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Abstract We continue our study of Gibbs-non-Gibbs dynamical transitions. In the present
paper we consider a system of Ising spins on a large discrete torus with a Kac-type interaction
subject to an independent spin-flip dynamics (infinite-temperature Glauber dynamics). We
show that, in accordance with the program outlined in van Enter et al. (Moscow Math. J.
10:687–711, 2010), in the thermodynamic limit Gibbs-non-Gibbs dynamical transitions are
equivalent to bifurcations in the set of global minima of the large-deviation rate function for
the trajectories of the empirical density conditional on their endpoint. More precisely, the
time-evolved measure is non-Gibbs if and only if this set is not a singleton for some value of
the endpoint. A partial description of the possible scenarios of bifurcation is given, leading to
a characterization of passages from Gibbs to non-Gibbs and vice versa, with sharp transition
times. Our analysis provides a conceptual step-up from our earlier work on Gibbs-non-Gibbs
dynamical transitions for the Curie–Weiss model, where the mean-field interaction allowed
us to focus on trajectories of the empirical magnetization rather than the empirical density.
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204 R. Fernández et al.

1 Introduction and Main Results

1.1 Background

Gibbs-non-Gibbs dynamical transitions are a surprising phenomenon. An initial Gibbsian
state (e.g. a collection of interacting Ising spins) is subjected to a stochastic dynamics (e.g.
a Glauber dynamics) at a temperature that is different from that of the initial state. For many
combinations of initial and dynamical temperature, the time-evolved state is observed to
become non-Gibbs after a finite time. Such a state cannot be described by any absolutely
summable Hamiltonian and therefore lacks a well-defined notion of temperature.

The phenomenon was originally discovered by van Enter et al. [1] for heating dynamics, in
which a low-temperature Ising model is subjected to a high-temperature Glauber dynamics.
The state remains Gibbs for short times, but becomes non-Gibbs after a finite time. Remark-
ably, heating in this case does not lead to a succession of states with increasing temperature,
but to states where the notion of temperature is lost altogether. Moreover, it turned out that
there is a difference depending on whether the initial Ising model has zero or non-zero mag-
netic field. In the former case, non-Gibbsianness once lost is never recovered, while in the
latter case Gibbsianness is recovered at a later time.

This initial work triggered a decade of developments. By now, results are available for a
variety of interacting particle systems, both for heating dynamics and for cooling dynamics,
including estimates on transition times and characterizations of the so-called bad configu-
rations leading to non-Gibbsianness, i.e., the discontinuity points of the conditional prob-
abilities. It has become clear that Gibbs-non-Gibbs transitions are the rule rather than the
exception. For references we refer to the recent overview by van Enter [2].

1.2 Motivation and Outline

The ubiquity of the Gibbs-non-Gibbs phenomenon calls for a better understanding of its
causes and consequences. Historically, non-Gibbsianness is proved by looking at the evolv-
ing system at two times, the inital time and the final time, and applying techniques from
equilibrium statistical mechanics. This is an indirect approach that does not illuminate the
relation between the Gibbs-non-Gibbs phenomenon and the dynamical effects responsible
for its occurrence. This unsatisfactory situation was addressed in van Enter et al. [3], where
possible dynamical mechanisms were proposed and a program was put forward to develop
a theory of Gibbs-non-Gibbs transitions on purely dynamical grounds.

In Fernández et al. [4], building on earlier work by Külske and Le Ny [5] and Ermolaev and
Külske [6], we showed that this program can be fully carried out for the Curie-Weiss model
subject to an infinite-temperature dynamics. The goal of the present paper is to extend this
work away from the mean-field setting by considering a model with a Kac-type interaction,
i.e., Ising spins with a long-range interaction. Whereas for the Curie-Weiss model the key
object was the empirical magnetization in the thermodynamic limit, for the Kac model the key
object is the empirical density in the thermodynamic limit, which we refer to as the profile.
Non-Gibbsianness corresponds to a discontinuous dependence of the law of the initial profile
conditional on the final profile. The discontinuity points are called bad profiles (Definition 1.1
below).

Dynamically, such discontinuities are expected to arise whenever there is more than one
trajectory of the profile that is compatible with the bad profile at the end. Indeed, this expec-
tation is confirmed and exploited in the sequel. The actual conditional trajectories are those
minimizing the large-deviation rate function on the space of trajectories (Propositions 1.2–1.3
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Variational Description of Gibbs-Non-Gibbs 205

below), in the spirit of what is behind hydrodynamic scaling. The time-evolved measure is
Gibbs whenever there is a single minimizing trajectory for every final profile, in which case
the so-called specification kernel can be computed explicitly (Theorem 1.4 below). In con-
trast, if there are multiple optimal trajectories, then the choice of trajectory can be decided by
an infinitesimal perturbation of the final profile, and the time-evolved measure is non-Gibbs
(Theorem 1.6 below).

The rate function for the Kac model contains an action integral whose Lagrangian acts on
profiles. This setting constitutes a conceptual step-up from what happens for the Curie–Weiss
model, where the Lagrangian acts on magnetizations and is much easier to analyze. However,
for infinite-temperature dynamics the Kac Lagrangian can be expressed as an integral of the
Curie–Weiss Lagrangian with respect to the profile (Theorem 1.5 below). This link allows
us to identify the possible scenarios of bifurcation (Theorem 1.7 below).

Our work can be extended in several directions. In this regard, we mention recent results
in [7] and [8] for other mean-field systems. Extensions beyond the mean-field context require
the determination of large-deviation rate functions for trajectories of empirical distributions,
rather than the magnetizations. The results on [9] and [10] are potentially useful for such a
program.

1.3 Hamiltonian

Let T
d := R

d/Zd be the d-dimensional unit torus. For n ∈ N, let T
d
n be the (1/n)-

discretization of T
d defined by T

d
n := �d

n/n, with �d
n := Z

d/nZ
d the discrete torus of

size n. For n ∈ N, let �n := {−1,+1}�d
n be the set of Ising-spin configurations on �d

n . The
energy of the configuration σ := (σ (x))x∈�d

n
∈ �n is given by the Kac-type Hamiltonian

Hn(σ ) := − 1
2nd

∑

x,y∈�d
n

J
( x−y

n

)
σ(x)σ (y)−

∑

x∈�d
n

h( x
n ) σ (x), σ ∈ �n, (1.1)

where J, h ∈ C(Td) are continuous functions on T
d , with J ≥ 0 symmetric and J �≡ 0. The

Gibbs measure associated with Hn is

μn(σ ) := e−βHn(σ )

Zn
, σ ∈ �n, (1.2)

with β ∈ [0,∞) the static inverse temperature and Zn the normalizing partition sum.

1.4 Gibbs Versus Non-Gibbs

For � ⊆ �d
n , let πn

� : �n → M(Td
n) ⊆ M(Td) be the empirical density of σ inside �

defined by

πn
�(σ) :=

1

|�|
∑

x∈�
σ(x)δx/n, (1.3)

where M(Td
n) and M(Td) denote the set of signed measures on T

d
n , respectively, T

d with
total variation norm ≤ 1 and endowed with the weak topology, and δu is the point measure
at u ∈ T

d . Note that σ ∈ �n determines πn
� ∈M(Td

n) and vice versa.
Abbreviate (1.3) for � = �d

n by πn and for � = �d
n\{
nu�} by πu,n , u ∈ T

d , where

nu� denotes the component-wise lower-integer part of nu. The latter is the empirical density
perforated at 
nu�. Abbreviate
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206 R. Fernández et al.

Mn := πn(�n), Mu,n := πu,n(�n). (1.4)

Note that Mn ⊆M(Td
n). Via πn , the Gibbs measure μn on�n in (1.2) induces a probability

measure μ̌n on Mn given by
μ̌n = μn ◦ (πn)−1. (1.5)

Using (1.3), we can rewrite (1.1) in the form

Hn(σ ) = −nd H(πn(σ )), (1.6)

where in the right-hand side we introduce the notation

H(ν) =
〈

1
2 J ∗ ν + h, ν

〉
(1.7)

with

[ f ∗ ν](u) :=
∫

Td

J (u − u′) ν(du′), 〈 f, ν〉 :=
∫

Td

f (u) ν(du), f ∈ C(Td), ν ∈M(Td).

(1.8)
Let λn := 1

nd

∑
x∈� δx/n . We havew−limn→∞ λn = λ, where λ is the Lebesgue measure

on T
d and w − lim stands for weak convergence. In what follows we will represent limit

distributions in M(Td) with a Lebesgue density as measures αλ with α ∈ B, where

B is the closed unit ball in L∞(Td). (1.9)

We will refer to α as a profile.
The definition of Gibbs versus non-Gibbs is the following. Given any sequence (ρn)n∈N

with ρn a probability measure on �n for every n ∈ N, define the single-spin conditional
probabilities at site 
nu� ∈ T

d as

γ u,n( · | αu
n−1

) := ρn(σ(
nu�) = · | πu,n(σ ) = αu
n−1

)
, αu

n−1 ∈Mu,n . (1.10)

Definition 1.1 [Good and bad profiles, Gibbs]
(a) A profile α ∈ B is called good for (ρn)n∈N if there exists a neighborhood Nα of α in
L∞(Td) such that

γ u( · | α̃) := lim
n→∞ γ

u,n( · | αu
n−1) (1.11)

exists for all α̃ ∈ Nα and u ∈ T
d , for all sequences (αu

n−1)n∈N with αu
n−1 ∈ Mu,n for every

n ∈ N such that w − limn→∞ αu
n−1 = α̃λ, and the limit is independent of the choice of

(αu
n−1)n∈N.

(b) A profile α ∈ B is called bad for (ρn)n∈N if it is not good for (ρn)n∈N.
(c) (ρn)n∈N is called Gibbs if it has no bad profiles in B.

Remark

(1) Definition 1.1(a) implies continuity of α �→ γ u( · | α) in the L∞(Td)-norm for all
u ∈ T

d at good profiles. (A proof by contradiction is based on a diagonal argument.)

(2) For (μn)n∈N with μn defined in (1.1–1.2) all profiles α ∈ B are good with

γ u(k | α) = exp[kβ{J ∗ α + h}(u)]
2 cosh[β{J ∗ α + h}(u)] , k ∈ {−1,+1}, α ∈ B, u ∈ T

d . (1.12)

(The factor 1
2 in (1.7) drops out because every spin is counted twice in the Hamiltonian but

once in the convolution.) In particular, (μn)n∈N is Gibbs in the sense of Definition 1.1(c).

123



Variational Description of Gibbs-Non-Gibbs 207

(3) Definition 1.1 assigns the notion of Gibbs to a sequence of probability measures that
live on different spaces. It is different from the classical notion of Gibbs based on the
Dobrushin-Lanford-Ruelle condition, which is used to define Gibbs measures on infinite
lattices. Nonetheless, the quantity in (1.12) can be viewed as some sort of specification
kernel.

(4) Definition 1.1 does not consider sequences (αu
n−1)n∈N whose weak limit is singular with

respect to λ. In Proposition 1.2 below we will see that in the thermodynamic limit we
can ignore trajectories that do not lie in the set {αλ : α ∈ B} because they are too costly.

1.5 Stochastic Dynamics

For fixed n, we let the spin configuration evolve according to a Glauber dynamics with
generator Ln given by

(Ln f )(σ ) :=
∑

x∈�d
n

cn(x, σ ) [ f (σ x )− f (σ )], f : �n → R, (1.13)

where the spin-flip rate takes the form

cn(x, σ ) := exp[−β ′
2 {Hn(σ x )− Hn(σ )}]

2 cosh[β ′2 {Hn(σ x )− Hn(σ )}]
(1.14)

with σ x the configuration obtained from σ by flipping the spin at site x , and β ′ ∈ [0,∞)
the dynamical inverse temperature. We write (σs)s≥0 to denote the trajectory of the spin
configuration, which lives on D[0,∞)(�n), the space of càdlàg paths on �n endowed with
the Skorohod topology.

Abbreviate πn
s := πn(σs), and let π̄n = (πn

s )s≥0 denote the trajectory of the empirical
density under the Glauber dynamics. For a given probability measure ρ̌n

0 on Mn we define

Pn
ρ̌n

0
:= law of (πn

s )s≥0 conditional on πn
0 being drawn according to ρ̌n

0 , (1.15)

which lives on D[0,∞)(Mn), the space of càdlàg paths on Mn endowed with the Skorohod
topology.

1.6 Large Deviation Principles

For t ≥ 0, we say that φ = (φs)s∈[0,t] ∈ C[0,t](B) is absolutely continuous in time when

∃ φ̇ = (φ̇s)s∈[0,t] ∈ L1[0,t](Td) : φs(u)− φ0(u) =
s∫

0

φ̇r (u) dr ∀ s ∈ [0, t], λ− a.e. u.

(1.16)
Let us recall that a family of probability measures (νn)n∈N on a Polish space X satisfies

a large deviation principle (LDP) with rate n and rate function I when I : X → [0,∞] has
compact level sets, is not identically infinite, and

lim inf
n→∞

1

n
log νn(O) ≥ − inf

x∈O
I (x), O ⊂ X open,

lim sup
n→∞

1

n
log νn(C) ≤ − inf

x∈C
I (x), C ⊂ X closed.

(1.17)

(See Dembo and Zeitouni [11, Sect. 1.2].) The following LDPs can be found in Comets [12].
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Proposition 1.2 (i) [LDP for initial Gibbs measure] (μ̌n)n∈N satisfies the LDP on M(Td)

with rate nd and rate function IS − infM(Td ) IS given by

IS(ν) :=
{
−β〈 12 J ∗ α + h, αλ

〉+ 〈� ◦ α, λ〉, if ν = αλ with α ∈ B,

∞, otherwise,
(1.18)

where � is the relative entropy

�(m) := 1+m
2 log(1+ m)+ 1−m

2 log(1− m), m ∈ [−1,+1]. (1.19)

(ii) [Dynamical LDP for deterministic initial law] Let t ≥ 0 and α ∈ C(Td), and let (φn
0 )n∈N

be any sequence with φn
0 ∈Mn for every n ∈ N such that w − limn→∞ φn

0 = αλ. Then
(

Pn
δφn

0

)

n∈N

restricted to [0, t] (1.20)

satisfies the LDP on D[0,t](M(Td)) with rate nd and rate function I t
D − inf D[0,t](M(Td )) I t

D
given by

I t
D(ψ) :=

⎧
⎪⎨

⎪⎩

t∫

0
L(φs, φ̇s

)
ds, if ψ = φλ, with φ satisfying property (1.16) and φ0 ≡ α,

∞, otherwise,
(1.21)

where

L(p, q) :=
∫

Td

L[p(u), q(u)] du, p ∈ B, q ∈ L1(Td), (1.22)

with

L[p(u), q(u)] = q(u)
2 log

[ q(u)
2 +

√
1− p(u)2 + [ q(u)

2

]2

1− p(u)

]
− q(u)

2

[
β ′(J ∗ p + h)

]
(u)

+
{
−
√

1− p(u)2 +
[

q(u)
2

]2

+ cosh
[
β ′(J ∗ p + h)

]
(u)− p(u) sinh

[
β ′(J ∗ p + h)

]
(u)

}
. (1.23)

Note that (1.23) simplifies considerably when β ′ = 0 (independent spin-flip dynamics).
To ease notation, we write IS(α) instead of IS(ν) when ν = αλ with α ∈ B, and I t

D(φ)

instead of I t
D(ψ)whenψ = φλwithφ ∈ C[0,t](B), i.e., we henceforth suppress the reference

measure λ from the notation.
Let Pn = Pn

μ̌n . Define

Qn
t,α′(·) := Pn((πn

s )s∈[0,t] ∈ · | πn
t = α′n

)
, t ≥ 0, α′ ∈ B, (1.24)

with α′n ∈Mn the element closest to α′ ∈ B in any metric that metrizes the weak topology.
The following LDPs are key to our analysis. In what follows we write f ≡ g when f (u) =
g(u) for all u ∈ T

d .

Proposition 1.3 [Dynamical LDP for Gibbs initial law]
(i) For every t ≥ 0, (Pn)n∈N satisfies the LDP on D[0,t](M(Td)) with rate nd and rate
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Variational Description of Gibbs-Non-Gibbs 209

function I t − inf D[0,T ](M(Td )) I t given by

I t (φ) := IS(φ0)+ I t
D(φ). (1.25)

(ii) For every t ≥ 0 and α′ ∈ B, (Qn
t,α′)n∈N satisfies the LDP on D[0,t](M(Td)) with rate

nd and rate function I t,α′ − inf D[0,t](M(Td ))
I t,α′ given by

I t,α′(φ) :=
{

I t (φ), if φt ≡ α′,
∞, otherwise.

(1.26)

The proof of Proposition 1.3 is given in Appendix and is based on large deviation tech-
niques coming from hydrodynamic scaling. A somewhat delicate issue is the fact that we
cannot use Proposition 1.2(ii) because this has a deterministic initial condition, while in
Proposition 1.3(i) the initial condition is random.

Note that, by (1.18), (1.21) and (1.25–1.26),

inf
φ∈D[0,t](M(Td ))

I t,α′(φ) = inf
α∈B

inf
φ∈C[0,t](B) :
φ0≡α, φt≡α′

I t (φ) = inf
φ∈C[0,t](B) :

φt≡α′
I t (φ). (1.27)

1.7 Link to the Specification Kernel

Henceforth we only consider trajectories φ ∈ C[0,t](B) satisfying (1.16), because the
rate functions are infinite otherwise. The following theorem provides the fundamental link
between the specification kernel in (1.11) and the minimizer of (1.27) when it is unique.

Theorem 1.4 [Specification kernel in absence of bifurcation] Fix t ≥ 0 and α′ ∈ B. Suppose

that (1.27) has a unique minimizing path φ̂t,α′ = (φ̂t,α′
s )s∈[0,t]. Then the specification kernel

at time t equals

γ u
t (k

′ | α′) :=

∑
k∈{−1,+1}

exp
[
kβ{J ∗ φ̂t,α′

0 +h}(u)] pu,t,α′
t (k, k′)

∑
j, j ′∈{−1,+1}

exp
[

jβ{J ∗ φ̂t,α′
0 +h}(u)] pu,t,α′

t ( j, j ′)
, k′ ∈{−1,+1}, u∈T

d ,

(1.28)
where pu,t,α′

t ( j, j ′) is the probability to go from j at time 0 to j ′ at time t in the time-

inhomogeneous Markov process on {−1,+1} with generator Lu,t,α′
s at time s ∈ [0, t] given

by

(Lu,t,α′
s f )(k) = exp

[
kβ ′{J ∗ φ̂t,α′

s + h}(u)]

2 cosh
[
β ′{J ∗ φ̂t,α′

s + h}(u)]
[ f (−k)− f (k)],

k ∈ {−1,+1}, f : {−1,+1} → R, u ∈ T
d , s ∈ [0, t].

(1.29)

Remark Note that for β ′ = 0 (independent spin-flip dynamics) the right-hand side of (1.29)
simplifies to 1

2 [ f (−k)− f (k)] and that, consequently, the right-hand side of (1.28) depends

on the optimal trajectory φ̂t,α′ only via its initial value φ̂t,α′
0 , and takes the form

γ u
t (k

′ | α′) = �t
(
k′, β{J ∗ φ̂t,α′

0 + h}(u)) (1.30)

for some �t : {−1,+1} × R → [0, 1], with the property that m �→ �t (k′,m) is continuous,
strictly increasing for k′ = +1 and strictly decreasing for k′ = −1.
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1.8 Reduction: Critical Trajectories

In what follows we restrict ourselves to the case of infinite-temperature dynamics, i.e.,β ′ = 0.
Let

φ̂α;t,α′ := argminφ∈C[0,t](B) :
φ0≡α, φt≡α′

I t (φ),

Ct,α′(α) := I t (φ̂α;t,α′).
(1.31)

Remark Note that
inf
α∈B

Ct,α′(α) = inf
φ∈C[0,t](B) :

φt≡α′
I t (φ). (1.32)

The following theorem says that φ̂α;t,α′ is unique for every t ≥ 0 and α, α′ ∈ B, and
can be computed because the Kac model can be linked to the Curie–Weiss model treated in
Fernández, den Hollander and Martínez [4]. (In the notation of that paper β is absorbed into
J, h.)

Theorem 1.5 [Critical trajectories] Let β ′ = 0. For every t ≥ 0 and α, α′ ∈ B,

φ̂α;t,α′s (u) = φ̂CW;α(u)
t,α′(u) (s), u ∈ T

d , s ∈ [0, t], (1.33)

where φ̂CW;m
t,m′ (s), s ∈ [0, t], is the unique trajectory in [−1,+1] between magnetization

m at time 0 and magnetization m′ at time t for the Curie–Weiss model. Accordingly (see
(1.21–1.23) and 1.25–1.26)),

Ct,α′(α) = IS(α)+
∫

Td

du

t∫

0

ds LCW
[
φ̂

CW;α(u)
t,α′(u) (s), ˙̂φCW;α(u)

t,α′(u) (s)
]
, (1.34)

where LCW is the Lagrangian of the Curie–Weiss model. The critical points of (1.34) (i.e.,
the local minima and the local maxima) satisfy the functional equation

sinh[2β(J ∗α+h)](u)−α(u) cosh[2β(J ∗α+h)](u) = α(u)

tanh(2t)
− α′(u)

sinh(2t)
a.e. u ∈ T

d .

(1.35)

In Theorem 1.5, the Lagrangian of the Curie–Weiss model is given by

LCW(m, ṁ) := − 1
2

√
4
(
1− m2

)+ ṁ2+ 1
2 ṁ log

⎛

⎝

√
4
(
1− m2

)+ ṁ2 + ṁ

2(1− m)

⎞

⎠+ 1, (1.36)

which is the same as (1.23) with β ′ = 0, p(·) = m and q(·) = ṁ, and the unique trajectory
is given by

φ̂
CW;m
t,m′ (s) := 1

sinh(2t)

{
m sinh(2(t − s))+ m′ sinh(2s)

}
, 0 ≤ s ≤ t. (1.37)

(See [4, Eqs. (1.16) and (1.28)].) The intuition behind Theorem 1.5 is that the dynamics has
no spatial interaction. Consequently, we may think of α(u) and α′(u) as the local initial and
final magnetization near u, and thereby reduce the minimization problem in (1.26) to that of
the Curie–Weiss model.
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Variational Description of Gibbs-Non-Gibbs 211

With the help of Theorem 1.5 we are able to prove the equivalence of non-Gibbs and
bifurcation, the latter meaning that (1.27) has more than one global minimizer. This is in
accordance with the program outlined in van Enter et al. [3].

Theorem 1.6 [Equivalence of non-Gibbsianness and bifurcation] Let β ′ = 0. For every
t ≥ 0, α̃′ �→ γ u

t ( · | α̃′) is continuous at α′ ∈ B for all u ∈ T
d if and only if

infφ∈C[0,t](B) : φt≡α′ I t (φ) has a unique minimizing path.

Thus, non-Gibbsianness is equivalent to the occurrence of more than one possible history for
the same α′.

We expect Theorem 1.6 to hold for β ′ > 0 as well, but the present paper deals with β ′ = 0
only.

1.9 Bifurcation Analysis

In this section we study for which choice of J, h, β and t, α′ the variational formula in the
right-hand side of (1.27) has a unique global minimizer or has multiple global minimizers.
According to Definition 1.1 and Theorem 1.6, this distinction classifies Gibbsianness versus
non-Gibbsianness.

Theorem 1.7 Let β ′ = 0 and 〈J 〉 := ∫
Td J (u)du.

(i) [Short-time Gibbsianness] There exists a t0 = t0(J, h) ∈ (0,∞) such that (1.27) has a
unique global minimizer φ̂t,α′ for all 0 ≤ t ≤ t0 and all α′ ∈ B.

(ii) [Mean-field behaviour] If h ≡ c ∈ [0,∞) and α′ ≡ c′ ∈ [−1,+1], then the bifurcation
behaviour is the same as for the Curie–Weiss model with parameters (J CW, hCW) =
(β〈J 〉, βc) and final magnetization c′:

The above table summarizes the results for the Curie–Weiss model studied in [4]. The
center line represents the time axis. In each figure, the symbols on top indicate the set of bad
magnetizations (which for the Kac-model correspond to bad constant profiles), the intervals
below indicate in which range the bad magnetizations occur. For further details, in particular,
a definition of the times�U , �∗, �c, �L , �T and the magnetizations UB ,MB , L B ,MT , see
[4, Sect. 1.5.5].
Remark

(1) The existence of a solution of (1.27) is guaranteed by the lower semi-continuity of α �→
Ct,α′(α), which follows from the lower semi-continuity ofφ0 �→ IS(φ0) andφ �→ I t

D(φ),
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together with the fact that w− limn→∞ αn = α implies w− limn→∞ φ̂αn;t,α′ = φ̂α;t,α′
in the Skorohod topology by (1.37).

(2) The claims in Theorem 1.7(ii) only concern the case where α′ is constant. The problem
of deciding whether or not there exist multiple global minimizers of (1.27) when α′ is not
constant presents major difficulties. Similar but easier equations have been studied exten-
sively in Comets, Eisele and Schatzman [13], De Masi, Orlandi, Presutti and Triolo [14]
and Bates, Chen and Chmaj [15], with partial success. An additional complication in
our case is that non-constant α′ brings a non-homogeneous parameter into the problem,
which makes the analysis even harder. A full analysis of the global minimizers of (1.27)
as a function of J and h therefore remains a challenge.

2 Proof of Theorems 1.4–1.6

2.1 Proof of Theorem 1.4

Proof Recall that πu,n
t = πu,n(σt ) defined below (1.3) does not depend on σt (
nu�). Let

P
n denote the law of (σs)s≥0 with σ0 distributed according to μn , and abbreviate πu,n

<t :=
(π

u,n
s )s∈[0,t) and ξn−1

<t := (ξn−1
s )s∈[0,t). Write (recall (1.10))

γ
u,n
t
(
k′ | α′un−1

) := P
n
(
σt (
nu�) = k′

∣∣∣ πu,n
t = α′un−1

)

=
∫

D[0,t)(Mu,n)

P
n
(

dξn−1
<t

∣∣∣ πu,n
t = α′un−1

)
P

n
(
σt (
nu�) = k′

∣∣∣ πu,n
<t = ξn−1

<t

)

=
∫

D[0,t)(Mu,n)

P
n
(

dξn−1
<t

∣∣∣ πu,n
t = α′un−1

)

×
{ ∑

k=±1

P
n
(
σt (
nu�) = k′

∣∣∣ σ0(
nu�) = k, πu,n
<t = ξn−1

<t

)

× P
n
(
σ0(
nu�) = k

∣∣∣ πu,n
<t = ξn−1

<t

)}
.

(2.1)
We proceed by analyzing the three terms under the integral.

(1) The LDP for (Qn
t,α′)n∈N in Proposition 1.3(ii), together with the assumption that (1.27)

has a unique minimizing path, implies

w − lim
n→∞P

n
(
·
∣∣∣ πu,n

t = α′un−1

)
= δ

φ̂
t,α′
<t
(·) on D[0,t)(M(Td)). (2.2)

(2) Because (σs(
nu�), πu,n
s )s≥0 is Markov, we have

P
n
(
σt (
nu�) = k′

∣∣∣ σ0(
nu�) = k, πu,n
<t = ξn−1

<t

)
= p

ξn−1
<t

t (k, k′), (2.3)

where p
ξn−1
<t

t (k, k′) is the probability to go from k at time 0 to k′ at time t in the time-
inhomogeneous Markov process on {−1,+1} with generator at time s ∈ [0, t) given

by (1.29) with φ̂t,α′
s replaced by ξn−1

s . Note that ξn−1
<t �→ p

ξn−1
<t

t (k, k′) is continuous on
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D[0,t)(Mu,n) for fixed k, k′, t and u, n (recall (1.4)), and that limn→∞ p
ξn−1
<t

t (k, k′) =
p
φ̂

t,α′
<t

t (k, k′) for fixed k, k′, t, α′ when limn→∞ ξn−1
<t = φ̂

t,α′
<t on D[0,t)(M(Td)) (recall

(1.29)).
(3) Write

P
n
(
σ0(
nu�) = k

∣∣∣ πu,n
<t = ξn−1

<t

)

=
[
1+ cu,n(ξn−1

<t , k) exp
(
−2βk{ 1

2 J ∗ ξn−1
0 + h}( 
nu�

n

))]−1
(2.4)

with

cu,n(ξn−1
<t , k) :=

dP
u,n
ξn−1

0 ,−k

dP
u,n
ξn−1

0 ,k

(ξn−1
<t ), (2.5)

where
P

u,n
ξn−1

0 ,k
(·) = P

u,n(πu,n
<t ∈ · | πu,n

0 = ξn−1
0 , σ0(
nu�) = k

)
(2.6)

and we use (1.1–1.2) to write

P
n(π

u,n
0 = ξn−1

0 , σ0(
nu�) = −k)

Pn(π
u,n
0 = ξn−1

0 , σ0(
nu�) = k)
= exp

(
−2βk{ 1

2 J ∗ ξn−1
0 + h}( 
nu�

n

))
. (2.7)

Finally, note that limn→∞ cu,n(ξn−1
<t , k) = 1 for fixed k, t and u when limn→∞ ξn−1

<t =
φ̂

t,α′
<t on D[0,t)(M(Td)). Indeed, (1.13–1.14) show that in the thermodynamic limit a

single spin has no effect on the dynamics of the empirical density (Feller property).
Combine this observation with (2.2–2.4) to get the identity in (1.28) (see Yang [16]).

��
2.2 Proof of Theorem 1.5

Proof Forβ ′ = 0 (infinite-temperature dynamics), (1.23) reduces to
∫

Td du LCW[p(u), q(u)]
with LCW the Curie–Weiss Lagrangian in (1.36). Hence, recalling (1.26), we have

Ct,α′(α) = inf
φ∈C[0,t](B) :
φ0≡α, φt≡α′

I t (φ)

= IS(α)+ inf
φ∈C[0,t](B) :
φ0≡α, φt≡α′

I t
D(φ)

≥ IS(α)+
∫

Td

du inf
φ∈C[0,t](B) :
φ0≡α, φt≡α′

t∫

0

ds LCW[φs(u), φ̇s(u)]

≥ IS(α)+
∫

Td

du inf
ρ∈C[0,t]([−1,+1]) :
ρ0=α(u), ρt=α′(u)

t∫

0

ds LCW[ρs, ρ̇s]

= IS(α)+
∫

Td

du

t∫

0

ds LCW
[
φ̂

CW;α(u)
t,α′(u) (s), ˙̂φCW;α(u)

t,α′(u) (s)
]
, (2.8)
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which settles half of (1.34). To get equality we pick, as in (1.33),

φ̂α;t,α′s (u) := φ̂CW;α(u)
t,α′(u) (s), s ∈ [0, t], , u ∈ T

d . (2.9)

Since (φ̂α;t,α
′

s )s∈[0,t] ∈ C[0,t](B) verifies the restrictions φ0 ≡ α, φt ≡ α′, it is a minimizer
of the variational problem in the left-hand side of (2.8).

The derivation of (1.35) follows in the same way as for the Curie–Weiss model in [4, Sect.
2.1], with the Fréchet derivative replacing the standard derivative. Note that α �→ Ct,α′(α)
is Fréchet differentiable on int(B), while the argument in Ellis [17, Sect. V, Theorem 5.1]
shows that all its critical points lie in int(B). ��

The following way of rewriting Ct,α′ will be useful later on. Adding and subtracting
1
4β
∫

Td du
∫

Td dv J (u − v)[α(u)− α(v)]2, we may rewrite (1.18) as

IS(α) = 1
4β

∫

Td

du
∫

Td

dv J (u − v)[α(u)− α(v)]2 +
∫

Td

du I CW
S (α(u)), (2.10)

where I CW
S is the rate function for the magnetization in the Curie-Weiss model. With this

formula, (1.34) reduces to

Ct,α′(α) = 1
4β

∫

Td

du
∫

Td

dv J (u − v)[α(u)− α(v)]2 +
∫

Td

du CCW
t,α′ (α(u)). (2.11)

This form clarifies the interplay between the non-local interaction and the independent spin-
flip dynamics.

2.3 Proof of Theorem 1.6

As emphasized in (1.30), γ u
t (k

′ | α′) depends on α′ only through φ̂t,α′
0 , the starting value of

the global minimizer of Ct,α′ . The following lemma is the basis for the proof of Theorem 1.6.

It describes the behavior of φ̂t,α′
0 when the constraint α′ ∈ B at time t is varied. Loosely

speaking, it says that global minimizers are isolated, are continuous under variations of α′,
and can be selected by variation of α′.

Below we fix t and suppress it from the notation. In what follows we write α̂(α′) to denote
a global minimum of Ct,α′ .

Lemma 2.1 For every t ≥ 0 and α′0 ∈ B there exists an open neighborhood Nα′0 of α′0 such
that for all α′ ∈ Nα′0\{α′0} the following hold:

(a) [Isolation of global minimizers] α �→ Ct,α′ has a unique global minimum at, say, α̂(α′).

(b) [Continuity of global minimizers] α′′ �→ α̂(α′′) is continuous at α′′ = α′. If α′′ �→
Ct,α′0(α

′′) has a unique global minimum, then it is continuous at α′′ = α′0.

(c) [Selection of global minimizers] If Ct,α′0 has multiple global minima, then there are two
of them, say α̂k(α

′
0) and α̂l(α

′
0), and a γ ′ ∈ B such that

lim
ε↓0

α̂(α′0 + εγ ′) ≡ α̂k(α
′
0), lim

ε↑0
α̂(α′0 + εγ ′) ≡ α̂l(α

′
0). (2.12)

123



Variational Description of Gibbs-Non-Gibbs 215

Proof The following 3 steps describe the behavior of the minimizers under small perturba-
tions of α′ are around α′0.
(a) Under the assumption that supα∈B |Ct,α′ − Ct,α′0 | → 0 as ‖α′ − α′0‖∞ → 0, whenever a
local minimum is emerging as α′ is varied this local minimum cannot be a global minimum.
Indeed, we have that

|Ct,α′(α)− Ct,α′0(α)| ≤
∫

Td

du |CCW
t,α′(u)(α(u))− CCW

t,α′0(u)
(α(u))|

≤
∫

Td

du ‖CCW
t,α′(u) − CCW

t,α′0(u)
‖∞.

On the other hand, we know from [4] that ‖CCW
t,m′ − CCW

t,m′0
‖∞ → 0 when m′ → m′0. Hence

the claim follows by dominated convergence.
(b) Let α̂i (α

′
0), i ∈ I, denote the global minima of Ct,α′0 . Each of these verifies (1.35),

which may be written in the form F(α, α′) ≡ 0 for some functional F . From the implicit
function theorem (see e.g. Drábek and Milota [18, Theorem 4.2.1]) it follows that there exist
a neighborhood Ñα′0 of α′0 and smooth functions α′ �→ αi (α

′), i ∈ I, on this neighborhood
such that αi (α

′), i ∈ I, are minima of Ct,α′ , and limα′→α′0 αi (α
′) ≡ α̂i (α

′
0).

(c) Let
Bi (α

′) := Ct,α′(αi (α
′)). (2.13)

The minimal cost is
Ct,α′(α̂(α

′)) = min
i∈I

Bi (α
′). (2.14)

Because of the assumed multiplicity of minima at α′0, we have

Bi (α
′
0) = B j (α

′
0), i, j ∈ I. (2.15)

Expand each Bi up to first order order,

Bi (α
′
0 + εγ ′) = B(α′0)+ ε

〈[DBi ](α′0), γ ′
〉+ O

(
ε‖γ ′‖∞

)
, ε > 0, (2.16)

where [DBi ](α′0) is the Fréchet derivative. Put G(α, α′) := Ct,α′(α). Then the chain rule
implies that

[DBi ](α′0) ≡ [DαG](α̂i (α
′
0), α

′
0

) ◦ [Dα′αi ](α′0)+ [Dα′G]
(
α̂i (α

′
0), α

′
0

)
, (2.17)

where ◦ denotes composition and the lower indices α, α′ on the letter D refer to the variable
with respect to which the derivative is taken. The first term in (2.17) vanishes due to the
criticality of α̂i (α

′
0). Standard calculations with Fréchet derivatives show that

[Dα′G]
(
α̂i (α

′
0), α

′
0

)
(u) = HCW(α̂i (α

′
0)(u), α

′
0(u)

)
, u ∈ T

d , (2.18)

with HCW(m,m′) := ( ∂
∂m′C

CW
t,m′)(m). The identity in (2.18) helps us to select different global

minimizers by small variations of α′. Indeed, for i �= j we have ‖α̂i (α
′
0)− α̂ j (α

′
0)‖∞ > 0,

and hence there exists a δ > 0 such that λ({α̂i (α
′
0)− α̂ j (α

′
0) > δ}) > 0. Take I = {u ∈ T

d :
α̂i (α

′
0)(u)− α̂ j (α

′
0)(u) > δ}. Then

α̂ j (α
′
0)(u)+ δ < α̂i (α

′
0)(u) ∀ u ∈ I. (2.19)

Combining (2.17–2.19) and using the strict monotonicity of m �→ HCW(m,m′), we get

[DB j ](α′0)(u) < [DBi ](α′0)(u) ∀ u ∈ I. (2.20)

The claim follows by picking γ ′ ≡ 1I and expressions (2.16), (2.18). ��
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We are now ready to prove Theorem 1.6. We continue to use the same notation as in
Lemma 2.1.

Proof Suppose that Ct,α′0 has a unique global minimizer, say α̂(α′0), and let Nα′0 be the
neighborhood in Lemma 2.1. Then (1.30) holds for every α′ ∈ Nα′0 , and the continuity of
m �→ �t (k′,m) for all t, k′ gives the desired continuity of α′ �→ γ u

t (· | α′) at α′ ≡ α′0 for all
u ∈ T

d . Hence α′0 is a good profile.
Conversely, suppose that Ct,α′0 has multiple global minimizers. Consider the pair α̂k(α

′
0)

and α̂l(α
′
0) and the box I in the proof of Lemma 2.1, and put α′kε := α′0 + εγ ′ for ε > 0 and

α′lε := α′0 + εγ ′ for ε < 0. Then γ u
t (· | α′iε ) = �t (·, β{J ∗ α̂(α′iε )+ h}(u)), i ∈ {k, l}, and

lim
ε↓0

α̂(α′kε )(u) = α̂k(α
′
0)(u) �= α̂l(α

′
0)(u) = lim

ε↑0
α̂(α′lε )(u) ∀ u ∈ I. (2.21)

On the other hand, α̂k(α
′
0) and α̂l(α

′
0) are critical points, they satisfy (1.35) with α′ ≡ α′0,

and so
α̂k(u) �= α̂l(u) �⇒ (J ∗ α̂k)(u) �= (J ∗ α̂l)(u). (2.22)

This, together with the continuity and the monotonicity of m �→ �t (k′,m) for all t and k′,
forces the discontinuity

lim
ε↓0

γ u
t (k

′ | α′kε ) = �t
(
k′, β{J ∗ α̂k(α

′
0)+ h}(u))

�= �t
(
k′, β{J ∗ α̂l(α

′
0)+ h}(u)) = lim

ε↑0
γ u

t (k
′ | α′lε ) ∀ u ∈ I.

(2.23)

Hence α′0 is a bad profile. ��

3 Proof of Theorem 1.7

Proof Without loss of generality we may assume that 〈J 〉 = 1. For simplicity, we consider
only α′ ∈ C(Td). In that case, due to the regularization property of the convolution operator,
the solutions of (1.35) may be taken to be continuous, and (1.35) must be fulfilled for all
u ∈ T

d . The extension to α′ /∈ C(Td) is straightforward.

(i) Let α1, α2 ∈ B be two different solutions of (1.27). After some algebra with trigonomet-
rical identities, we get from (1.27) that the following equation must be fulfilled:

2 sinh

(
Au−Bu

2

)

au−bu

{
cosh

(
Au+Bu

2

)
−au sinh

(
Au+Bu

2

) }
−cosh (Bu) = coth(2t) ∀ u ∈ T

d ,

(3.1)
where Au = (β J ∗ α1)(u)+ βh(u) and au = α1(u) (and similarly for Bu, bu, α2). Note
that the left-hand side depends only on u and the right-hand side only on t , and that
limt↓0 coth(2t) = ∞. Since |Au |, |Bu | ≤ β(1+‖h‖∞) and |au |, |bu | ≤ 1, the left-hand
side of (3.1) is bounded from above by

2 sinh

(
Au−Bu

2

)

au−bu
C1 + C2 (3.2)

for some constants C1,C2. By taking t > 0 small enough, we force au−bu to be small for
all u ∈ T

d (equivalently, ‖α1−α2‖∞ < δ). By choosing v0 such that |α1(v0)−α2(v0)| =
V0 with V0 = maxu∈Td |α1(u)−α2(u)|, we get |Av0 − Bv0 | ≤ βV0 which, together with
the series expansion of sinh, leads to a contradiction.
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(ii) From (2.11), whenever α′ ≡ c′ we have that

inf
α∈B

Ct,c′(α) ≥ inf
α∈B

1
4β

∫

Td

du
∫

Td

dv J (u − v)[α(u)− α(v)]2 + inf
α∈B

∫

Td

du CCW
t,c′ (α(u)).

(3.3)
Because J ≥ 0, the minimizers of the first term are the constant profiles. If we take the
constant of the profile equal to a minimizer of CCW

t,c′ , then the second term is also minimal.
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4 Appendix: Proof of Proposition 1.3

4.1 Outline

In Sects. 4.2–4.4 we sketch the proof of the LDP in Proposition 1.3(i) for deterministic
initial conditions (as in Proposition 1.2(ii)), and explain why it remains true for random
initial conditions. We follow the line of argument in Benois, Mourragui, Orlandi, Saada and
Triolo [19] rather than Comets [12], and use various results from Kipnis and Landim [20].
The strategy of the proof consists in first proving the claim for random initial conditions
drawn according to ϑn

κ = ⊗x∈Td
n
ϑκ with ϑκ = BER(κ), κ ∈ [0, 1] (i.e., ϑκ(+1) = κ and

ϑκ(−1) = 1 − κ), and afterwards replacing ϑn
κ by μn in (1.2) with the help of Varadhan’s

Lemma and Bryc’s Lemma. In Sect. 4.5 we indicate how Proposition 1.3(ii) follows.
Below we will make frequent reference to formulas in [19] and [20], so our arguments

are not self-contained. We begin with the following observation.

Lemma 4.1 Suppose that μ and ν are equivalent probability measures. If Pμ and Qν are
the laws of equivalent Markov processes with starting measures μ and ν, then

d Pμ
d Qν

(η̄) = dμ

dν
(η0)

d Pμ
d Qμ

(η̄) = dμ

dν
(η0)

d Pν
d Qν

(η̄). (4.1)

The general technique to prove an LDP relies on finding a family of mean-one positive
martingales that can be written as functions of the empirical density. For Markov processes
this is achieved by considering the Radon-Nikodym derivative of the original dynamics w.r.t.
a small perturbation of this dynamics. It is here that Lemma 4.1 comes into play: it factorizes
the Radon-Nikodym derivative into a static part and a dynamic part, as in (1.25).

4.2 Upper Bound

For initial condition γ ∈ C(Td ; [−1,+1]) and potential V ∈ C1,0([0, t] × T
d), we denote

by P
n,V
ϑn
γ

the law of the (γ, V )-perturbed inhomogeneous Markov process starting at

ϑn
γ = ⊗x∈Td

n
ϑ
χ−1

(
γ (

x
n )
), (4.2)

where χ : [0, 1] → [−1,+1] is the linear map that transforms a profile taking values in
[−1,+1] into a profile taking values in [0, 1]. Details about such a perturbation and its
Radon-Nikodym derivative can be found in [19, Eq. (5.8)].
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1. Large deviation upper bound for compact sets. Fix κ ∈ [0, 1]. Let K ∈ D[0,t](M(Td))

be compact. By Lemma 4.1, we have (recall the notation introduced in Sect. 1.5)

1
nd log P

n
ϑn
κ
[π̄n ∈ K] = 1

nd log E
n,V
ϑn
γ

⎡

⎣

⎛

⎝
dP

n
ϑn
κ

dP
n,V
ϑn
γ

IK

⎞

⎠ (π̄n)

⎤

⎦

= 1
nd log E

n,V
ϑn
γ

⎡

⎣

⎛

⎝dϑn
κ

dϑn
γ

dP
n
ϑn
κ

dP
n,V
ϑn
κ

IK

⎞

⎠ (π̄n)

⎤

⎦

= 1
nd log E

n,V
ϑn
γ

[
e−nd hγ (πn

0 )+Oγ (n−1) e−nd { ĴV (π̄
n∗lε,n)+r(V,ε,n)}

IK(π̄n)
]
,

(4.3)

where hγ is the analogue of [20, Eq. (1.1), Chapter 10], ĴV is defined in [19, Eq. (6.8)], ε > 0
is small, lε,n is an approximation of the identity for ε ↓ 0, and r(V, ε, n) is an error term that
vanishes as n →∞ for fixed V, ε. By letting n →∞, optimizing over γ, V, ε and using the
mini-max lemma, we get

lim sup
n→∞

1
nd log P

n
ϑn
κ
[π̄n ∈ K] ≤ inf

γ,V,ε
sup
π̄∈K

{−hγ (π0)− ĴV (π̄ ∗ lε)}

≤ sup
π̄∈K

inf
γ,V,ε

{−hγ (π0)− ĴV (π̄ ∗ lε)}
≤ − inf

π̄∈K
{IS(π0)+ I t

D(π̄)}. (4.4)

The last inequality uses that supγ hγ (π0) = IS(π0), supV ĴV (π̃) = I t
D(π̃), and supε I t

D(π̄ ∗
lε) ≥ I t

D(π̄) by lower semi-continuity of I t
D .

2. Exponential tightness. While in [20, Sect. 4] the initial condition is drawn from equilib-
rium, this is immaterial. Indeed, the proof of [19, Proposition 6.1] uses the same ideas as in
[20, Sect. 4] even though the initial condition is deterministic. Hence the same computations
apply to our case.

4.3 Lower Bound

(1) Large deviation lower bound for open sets Fix κ ∈ [0, 1]. Let O ∈ D[0,t](M(Td)) be
open. By Lemma 4.1, we have

1
nd log P

n
ϑn
κ
[π̄n ∈ O] = 1

nd log

⎧
⎨

⎩E
n,V
ϑn
γ

⎡

⎣
dP

n
ϑn
κ

dP
n,V
ϑn
γ

(π̄n)

∣∣∣∣ π̄
n ∈ O

⎤

⎦P
n,V
ϑn
γ
(O)
⎫
⎬

⎭

≥ E
n,V
ϑn
γ

⎡

⎣ 1
nd log

dP
n
ϑn
κ

dP
n,V
ϑn
γ

(π̄n)

∣∣∣∣ π̄
n ∈ O

⎤

⎦+ 1
nd log P

n,V
ϑn
γ
(O),

(4.5)

where we use Jensen’s inequality. By the law of large numbers for P
n,V
ϑn
γ

, we have

w − lim
n→∞P

n,V
ϑn
γ
= δπ̄γ,V , (4.6)

where π̄γ,V is the solution of [19, Eq. (5.5)] with initial condition γ and potential V .
(The proof of (4.6) follows in the same fashion as in [19]: all that is needed is that
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the laws of the random initial conditions converge to a law associated with continuous
profile.) Hence, if π̄γ,V ∈ O, then limn→∞ P

n,V
ϑn
γ
(O) = 1. After some calculations with

the Radon-Nikodym derivative, we get

lim inf
n→∞

1
nd log P

n
ϑn
κ
[π̄n ∈ O] ≥ −I t (π̄γ,V ) (4.7)

with I t = IS + I t
D .

(2) Density arguments It remains to show that

inf
γ,V

π̄γ,V∈O

I t (π̄γ,V ) = inf
π̄∈O

I t (π̄). (4.8)

In other words, (π̄γ,V )γ,V is dense with respect to (�wt , I ), i.e.,

∀ π̄ ∈ D[0,t](M(Td)) : I (π̄) <∞,
∃ (π̄γn ,Vn )n∈N : lim

n→∞ �
w
t (π̄

γn ,Vn , π̄) = 0, lim
n→∞ I (π̄γn ,Vn ) = I (π̄),

(4.9)

where �wt is the supremum distance in [0, t]when the marginal distance is �w (any metric
that metrizes the weak topology). A density argument of this type typically exploits the
fact that I is lower semi-continuous and convex, but in our case I = I t , which is not
convex. However, in [19] density arguments are given without convexity. In order to
extend these to our setting of random initial conditions, minor modifications are needed
in [19, Lemma 7.5]. In particular, the space regularization of the trajectory must be done
for all s ∈ [0, t], and hence [19, Lemma 7.6] together with the arguments in [20, p. 279]
prove our assertion.

4.4 Replace ϑn
κ by μn

The observations made in Sects. 4.2–4.3 prove the LDP in Proposition 1.3(i), but for starting
measures ϑn

κ given by (4.2). Note that

dμn

dϑn
κ

= endβH(πn) (4.10)

with πn �→ H(πn) in (1.6) continuous. Hence, by Lemma (4.1), Varadhan’s Lemma and
Bryc’s Lemma, the LDP in Proposition 1.3(i) for starting measures μn follows.

4.5 Contraction Principle

Proposition 1.3(ii) follows from Proposition 1.3(i) via the approximate contraction principle
based on exponential approximation estimates. See Dembo and Zeitouni [11, Sect. 4.2].
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