ + f

))
.(5.48) �
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