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1 Historical remarks and purpose of the course

The notion of Gibbs measure, or Gibbs random field, is the founding stone of mathematical statistical
mechanics. Its formalization in the late sixties, due to Dobrushin, Lanford and Ruelle [6, 34], marked
the beginning of two decades of intense activity that produced a rather complete theory [55, 18] which
has been exploited in many areas of mathematical physics, probability and stochastic processes, as
well as for example in dynamical systems.

Despite its diverse applicability, the Gibbsian description was developed specifically to describe
equilibrium statistical mechanics. Limitations were bound to show up when this framework was
transgressed. In fact, the wake-up call came from work within the original equilibrium setting. Indeed,
around 1980 Griffiths and Pearce [21, 22, 20] pointed out that some measures obtained as a result
of renormalization transformations —a technique developed to study critical points [16, 19]— showed
“pathologies” that contradicted Gibbsian intuition. Israel [26] quickly pointed out the cause. These
measures lacked the quasilocality property which, as we discuss below, is one of the (two) key properties
of Gibbsianness. The measures were, thus, non-Gibbsian.

After these early examples, almost a decade had to pass before the topic really took off. At this time
there appeared a second wave of examples showing that non-Gibbsianness was rather ubiquituous; it
was present in spin “contractions” [35, 9], lattice projections [56] and stationary measures of stochastic
evolutions [36]. These examples motivated us to write a mini-treatise [64] where we tried to explain
the relevant notions and systematize existing examples based on different non-Gibbsianness symptoms
—discontinuities or zeroes of the conditional distributions, large deviations that are too large or too
small. Next to our article, in the same issue of Journal of Statistical Physics, a much shorter paper
by Martinelli and Olivieri [47] initiated, in fact, the next stage of the non-Gibbsianness saga, namely
the efforts in the direction of Gibbsian restoration.

These efforts have progressed in two complementary directions. On the one hand, criteria have
been put forward to determine how severely non-Gibbsian a measure is. Measures have been classified
according to (i) the effect of further decimation [47, 48, 39, 60], (ii) the size of the set of points of
discontinuity of the conditional probabilities [40, 14, 68] and (iii) the size of the set of configurations
for which a Boltzmann description is possible [5, 44, 7, 1, 8, 2, 29]. The reader is directed to [67] for a
concise comparison of these classification schemes, which, however, does not include a more recently
introduced fourth category of non-Gibbsianness [69]. On the other hand, some features of Gibbsian
measures have been proven to hold also for different classes of non-Gibbsian fields. They include parts
of the thermodynamic formalism [36, 54] and the variational approach [37, 11, 10, 33, 69].

At present, after almost 25 years of non-Gibbsian studies, the state of affairs is the following.
On the positive side, we have a rather extensive catalogue of instances of the phenomenon. The
more recent, and surprising, manifestations include the non-Gibbsianness of joint measures for disor-
dered systems [28, 66, 31] —contradicting a well-known assumption in physics literature— and the
appearance and disappearance of non-Gibbsianness during dynamical evolutions of the type used in
Monte Carlo simulations [62]. We also have a pretty good knowledge of mechanisms leading to non-
Gibbsianness. By this I mean both the physical mechanisms (hidden variables, phase transitions of
restricted systems) and the mathematical tools to provide rigorous proofs. Finally, the work on the
“thermodynamic” properties of non-Gibbsian measures has brought further insight in the limitations
of such an approach and the different components of the usual Gibbsian variational approach.

On the negative side, we still owe concrete answers to practitioners. It is still unclear to what
extent, if any, the lack of Gibbsianness of renormalized measures compromises widely accepted calcu-
lations of critical exponents. Likewise, nothing is known on possible observable consequences of non-



Gibbsianness of simulation or sampling schemes. This situation was to be expected. Non-Gibbsianness
is an elusive phenomenon, involving extremely unlikely events and very special (perverse!) boundary
conditions. There is no question that we deal with a phenomenon that is widespread. It shows up,
for example, in intermittent dynamical systems [42] and in problems of technological relevance [69].
Nevertheless, we seem to be still at the stage of mostly mathematical finesse.

But this finesse has been very beneficial. In at least two instances it has helped clarify an important
paradoxical situation. First, through the “second fundamental theorem” in [64] which dispelled, to
a certain extent, the threat of discontinuities in the renormalization-group paradigm. Second, it was
instrumental in reconciling contradictory hypotheses with succesful predictions in Morita’s approach
to the study of disordered systems [32]. Furthermore, non-Gibbsianness has forced some healthy
reconsideration of known results, especially those related to the thermodynamical and variational
characterization of measures. The discontinuities, often associated only to a measure-zero set of
bad configurations, rended the traditional treatment invalid. Putting it dramatically, proofs were
destroyed by a few very unlikely events. It is natural to enquire whether this is due to a limitation
of the techniques of proof, or whether continuity is really essential. The meticulous work on Gibbsian
reconstruction is teaching us how to isolate and bring into light the different ingredients of each
Gibbsian result, and to appreciate the subtle balance between topology and probability theory which
supports mathematical statistical mechanics.

This course can be roughly divided in two parts. The first part is an introduction of the main con-
cepts and notions. To make it reasonably self-contained, I will start with a rather detailed exposition
of the definiton and benchmark properties of Gibbsianness. In particular, I will include a hopefully
pedagogical proof of Kozlov’s theorem, which has been our main tool to detect non-Gibbsianness.
This will lead me, quite naturally, to an early presentation of the different non-Gibbsianness classi-
fication schemes. The second part reviews examples of non-Gibbsianness. These examples show up
through violations of either the non-nullness or the quasi-locality of some conditional probability. I
will try to convey at least an intuitive understanding of some of the mechanisms behind these two
types of violations for the case of renormalization transformations, as well as for the case of spin-flip
evolutions [62] and the case of disordered systems [28].

Most of the exposition is in the style of an overview. I will try, on the one hand, to clarify the main
conceptual issues and, on the other hand, to transmit the ideas and intuitions that helped develop
my own understanding of the subject. In particular, the non-quasilocality instances will be organized
around three “surprising” manifestations: renormalization-group pathologies, non-Gibbsianness in
Glauber evolutions and non-Gibbsianness of the joint measures of disordered systems. I hope these
situations are surprising enough to convince the audience that the phenomenon is important indeed.
Due to time constraints, I am leaving aside the variational and thermodynamical treatments of non-
Gibbsian measures. A pedagogical self-contained exposition of these issues requires a course of its
own. I refer the reader respectively to [33] and [54] for state-of-the-art presentations of these topics.

2 Setup, notation and basic notions

General definitions and notation. We consider a countable set L, called the lattice, formed by
sites x and whose subsets will be called regions. At each site of L sits a copy of a single-spin space S.
For our pedagogical purposes it is enough to consider finite spins, that is 2 < card (S) < co. Most of
the examples below correspond to the cases S = {0,1} (lattice-gas models), S = {—1,1} (Ising spins)
or S = {1,2,...,q} (Potts spins with ¢ colors). Gibbs measures are defined on the configuration



space ) = S which represents a large array of microscopic systems, each described by S. Thus, each
configuration w € € is a collection of values (wy).e1, where, for concreteness, each w, € S will be called
the value of the spin at x. To fix ideas, we can take the canonical case L. = Z¢, but the following
presentation is written so as to make a certain generality apparent. In fact, for the purely statistical
mechanical theory most of the time we will consider sets . endowed with a distance dist such that
the parallelepipeds

A (x) == {y € L: dist(z,y) <n} (2.1)

have a (external) boundary whose cardinality grows slower than the cardinality of A,,. In addition, for
the thermodynamical treatment and to study ergodicity and large-deviation properties (topics that are
omitted here), an action of Z¢ on L. by homeomorphisms is needed. This means that there must exist
a family of bijections indexed by Z% —the translations— Ty : L. — L, « € LL, such that (i) 7' = T_,,
(ii) they are continuous and measurable (with respect to the topology and o-algebra introduced below)
and (iii) they leave invariant the distance in the sense that dist(7,y,Tz) = dist(z,y). The largest d
for which such an action exists is the dimension of the lattice L.

Another, almost gratuitous, generalisation of the setting is to consider site-dependent single-spin
spaces (),. For practical purposes, the only consequence of such a more general framework is to make
the notation heavier, so I will not adopt it here.

Let us fix some notational conventions. The symbol will be used in several senses: cardinality
of an ensemble, absolute value of a (complex) number and, if z is a site in Z%, |x| = maxj<;<q |7;|. In
particular, we shall use the distance dist(z,y) = |z — y|. We shall denote configurations by lower case
Greek letters, w,o,n €  and finite subsets of the lattice by uppercase letters, which will be Greek
when associated to lattice regions and Latin when they are to be thought of as bonds (see below). The
finiteness property will be emphasized by the symbol “€”: A,T" € L. Finite-region configurations will
show the region as a subscript: wy € Q5 := S™. Configurations defined by regions will be denoted in a
factorized form; an omitted subscript indicating completion to the rest of the lattice: wamac = wan. A
configuration o will be said asymptotically equal to another configuration 7 if it is of the form o = wpn
for some A € L and w € Q. Alternatively, ¢ will be called a finite-region modification of n. The
r-external boundary of a region A C L (0 < r < 0o) will be denoted

(4’ |77

OA(z) ={yeL\A:d(z,y) <r}. (2.2)

If A is a set endowed with a o-algebra ¥, we shall denote by P(A, ) the corresponding space of
probability measures. All measurable functions (random variables) will be real-valued. To avoid
overcharged notation, we shall resort to well-established abuses. For instance, the »-measurability of
a function f will be stated as f € ¥. Likewise, if u € P(A,Y) and f € X, we shall denote by pu(f) its
corresponding expectation.

Measure-theoretical setup. The states in classical statistical mechanics are probability measures
on a product measurable space. For finite S, the starting block is the discrete o-algebra Fy formed by
all the subsets of S. That is, all sets of single-spin configurations are measurable. The o-algebra for the
whole lattice, F ::]:%‘, however, leaves out some (non-measurable) sets of configurations (which are
difficult to construct and do not show up in the usual civilized handling of the theory). By elementary
probability theorems, the family F can, alternatively, be defined by one of the following equivalent
characterizations:



(S1) It is the o-algebra generated by (the smallest o-algebra containing) the set of cylinders {C;, :
AeEL,op € QA}, where
Cop = {w cQ:wp = O‘A} . (2.3)

(S2) It is the o-algebra generated by (the smallest o-algebra that makes measurable) the projections

X,: Q — 8

Y e o (2.4)

for z € L.

A random field is a probability measure on a space (€2, F).
The o-algebra F contains some important sub-c-algebras:

(i) The family of events in I' € L, denoted Fr, which is defined either by (2.3) or (2.4) but
considering A C T" and = € I'. Note that this is not equal to .7-"0F . The definition adopted
allows us to work within a single overall measure space (€2, F).

(ii) The family of tail or asymptotic events
Foo = () Fre. (2.5)
el

also called o-algebra at infinity.

The best way to understand these o-algebras is through the functions measurable with respect to
each of them. By yet another well-known theorem in probability theory a function f is measurable
with respect to Fr if, and only if, it “depends only on the spins in I'” in the following equivalent senses

(L1) There exists a function fr on Qp such that f = ﬁ‘({Xx}xep).
(L2) There exists a function fr on Qr such that f(w) = fr(wr).

(L3) f(w) = f(o) whenever wr = op.

(Often, no notational distinction is made between fp, fr and f).

These facts explain why a function is called local or microscopic if it is Fp-measurable for some
finite region I'. The same theorem implies that a function g is F-measurable if it “does not depend
on the spins of any finite region”. That is, if g(w) = g(o) whenever there exists a finite I' € IL such
that wpre = ope. Typically, this means that g is defined by some kind of limit. For instance,

1
lim —— wy if the limit exists
glw) = § " AL ng:n (2.6)

0 (or anything)  otherwise

is Foo-measurable. These observables at infinity or asymptotic observables correspond, then, to macro-
scopic averages of a system.



Topological setup. The notion of Gibbs state requires, in addition, a topology 7 compatible with
the o-algebra F . Compatibility means any one of the following equivalent properties: (i) open sets
are measurable, (ii) continuous functions are measurable, (iii) 7 generates F (that is, F is the Borel
o-algebra corresponding to the topology 7). To achieve this compatibility, 7 is endowed with the same
generators as those of F. That is, 7 is chosen as the smallest topology on 2 containing the cylinders
Cs, or making the projections X, continuous. This amounts to taking as single-site topology 7y the
set of subsets of S (all single-space sets are open), and adopting the product topology 7 = ’26]]‘ for
the whole configuration space. This topology has a number of properties which follow rather directly
from its definition:

(T1) (2, 7) is a compact space, because of Tychonov’s theorem. This is helpful when proving existence
and boundedness results.

(T2) The topology is metrizable, for instance by d(w, o) = Y, 27 p(w;, ;) /[1+ p(w;, ;)] with p(a,b) =
1 if a # b and 0 otherwise. This means that we can use sequences to determine closed sets and
to test continuity.

(T3) Open sets are very big: they are products of sets which are all equal to S except at a finite
number of sites, that is, they are finite unions of cylinders. In particular, the family of cylinders
{Cuy,, }n gives a base of open neighborhoods of a given configuration w.

Property (T3) means that two configurations are “close”, topologically speaking, if they coincide
over large finite regions (the larger the region the closer they are). In combination with (T2) this
implies that 7 can, alternatively, be characterized as the one giving “convergence through freezing”.
A sequence of configurations (w(™) converges to a configuration w iff for every cube A there exists a
natural number N such that

w&") =wp foralln>N. (2.7)

Furthermore, this condition is also necessary and sufficient for a sequence (w(™) to be Cauchy [in
the metric given in (T2), for instance]. Hence a sequence of configurations is Cauchy if, and only
if, it is convergent. The space (€2, F) is, therefore, complete. Another consequence of (T3) is that
asymptotic events are dense, because they are insensitive to changes in finite regions. In particular,
the set of configurations that are asymptotically constantly equal to some fixed s € S is dense. This
is a countable set, thus the configuration space is separable. To summarize,

(T4) (2, F) is a Polish space, that is, metrizable, separable and complete.

From (2.7) and (T2) we conclude that a function f :  — R is continuous at w € Q iff for each
€ > 0 there exists n € N such that

sup |f(wa,0) — f(w)]| <e. (2.8)
o€

The compactness of 2 implies that functions continuous everywhere are uniformly continuous. Hence,
the continuity of a function f on the whole of € is equivalent to any of the following properties:

(C1) For each € > 0 there exists n € N such that

sup sup | f(wa,0) — f(w)| < €. (2.9)
weN 0N



(C2) f can be uniformly approximated by local functions: For each € > 0 there exists a local function
fe such that

[fe— fllow <€ (2.10)

We immediately see that all local functions are continuous, while all asymptotic observables are
discontinuous.

In more general settings, where  is not compact, a function satisfying (C1) or (C2) is termed
quasilocal. In our case, then, continuity [that is, the validity of (2.8) for all w| is equivalent to
quasilocality. We shall use both terms almost interchangeably, with a slight preference for the latter.
This is in part for historical reasons, but also to emphasize the fact that in more general settings,
quasilocality, rather than continuity, is the key property. In particular, I may refer to property (2.8)
as quasilocality at w.

A weaker notion of quasilocality will be relevant below.

Definition 2.11 Let w,0 € Q. A function f on ) is quasilocal at w in the direction 6 if

flwp,0) — flw)] —— 0. (2.12)

n—oo
f is quasilocal in the direction 6 if it satisfies (2.12) for all w € Q.

Due to the “sup” in (2.8), a function can be quasilocal at w in every direction without being continuous
at w (see the example after Remark 2.5 in [10]).

Interplay between topology and measure theory. The notion of weak convergence (=weak*-
convergence in functional analysis), is perhaps the most elementary concept needing a combined
topological and measure-theoretical framework. A sequence of measures ji,, on (2, F) converges weakly
to a measure p if its continuous expectations converge, that is, if

un(f) ——— u(f) for every continuous function f . (2.13)
n—oo
(In more general situations, the convergence is required for functions that are continuous and bounded.
This last condition is automatic if Q is compact, as is the case here.) Due to the density result (C2)
above, weak convergence is therefore equivalent to either of the following equivalent conditions:

(W1) pn(f) ——— u(f) for every local function f.

n—oo

(W2) 115 (Cory) — 11(Cs,) for every cylinder Cy,.

In words, weak convergence means convergence of expectations of microscopic observables. It
gives no information whatsoever as to the convergence of the means of the discontinuous macroscopic
(asymptotic) observables. In our examples below such a convergence will fail: Infinite-region measures
Wn are typically singular with respect to each other, as well as with respect to their weak limits p,
precisely because the respective supports are disjoint asymptotic events.

Weak convergence is, indeed, an extremely weak notion of convergence (strictly weaker than other
popular modes of convergence, like convergence in probability, almost-surely, in LP sense, in total
variation ... ). There is both a physical and a mathematical justification for its use. From the physical
point of view, it corresponds to the idea of infinite-volume limit, that is, on the construction of (infinite-
volume) “states” by working on finite, but progressively larger volumes. Mathematically, it is the type



of convergence involved in basic limit theorems (like central-limit theorems) and, moreover, it leads to
a compact space of probability measures (Banach-Alaoglu theorem). This is an invaluable property
that, for instance, reduces to a marginal comment the potentially difficult problem of existence of
Gibbs measures for a given interaction.

Another notion needed later on is the following.

Definition 2.14 A probability measure p on a Borel measurable space is open if 4(O) > 0 for every
open set O.

Two more instances of topology-measure theory interplay will be found later on. First, the reference
to regular conditional probabilities in Polish spaces. Second, the very notion of Gibbs measure!

3 Probability kernels, conditional probabilities and statistical me-
chanics

3.1 Probability kernels

We turn now to more specific notions that are not always learnt in elementary probability courses. I
start with the definition of a probability kernel which, informally, is an object with two “slots”, being
a probability measure with respect to one of them and a measurable function with respect to the
other one. It represents a family of probability measures which depend, in a measurable fashion, on a
random parameter. Two applications are of interest here: (i) conditional probabilities —measurable
functions of the conditioning configuration— and (ii) stochastic transformations —measurable with
respect to the initial configuration. Kernels for the second application are usually denoted in an
“operator” fashion, while the “conditioning” notation is reserved for the first case. I’ll adopt this
last “bar” notation for both, because I always tend to think these kernels as conveying conditioning
information.

Definition 3.1 A probability kernel ¥ from a probability space (A, X) to another probability space
(A',X) is a function
U(-|): X' xA—10,1] (3.2)

such that
(i) ¥(-|w) is a probability measure on (A',%') for each w € A;
(i) W(A'|-) is X-measurable for each A’ € ¥'.

A, perhaps familiar, illustration of this concept is given by the transition probabilities defining
a (discrete-time, homogeneous) stochastic process. In this case, A = SN, A’ = SN0} % and
Y the respective product o-algebras, and ¥(A’|w) is the probability that the event A’ happens at
the next instant given a history w. The specifications discussed below constitute a multi-dimensional
generalization of this example.

Probability kernels can be combined by a ”convolution” in the following natural way. Suppose ¥
is a kernel from (A, X) to (A, X’) and ¥’ is a kernel from (A’,Y’) to (A”,X”). Then WU’ is the kernel
from (A, X) to (A”,X") defined by

(P0) (A" |w) = \I/(\IJ’(A”| . ’ w) , (3.3)

8



for A” € ¥ and w € A. In more detail,
(T0')(A"|w) = / U (dw'|w) O'(A”|W') . (3.4)
Al

This convolution leads to a map between probability measures, which are particularly simple
examples of probability kernels. Indeed, a kernel ¥ from (A, Y) to (A’,X’) defines the map

P(AY) — PALY)

3.5

that is,
MMszfwnmww, (3.6)

for all A’ € ¥'. This is how renormalization transformations, discussed below, are defined. In partic-
ular, deterministic transformations correspond to kernels concentrated on single points:

V(A |0) = By0(4) (3.7)

for a certain function ¢ : A — A’. Then, p/(4") = (u¥)(A’) = p[y1(4’)] and

uvvz/ﬂwwmww, (3.8)
A
for f/ € X'.

3.2 Conditional probabilities

Marc Kac said that probability theory is measure theory with a soul. This soul —which makes
probability into a full field of its own and not just a mere chapter of finite-measure theory— is the
notion of conditional expectation . It is not a simple concept, though, due to the need of conditioning
with respect to events of zero probability. I intend to review here definitions and properties of this
object, so as to explain the full mathematical meaning of the crucial notion of specification to be
introduced shortly. Readers who are impatient or reluctant to abstract considerations may prefer to
jump to the next subsection and accept Definition 3.20 through the more “physical” arguments given
below. Most of these subtleties would be avoidable if we were dealing only with Gibbsian measures,
but they are unavoidable for a proper understanding of non-Gibbsianness.

A very popular exercise in elementary probability courses consists in showing that two events are
independent if, and only if, all the events of the o-algebras generated by them are. This observation
generalizes to the fact that the information related to conditional expectations is best encoded through
functions that correspond to conditioning with respect to whole o-algebras. Kolmogorov taught us
the right axiomatic way to define this concept.

Definition 3.9 Let (A, X, u) be a probability space, T a o-algebra with T C ¥ and f a p-integrable
Y-measurable function. A conditional expectation function of f given 7 is a function

E,f|IT)():A—R (3.10)

such that



(1) E,(f|T) is T-measurable.

(i) For any T-measurable bounded function g,
[dnabusin = [dugs. (3.11)

Such a function E,(f | 7) is interpreted as the expected value of f if we have access only to the
information contained in 7, that is, if we can only perform an experiment determining occurrence
of events in 7 rather than the more detailed events in X. It is the “best predictor” of f, in square-
integrable sense, among the T-measurable functions. (The reader can, for instance, have a look to
Chapter 9 of the book by Williams [70] for a short but clear motivation of the previous definition and
its interpretation.) Identity (3.11) is the ultimate version of the quintessential probabilistic technique
of decomposing an expectation into a sum of conditioned averages weighted by the probabilities of the
conditioning events (“divide-and-conquer” technique).

Several remarks are in order. First, the existence of such conditional expectations is assured by the
Radon-Nikodym theorem. Second, as condition (ii) involves a p-integral, E,(f | 7) can be modified
on a set of y-measure zero while still satisfying the definition. Thus, Definition 3.9 does not define a
unique function. Measure-zero modifications, however, are the only ones possible. That is, E,(f | 7)
is defined p-almost surely. Often, more appropriately, the symbol E,(f | 7) is reserved for the whole
class of functions determined by the previous definition. Here it is being used,by abuse of notation, for
any particular choice —realization— within this class. In this way we gain concreteness but we have to
remember to include a “u-almost surely” clause in each expression relating conditional expectations.
Third, conditional expectations enjoy a number of important properties, most of which are very easy
to prove (nicely summarized in Section 9.7 and the inner back cover of [70]). We highlight two of them
for immediate use. First, for each bounded g € 7,

EJgf|7) = gE.f|7) p-almost surely . (3.12)

Second, if 7 is an even smaller og-algebra, that is 7 C 7 C 3, then
E, (Eﬂ(f | 7) } 7~‘) = E,(f|7) p-almost surely . (3.13)

This is the well known “tower property” of conditioning.

A highly non-trivial, somehow hidden, aspect of the previous presentation, is the fact that the
functions E,(f | 7) are constructed on an “f-to-f basis”. The conditional expectation for each f
is constructed without any regard for the conditional expectations of other functions f. The full-
measure sets granting properties like (3.12) and (3.13) are f-dependent. The question arises whether
a coordinate choice of conditional expectations is possible such that there is a full-measure set where
all properties work simultaneously for all measurable and integrable functions. This amounts to
constructing a p-full set of w € A for which the f-dependence f — E,(f | 7)(w) corresponds to a
measure that “explains” these conditional expectations. Of course, this is not always possible (in fact,
Kolmogorov’s seminal contribution consisted in showing that it is largely irrelevant; most of probability
theory can be developed only with conditional expectation functions —which always exist— whether
or not they come from conditional probability measures). The next definition covers the case when it
happens to be possible.
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Definition 3.14 Let (A,X, n) be a probability space and T a o-algebra with 7 C X. A regular
condition probability of j given 7 is a probability kernel (- | -) from (A, %) to (A, 7) such that
for each p-integrable f € %

we(f 1) = Eu(f7)(-) p-almost surely . (3.15)

We can, of course, state a more direct definition by transcribing property (3.11) at the level of kernels.
However, it is more convenient for our purposes to decompose such a property with the aid of identity
(3.12). In this way the following proposition is obtained.

Proposition 3.16 Let (A, X, pn) be a probability space and T a o-algebra with T C X. A regular
conditional probability of u given T is a probability kernel ju (- | -) from (A, X) to itself such that

(i) - (f | -) €7 for each p-integrable f € X.
(i4) p-almost surely, w-(gf | ) =gw-(f| -) for each bounded g € T and each p-integrable f € 3.
(i1i) ppyr = p

[The last identity uses the compact notation introduced in (3.5)/(3.6) for the composition of a kernel
with a measure.]

In our case, (and in most of the cases encountered in day-to-day probability studies) we are
saved by a remarkable theorem stating that every measure on a Polish space has reqular conditional
probabilities. As this regularity holds for every choice of conditioning o-algebra 7, the tower property
(3.13) can be transcribed in terms of kernels. To make the connection with the notion of specification,
let me formalize the kernel version of the tower property for families of o-algebras.

Definition 3.17 Let (A, X, u) be a probability space and {7; : i € I} a family of o-algebras with
7, C X, 4 € I. A system of regular conditional probabilities of p given the family {7;} is a
family of probability kernels ju,, (- | -), i € I, from (A, %) to itself such that

(i) For eachi € I, Wiz, s a regular conditional probability of p given ;.
(it) Ifi,j € I are such that 7; C 7},

Pir By = Kz, H-almost surely . (3.18)

[The last identity looks so admirably brief thanks to the convolution notation (3.3)/(3.4).]

This definition embodies a rather central problem in probability theory: given a measure and a
family of o-algebras, find the corresponding system of regular conditional probabilities. Such a system
gives complete knowledge of the measure in relation to the experiments in question. As we discuss
next, the central problem in statistical mechanics goes precisely in the opposite direction.

3.3 Specifications. Consistency

In physical terms, statistical mechanics deals with the following problem: Given the finite-volume
(microscopic) behavior of a system in equilibrium, determine the possible infinite-volume equilibrium
states to which such behavior leads. The mathematical formalization of this question (in the classical
= non-quantum case) passes by the following tenets:

11



(SM1) Equilibrium state = probability measure
(SM2) Finite regions = finite parts of an infinite system

The description of a system in a finite region A € L is given, thus, by a probability kernel mwp(- | -),
where 7 (f | w) represents the equilibrium value of f when the configuration outside A is w. To
emphasize this last fact, and for further mathematical convenience, mo (- | w) should be considered
a probability measure on the whole of Q acting as d,,. outside A. These kernels must obey certain
constraints if they are to describe equilibrium. To the very least they have to be consistent with the
following principle:

(SM3) A system is in equilibrium in A if it is in equilibrium in every box A’ C A.

This means that the equilibrium value of any f in A can also be found through expectations in A’
with configurations in A \ A’ distributed according to the A-equilibrium. That is,

ma(f ) = m(mn(f] ) |w)  Weael) (3.19)
Putting all this together, we arrive at the notion of specification, first introduced by Preston.

Definition 3.20 A specification on (2, F) is a family I1 = {mp : A € L} of probability kernels from
(Q,F) to itself such that

(i) TA(f | w) € Fac for each A € L and bounded measurable f.
(i) Each 7 is proper:
mAlg flw) = gw)ma(f | w) (3.21)
for allw € Q, g € Fpc and bounded measurable f.
(i4i) The family II is consistent:
TATA, = TA (3.22)
if N C A.
[Recall the convolution notation (3.3)/(3.4).]
A specification is a physical model, a complete description of how a system in equilibrium behaves
at the microscopic level, the information that will be given to you, for instance, by your experimental
physicist friend. Your task, as statistical mechanics specialist, is to come up with the resulting infinite-

volume (i.e. macroscopic) states. According to the previous tenets, these are measures satisfying the
consistency property (3.21) when A becomes L.

Definition 3.23 A measure u € P(Q, F) is consistent with a specification II = {mp : A € L} if
WA = [ (3.24)
for each A € L. Let G(IT) denote the set of probability measures consistent with I1.

[Recall the convolution notation (3.5)/(3.6).]

The concept of specification is very general. Systems at non-zero temperature are described by the
Gibbsian specifications discussed in the next section, but models with exclusions and systems at zero
temperature require more singular specifications. Conditions (3.24) are often called DLR equations
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in reference to Dobrushin, Lanford and Ruelle who first set them up for Gibbsian models. The set
G(II) can be empty [18, Example (4.16)]; otherwise it is a simplex. Its extremal points have physically
appealing properties (trivial tail field, short-range correlations) associated to macroscopic behavior.
The existence of several consistent measures corresponds to the existence of “multiple phases”, and
its indeed signals the presence of a first-order phase transition.

A comparison with the preceding subsection shows that the definition of specification collects
all the properties of a system of regular kernels that do not refer to the initial measure u. Thus, a
specification can be interpreted as a system of regular conditional probabilities defined without reference
to an underlying measure. In fact, the goal is precisely to find measures having each mp as its Fpc-
conditional probability. This observation is made precise by the following proposition whose proof
should be immediate.

Proposition 3.25 Let I = {my : A € L} be a specification and p a probability measure on (2, F).
The following properties are equivalent:

(i) w is consistent with II.

(i) {ma : A € L} is a system of reqular conditional probabilities of p given the family of o-algebras
{Frc : A €L};ie pre(- |w)=ma(: |w) for p-almost all w € Q.

(1it) TA(f | ) = Eu(f | Fac)(+) p-almost surely for each A € L. and each p-integrable function f.

Thus, while in probability one usually starts with a measure and searches for its conditional probabili-
ties, in statistical mechanics one starts with the conditional probabilities and searches for the measure.
The existence of first-order phase transitions shows that finite-volume conditional expectations, unlike
finite marginal distributions, do not uniquely determine a measure. This explains, in part, the richness
of the resulting theory.

There is, nevertheless, an important difference between specifications and systems of regular con-
ditional probabilities brought by the absence of “u-almost surely” clauses in the former. Indeed, in the
case of specifications there is no initial privileged measure and, moreover, consistency will in general
lead to infinitely many relevant measures. In such a situation there is no clear way to give meaning
to almost sure statements. Hence, while (ii) of Proposition 3.16 and the tower property (3.18) hold
p-almost surely, the analogous conditions of being proper and consistent —(ii) and (iii)[=(3.6)] of
Definition 3.20— hold for all w € €). Thus, not every system of regular conditional probabilities forms
a specification and it is natural to wonder whether each measure admits a specification or, almost
equivalently, whether a regular system can always be modified so as to obtain a specification. The an-
swer, somehow surprisingly, is a rather general “yes” [55, 57]. A more subtle question is whether such
a modification can be done so as to acquire some additional properties, like continuity with respect to
the external condition. This turns out to be a deep issue that is at the heart of the non-Gibbsianness
phenomenon to be studied later.

In our finite-spin setting, each proper kernel 7w, is absolutely continuous with respect to the product
of the counting measure in 25 and a delta measure on pc.

Definition 3.26 The specification densities of a specification Il = {7y : A € L} are the functions
Ya(- | +) s Qa x Qpe — [0, 1] defined by

Ya(oa | wae) = mA(Coy | W), (3.27)
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that is, the functions such that,

ma(flw) = > floaw)ya(on | wae) (3.28)

O'AGQA
for every bounded measurable f.

These densities will be the main characters of the presentation below. They enjoy a number of useful
properties. The consistency relation (3.22) applied to f = HCUA, yields

yaloa lwae) = D wlon | oparwae) (o | wae) - (3.29)
NSO

From this we readily obtain a key bar-displacement property that will be intensively exploited in the
proof of Kozlov’s theorem:

Proposition 3.30 Let {yp : A € L} be a family of densities of a specification on (2, F). Consider
regions A C A € L and configurations o, o and w such that ya(ap | opa wae) > 0. Then,

(B oaar |wae)  a(Bar | oaar wae) (3.31)
Ya(aar OA\N | wae) Y (| OA\N WAe) '

for every configuration (3.

In words: the conditioning bar can be freely moved, as long as the external configurations of numerator
and denominator remain identical. In fact, this condition amounts to an alternative way to define
specifications in our finite-spin setting (this way is particularly popular within the Russian school.)

Exercise 3.32 Show that a family of strictly positive density functions yn defines a specification if,
and only if,

(i) they are normalized: Ya(op | wae) =1 for every configuration w, and

oAEQN

(ii) they satisfy relation (3.31) for all configurations «, 3, o and w.
A double application of the key relation (3.31) yields the telescoping formula

aBa lwae) Ve (Be | Bar(ay wae) Ta\(a} (Bar(ay | Qo wie) (3.33)
(an fwae)  Yaplaw | Bagey wae) Ya\(a} (@a\a) | oz wae) ’

which implies that the single-site densities characterize the specification. That is, we are led to the
following proposition, which is a particular case of [18, Theorem (1.33)].

Proposition 3.34 A specification with strictly positive densities can be reconstructed, in a unique
way, from its single-site densities through (3.33). As a consequence, two specifications with strictly
positive densities are equal if, and only if, their single-site densities coincide.

To benefit from this result we need a family of singletons that are known to come from a specification.
A more involved question is the construction or extension issue, namely under which conditions a
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family of single-site densities can be extended to a full specification. To see that some conditions are
needed let us apply (3.33) for A = {z,y}:

Vizyt Blagt | wizne) ey (Be | By wizyye) vy By | e wiz )

= . (3.35)
Nowh (Uaog) [ Wiogy)  Voy(aa | By wiagye) Yoy | aewiz )
The normalization Zﬁ{z 3 Haw) (Biayy | Wiayye) = 1 yields
Yo (ay | Qi wig 1e)
Newh (Mayy | Wiayye) = by ) (3.36)

Yz} (B | By wizyye)
, Yz} (aa: ’ By W{x,y}c)

Yy} (ﬁy | Oy w{x,y}c)
Bia,y

This expression is, indeed, an algorithm to construct a two-site density starting from single-site func-
tions. A similar formula holds, of course, interchanging x with y. For the algorithm to make sense,
both (3.36) and its < y permutation must be equal. It is not hard to check that this equality is,
in fact, a necessary and sufficient condition for single-site kernels to yield unique consistent two-site
kernels. In fact, as we point out in [12, Appendix], this is just the condition needed to construct
consistent kernels for all finite regions.

Proposition 3.37 Let {7} : @ € L} be a family of strictly positive functions vz (-] +) : Qz xQ —
(0, 1] satisfying

(i) the normalization condition
ZV{I}(% |wigye) =1 (3.38)
for allw € ), and

(ii) the order-consistency condition

Yy} (ay ‘ Qg w{:}c,y}c)
Yz} Bz | By wizyye)
Blaw Yz} (aw | ﬁy w{x,y}c)

Yy} (ﬂy | Qg w{x,y}c)

Yiwy (i |y Wigyye)
Yy} (ﬁy | B w{x,y}c)

Blam Yy} (O‘y | ﬁﬂf W{x,y}c)

(3.39)

Via} (B | oy Wiz yye)

for all az, 0 €S and w € €.

Then, there exists a unique specification with strictly positive densities having the vy, as its single-site
densities. Furthermore, a probability measure p is consistent with this specification if and only if it is
consistent with the single-site kernels defined by the densities (4.

The proof of this proposition does not use the product structure of €2, hence it also works for
non-strictly positive specifications whose zeros come from local exclusion rules (one must just declare
Q to be the set of allowed configurations). Extension conditions, and construction algorithms when
the kernels have zeros determined by asymptotic events, are discussed in [3, 4, 12, 13].
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4 What it takes to be Gibbsian

4.1 Boltzmann prescription. Gibbs measures

Spin systems at equilibrium at non-zero temperature are described through Gibbsian specifications.
They are defined through the Boltzmann prescription v4 ~ e ##A where Hy —the Hamiltonian— is a
function in units of energy and 3 a constant in units of inverse energy. It is the inverse of the product
of the temperature times the Boltzmann constant, but it is briefly called the inverse temperature
which is the correct name if the temperature is measured in electron-volts. Of course, every non-null
va can be written as the exponential of something, but not everything has the right to be called a
Hamiltonian in statistical mechanics. To model microphysics, the Hamiltonian must be a sum of local
terms representing interaction energies among finite (microscopic) groups of spins. The set of these
interaction energies is, thus, the basic object of the prescription.

Definition 4.1 An interaction or interaction potential or potential is a family ® = {¢p4: A €
L} of functions ¢4 : Q@ — R such that ¢4 € Fa (that is, 4 depends only on the spins in the finite set
A), for each A € L. Furthermore:

e The bonds of ® are those finite sets A for which ¢4 # 0. Let us denote by Bg the set of bonds.

e & is of finite range if the diameter of the bonds of ® does not exceed a certain r < oo (the
range).

Alternatively, interactions are specified writing the formal sum H = ), z#4. Such an expression
must be interpreted just as a bookkeeping expression.

The pair (2, ®) constitute a Gibbsian model. The Ising model is, perhaps, the most popular one.
It is defined by L = Z%, S = {—1,1} and

—Jfp gy Wawy if A= {z,y} with |z —y| =1
palw) = —hy Wy if A={x} (4.2)
0 otherwise

or, alternatively, H = — E@,m {2y} Wawy — > he ws. The constants J{z,yy are the nearest-neighbor
couplings, and h, is the magnetic field at x (these parameters are constant in the translation-invariant
case). The notation “(x,y)” is a standard way to indicate pairs of nearest-neighbor sites z,y. The
minus signs are a concession to physics that demands that energy-lowering operations be alignment
with the field and alignment, resp. anti-alignment, of neighboring spins in the ferromagnetic (J{:E’y} >
0), resp. anti-ferromagnetic (Jg;,4 < 0) case. The change of variables {, = (w; + 1)/2 produces
the lattice gas model. Another well-studied model is the Potts model with ¢ colors: L = Z% § =
{1,2,...,¢q} and H = — Z(x’w Jiey) Liwe=w,}-

The definitions of Hamiltonian and Boltzmann weights require the specification of conditions as-
suring the existence of the relevant series. The following definition refers to the weakest of such
conditions.

Definition 4.3 Let ® be an interaction.

e The Hamiltonian for a region A € 1L with frozen external condition w is the real-valued function

defined by
HY(op|wae) = Y. daloaw) (4.4)

AEL: ANAF#D
for o,w € Q such that the sum exists.
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e & is summable at w € Q if H;{)(JA | wae) ezists for all A € L and all op € Qp. Let us denote
Q2 the set of configurations at which the interaction is summable.

[Let me recall that ) 4. ¢a(w) exists iff the sequence S, (w) = >~ 4. .cacy;, Pa(w) is Cauchy.]

Definition 4.5 The Boltzmann weights for an interaction ® are the functions defined for all A € L

and all w € QL by

e—HY (oalwac)

P
Ya(oa [ wae) = , (4.6)
Zy ()
where Z§ (w) is the partition function
ZRw) = 3 etk (4.7)

wp €N

Notice that the § factor has been absorbed into Hp, which amounts to a redefinition of the interaction.
This stresses the fact that this factor plays no role in the discussion of general properties of Gibbs
measures. It is, however, essential for the study of phase transitions. Keeping to tradition, I reserve
the right to include it explicitly or absorb it according to needs.

Gibbsianness demands summability in a very strong sense.

Definition 4.8 An interaction ® on (2, F) is uniformly absolutely summable if

Z”(I)A”oo < oo foreachz el . (4.9)
Az

The set of such uniformly absolutely summable interactions will be denoted By.
This is much more than just demanding Q2 = Q.

Definition 4.10 On (2, F):

e The Gibbsian specification defined by an interaction ® € By is the specification II® having
the ®-Boltzmann weights as densities, that is, defined by (3.28) for the weights fyf{).

e The Gibbs measures for an interaction ® € By are the measures consistent with TI®.
e II is a Gibbsian specification if there exists an interaction ® € By such that II = II2.

e 1 is a Gibbsian measure (or Gibbsian random field) if there exists a ® € By such that
p € G(IT®).

Exercise 4.11 Prove that II® is a specification if Q2 = Q.

Exercise 4.12 Summability conditions weaker than (4.9) are also in the market. An interaction is

|l converges for each w € Q and each x € L;

e absolutely summable if ), [[®a(w)
¢ uniformly summable if )", ®a(w) converges uniformly on w € Q for each x € L.
Find :

(i) An interaction that is uniformly but not absolutely summable. [Hint: Consider ®4 = (—1)"¢c,
if A= A, and zero otherwise, for suitable functions cy.]

(i) An interaction that is absolutely but not uniformly summable.
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4.2 Properties of Gibbsian (and some other) specifications

The Gibbsian formalism —random fields consistent with specifications defined by Boltzmann weights—
leads to an extremely successful description of physical reality. It provided a unified explanation of
many experimental facts and phenomenological recipes, and it has been an infallible tool to study new
phenomena. It explains thermodynamics, that is, the emergence of state functions like entropy and free
energy, related by Legendre transforms, which contain the information needed to determine the thermal
properties of matter systems. Furthermore, it provides a detailed description of phase transitions, and
leads to the prediction of universal critical exponents generalizing the law of corresponding states.

Here we are interested in the mathematical properties of Gibbsian objects. Let me start by the
observation that the map ® — II® is far from one-to-one. Interactions can be redefined, by combining
local terms, in infinitely many ways without changing the corresponding Boltzmann weights. All such
interactions should be identified.

Definition 4.13 Two interactions ® and 5, on the same space (Q,F) are physically equivalent
if Wf = 71'}{; for each A € L. In our finite-spin setting, this is equivalent to v®» = 'yf{) for each A € L

While interactions are the right way to encode the physical information —and an economic way to
parametrize families of measures—, specifications are the determining mathematical objects. Tradi-
tionally interactions have taken the center of the stage, but a specification-based approach has the
advantage of avoiding the multi-valuedness problem associated to physical equivalence, which can lead
to rather confusing situations [61]. Such an approach is, in fact, essential for a comparative study
of Gibbsian and non-Gibbsian fields. The very beginning of this “interaction-free” program is the
detection of the key features of Gibbsian specifications that single them out from the rest. This is the
object of the rest of the section.

We start by determining important properties of specifications that follow from basic attributes
of an underlying interaction. Given our focus on the finite-spin situation, we write them in terms of
the density function. Foreseeing our non-Gibbsian needs, we shall distinguish among configurational,
directional and uniform versions of each property. First, we notice that Boltzmann densities are never
zero, furthermore, if ® € By, this non-nullness is uniform.

Definition 4.14 A specification II on (Q,F) with densities {yn : A € L} is:

e Non-null at w € Q if
Ya(oa | wae) > 0 (4.15)

for each A € L and op € Qp. Due to (3.29), this property is equivalent to non-nullness in
direction w, that is, non-nullness at all configurations asymptotically equal to w.

e Non-null if it is non-null at all w € 2.

e Uniformly non-null if for each A € L

inf Ya(oA | wae) =2 epn > 0. (4.16)

OAEQA wAcEQpC

The most immediate consequence of uniform non-nullness is the following.

Proposition 4.17 A measure consistent with an uniform non-null specification is non-null.
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We next observe that a range-r interaction produces weights —or kernels — that are insensitive
to spins beyond the r-boundary of the region. This motivates the following definition.

Definition 4.18 A specification 11 on (2, F) with densities {yp : A € L} is:

e r-Markovian in direction 6 € Q) if

Ya(oa | wo,an) —va(on | wo,an) = 0 (4.19)
for all A € L and all o,w,n,n € Q such that n and 1 are asymptotically equal to 6.

e r-Markovian if (4.19) holds for all w, n and 7 in Q, or, equivalently, if TA(A | -) € Fa.n for
all A @L and all A € Fy.

e Markovian (resp. Markovian in direction 6 € Q) if it is r-Markovian (resp. r-Markovian in
direction 6 € Q) for some r > 0.

For general, possibly infinite-range, interactions in B; a simple calculation shows that strict Marko-
vianness becomes “almost Markovianness” in the sense that the difference (4.19) becomes zero only in
the limit 7 — oo. In our setting, this corresponds to continuity with respect to the external condition
[recall the discussion around and following display (2.8)]. The corresponding definitions are as follows.

Definition 4.20 A specification II on (Q,F) with densities {yn : A € L} is:

e Quasilocal at w in the direction 6 iff

‘VA(UA|WAn9)_’YA(UA|w)‘ —— 0 (4.21)

n—oo

for each A @ A and each op € Q4.

e Quasilocal at w iff it is quasilocal at w in all directions, that is, iff

sup [ya(on | wa,m) = a(on | wr, )| —— 0 (4:22)
UNISY. e
for each A € A and each op € Q4.
e Quasilocal iff
sup_[a(on [ wa,m) = (o | wn, )] ——— (4.23)

w,n,nEQ
for each A € A and each op € Q4.

In more general settings continuity is not equivalent to uniform continuity. In such situations we
therefore obtain weaker definitions by replacing “quasilocal” by “continuous” and removing the “sup”
in (4.22) and (4.23). A continuous specification is also called Feller. For our finite-spin models,
Feller and quasilocality are synonymous. Let me also observe that, given the compactness of our
configuration space, for a quasilocal specification non-nullness is equivalent to uniform non-nullness
(the minimum is achieved).

With these definitions we can now state the easy part of Kozlov theorem.

Proposition 4.24 (Necessary conditions for Gibbsianness) If a specification is Gibbsian, then
it 1is uniformly non-null and quasilocal.
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Corollary 4.25 FEvery Gibbsian measure is non-null.

Exercise 4.26 Prove Proposition 4.24. Start by proving that for ® € By the functions w — HE(UA |
wAe) are continuous.

Thanks to Proposition 3.34, all the preceding properties are inherited from single-site kernels.
Proposition 4.27 Let II be a specification in Q with densities {yp : A € L} and w,0 € Q.

(a) I is non-null at w, respectively non-null, uniformly non-null, iff the corresponding property in
Definition 4.14 is satisfied for all single-site densities V(..

(b) If 11 is non-null at 0, then it is r-Markovian in direction 6 iff the corresponding property in
Definition 4.18 is satisfied for all single-site densities V().

(¢) If 11 is non-null at 6, then it is quasilocal at w in the direction 0, respectively quasilocal at
w iff (4.21), respect. (4.22), is satisfied for all single-site densities iy and all finite-region
modifications of w.

(d) If I is uniformly non-null, then it is quasilocal iff (4.23) is satisfied for all single-site densities
Ma}-

Exercise 4.28 Given a specification on {—1,1}", consider the spin-flip relative energies h, defined
by the identity
op |w
Dy (a @) exp{~hu(o, | )} (4.29)
7{$}(_Ux ‘ w)

(i) Rewrite the previous proposition in terms of properties of hy.
(ii) Write an analogous result for arbitrary spins, replacing the spin-flip by a permutation of S.
(The use of hy is favored by the Flemish school.)
We finish this subsection with an illustration of how topology and measure theory combine to
match physics.

Theorem 4.30 A non-null probability measure on (0, F) is consistent with at most one quasi-local
specification.

In particular this means that a Gibbs measure can be Gibbsian for only one quasilocal specification,
only one interaction modulo physical equivalence, only one temperature, ... A very rewarding result.
Proof. Let u be a measure consistent with two quasilocal specifications II, II of respective kernels
and densities 7, Ta, YA and 4, A € L. For each such A and each oy € 4, let

- 1
A, = {w € Q:ya(on |wae) —Faloa | wae) > ﬁ} . (4.31)

We have
0 = (a4, Coy | ) =Fr(14,Cy | )
= u(Lafnlon ) =Falon | )])

> %M(An) . (4.32)
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Hence u(A,) = 0 and, by the o-additivity of pu,
yaloa | ) = Aaloa | +) p-almost surely. (4.33)

But, as p is non-null, the set of points where (4.33) holds must be dense, and the continuity of both
va(oa | -) and 45 (op | -) implies that, in fact,

Ya(oa | wae) > Fa(oa | wae) for all op € Q) and wpe € Qe . (4.34)

This argument also proves the opposite inequality through the interchange v < 5. O

4.3 The Gibbsianness question

We turn now to the inverse of Proposition 4.24, namely the determination of sufficient conditions for
Gibbsianness. This is a key step towards the development of a specification-based theory not relying
on explicit choices of potentials. The issue is: Which conditions grant that for a specification 11 there
exists some ® € By such that II = 112,

Historically, this question was first addressed —and solved— for Markovian fields. The simplest
and most informative solution was proposed by Grimmett [23] who gave an explicit form of the po-
tential using Mobius transform. Kozlov [27] proved the general version by generalizing this argument.
An alternative proof was given simultaneously by Sullivan [58], but using a slightly different space
of interactions. In the sequel I try to present a pedagogical exposition of Kozlov’s proof and its
consequences for the non-Gibbsianness typology.

Kozlov answered the Gibbsianness question by actually reconstructing a potential out of the given
specification. From all the physically equivalent interactions he chose those with the vacuum property.

Definition 4.35 An interaction ® in Q has vacuum 6 € Q) if
paw) =0 if wi = 0; for somei€ A (4.36)
forall A€ L.

The detailed proof of Kozlov’s theorem involves a number of stages.

4.3.1 Construction of the vacuum potential

As a first step, let us obtain the formulas proposed by Kozlov (and Grimmett before him). This is
actually not hard. We are presented with an initial specification with kernels w5 and densities ya, we
choose a vacuum configuration # and we search a potential ¢ satisfying the vacuum condition (4.36)
and such that the Boltzmann prescription (4.6)—(4.7) leads to the initial densities. We follow the
natural strategy: We pretend that such a potential exists and see what we get analyzing first one-site
regions, then two-site regions, and so on. In this way we obtain its only possible expression. This
expression involves ratios of densities, thus some degree of non-nullness is required.
The first observation is that

HA(Op | Opc) = 0O (4.37)
due to the vacuum condition (4.7), hence
(05 10x) = 5 (4.35)
YALOA | OA Zx(0) .

21



for all A € L. For one-site regions the vacuum condition implies that

Thus, the Boltzmann prescription and (4.38) imply

ot (on) _ Mt Te | Oay) (4.40)

for all x € L. Two-site regions come next. By the vacuum condition,

Hiz ) 0oy | 0e)e) = 0o} (0fey) + 012} (00) + g3 (0y) - (4.41)
Therefore, the Boltzmann prescription plus the preceding one-site calculations lead us to
ety — e Oleay Oeny) oy o e
Vaw) Oz gy [ o))

Ve (O (ayy | Openye)
View) Oy | Opepye)

-1 ~1
Via} 0z | Oaye) Vi (oy | Ogy¢) (4.42)
Via}(Oz | Ozye) Vi) Oy | Oppe)

We begin to see alternating +1 and —1 exponents. To confirm this feature, let’s work out the term
corresponding to a three-site region A = {z1,x2,z3}. As the Hamiltonian with 6 external conditions
is the sum of the three-site interaction plus all the two-site and one-site terms, we obtain

—paloa) _— va(oa | Oac) e?B(0B) eP1a} (o) (
e - < 1 < 11 4.43)
Ya(0a | Oac) 5 oty
B|=2

which, by (4.40) and (4.42), implies

—1
o—baloa) _ [7A oal0a) ] [ 11 v8(0B | 986)} ['Y{r}(% | 6{1}6)} , (4.44)
Ya(0a | Oac) 5 v8(0B | 0B<) Yz} (O | O1a2yc)
B|=2

We are ready to propose an inductive formula: If A € L,

_1)lA\B]

(
o _ [ 2ol om] .
5 1808 | Ope
B20

Its log leads us to the following definition.

Definition 4.46 Let 6 € Q2 and let I1 be a specification with densities {ya : A € L} that is non-null
in the direction 6. The 6-vacuum potential for II is the interaction defined by

100y = — N (L1)A\Bl | 188 | O5°)
A (0a) = ;4( 1) lg[vB(ngBc)} (4.47)
B2

for each A € I and each o € ().
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The proof that, indeed, such a potential gives us back the original densities turns out to be a simple
application of M6bius transforms.

Theorem 4.48 If a specification 11 is non-null at 6 € Q, then the vacuum potential (4.45) verifies

0 o [aloa | 0ae)
BZC;Q% (cB) = —log [% Or] 9Ac)] (4.49)
B#0

and, thus, its densities with external condition asymptotically equal to 0 can be written as Boltzmann
weights for ®70:
.0

Ya(oa | wra Ore) = A2 (op | wr\A Ore) (4.50)
forall ANCT €L and all o,w € Q.
Proof. Due to the bar-displacement property (3.31), it is enough to prove (4.50) for w = € (recall that
non-nullness at 6 implies non-nullness at configurations asymptotically equal to #). In this case it is
clear that (4.49) implies (4.50), because the normalization of the densities then yields the normalization
(4.41). But the equivalence between (4.47) and (4.49), supplemented with the conventions 7y = 1 and
¢g’9 = 0, is a particular case of the following well-known result. [

Theorem 4.51 (Mdobius transform) Let £ be a finite set, F a commutative group and F and G
functions from the subsets of € to F. We write F = (Fa)ace, G = (Ga)ace. Then,

VACE, Fy= Z(—I)A\E”GB} = [VA CE,Ga=) FB] : (4.52)
BcA BcCA

Let us discuss its (elementary) proof. The argument will be useful to extract other properties of
the vacuum potential. It all follows from the following, equally elementary, lemma:

Lemma 4.53 Let E be any non-empty finite set. Then
S (-nFlh = 0. (4.54)
DCE

Proof. Let us choose some x € E and decompose

S EnE = 3 (=P Y (=n)lel, (4.55)

DCE DCE CCE
xzeD zgZC

The substitution D = {z} U C shows that both term cancel out. [J
Proof of Theorem 4.51. Necessity:

YoFp =) > ()G = Y Ge Y (-1)Pl =G4 (4.56)

BCA BCACCA CCcA DCA\C
Sufficiency:
Y )Ml = ST ()MIN R = Y Re Y ()Pl =Fa. (45T)
BCA BCA CcB CCcA DCA\C

In both lines, the second equality follows from the substitution D = B\ C' and the last one from the
previous lemma. [
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4.3.2 Summability of the vacuum potential

In order to pass to the limit I' — L in (4.49) we need to verify that the vacuum potential is summable
in some sense. Of course, that requires suitable properties of the specification. As a warm-up, let us
verify that Markovianness implies finite range.

Theorem 4.58 Let 11 be a specification that is non-null and r-Markovian in direction 6 € Q). Then
the range of the 0-vacuum potential does not exceed r.

Proof. To simplify the writing we adopt the conventions vy = 1, gba’g = 0. Let A € L be a set of sites
with diameter exceeding r, and let x,y € A such that |x — y| > r. We decompose the sum defining
the vacuum potential in (4.47) according to the location of z and y:

W(oa) = —[Z + Y+ )+ Z](—l)'A\Bl 1og[m|9m] . (4.59)

BCA BCA BCA BCA 1805 | 0p<)
B3z,y B>z ,BZFy B>y, BZz BZz,y

In the first three sums, let us respectively substitute C' = B\ {z,y}, C = B\ {z} and C = B\ {y}.
Alternating signs appear which leads to

You{ayy (0 oz oy | 0)

¢%(0a) = - —1)IM\Cl og
A ( ) Z ( ) ’YCU{x,y}(GC exey ‘ 9)

CCA\{z,y}
y Youtzy(Oc 0z | 0) voupy (O 0y | 0) yo(oc | 9)]
Youtzy(oc oz | 0) voupn(oc oy | 0) ve(Oc | 0)

(4.60)

We displace the bar in the last three ratios, thanks to (3.31), so as to incorporate the whole set
C U {z,y} inside the conditioning. All the terms Yoy} (0c 020y | 0) cancel out and we obtain

(ZSZ{G(UA) _ Z (_1)|A\C\ log ['YCU{x,y}(UC Oz Oy ‘ ‘9) ’YCu{ac,y}(UC 0 ey ‘ 0)]
CcAz,y)} You{z,y} (UC Og ey | 9) ’YCU{x,y}(O'C’ 0z Oy | 9)
Ceilag) Yy Oy | 0C 02 0) viyy(0y | 0 02 0)

where we have used (3.31) again in each ratio. But the r-Markovianness hypothesis implies that
Yy (- | oc 02 0) equals vy (- | 0c 0, 0), thus the argument of the logarithm is equal to one. This
implies gzﬁzl’e =0.

We see that in the proof, Markovianness is used only at the level of single-site densities. This
is, of course, not a surprise in view of Proposition (4.27). As mentioned above, this theorem (in
its “directionless” version) is associated to a number of known probabilists —Averintsev, Spitzer,
Hammersley and Clifford, Preston, and Grimmett. Historical notes can be found in the introduction
to the last author’s contribution [23], which is also the genesis for the preceding proof. The strategy
of this proof can be used to prove the first of the following overdue observations.

Exercise 4.62

(i) Prove that ® is indeed a vacuum potential, that is, prove that it satisfies property (4.36).
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(i) Formalize the obvious fact that a 0-vacuum potential is unique.

It is even easier to prove a similar theorem but with Markovian replaced by quasilocal, We only
need the following identity. If A C A € L and o,w € §,

og = log
YA (0 | “R\A 0) 73 ( 9/\ WR\A | 0)

Yz (wz | 0) Vi (@gia 10)
[v Aw} o8 [m\gex\m)} (463)

_ Z ,

NAZD
A

(4.64)

where the first two equalities follow from the bar-displacement property (3.31) and the last one from
(4.49). This immediately implies the following theorem.

Theorem 4.65 LetII be a specification that is non-null at w and 6 € Q and quasilocal at w in direction
0. Then its -vacuum potential is summable at w. In fact,

: . Ya(wa | wa,\a0)
HE’ &) = — lim 1 n
A (oA |wae) i log "onnn 0)

(4.66)

for every A € L and op € Qp, and, thus, the densities of 11 with external condition w can be written
as Boltzmann weights:

(- Twae) = 487 (- | wae) (4.67)
forall A CT e L.

4.3.3 Kozlov theorem

Gibbsianness requires uniform and absolute summability of the interaction. Absolute summability
seems, in principle, not to be much of a problem. Indeed, due to our freedom to pass to physically
equivalent interactions, we can use partial sums to define an equivalent, absolutely convergent inter-
action. There is, however, a rather subtle obstacle to this strategy (I owe this observation to Frank
Redig): If we do not insist on uniformity, the resummation procedure becomes w-dependent, and it is
not clear whether the resulting potential would remain measurable. Therefore, we shall combine, from
the outset, absoluteness with uniformity, that is, we shall place absolute value and “sup” signs all over
the place. Our hypotheses will be accordingly strengthened: We shall now assume quasilocality (that
is, uniform continuity) and (uniform) non-nullness.
Non-nullness implies (is equivalent to) the strict positivity of the numbers

my = infy(we |w) . (4.68)
w
for all x € L. Quasilocality says that for each z € IL the function

92(r) = sup|Va}(we | W) = Yoy (W | wa, 0) (4.69)
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converges to zero, as 7 — oo (in the presence of non-nullness such a condition is equivalent to quasilo-
cality).

To understand the basic algorithm to pass from a vacuum potential to an absolute and uniformly
summable one, let us first discuss how to gain summability for bonds containing the origin. We resort
to the inequality
a —b|

Ina—Ind| < ————
na—Inbf < min(a, b)

(4.70)

valid for a,b > 0 (the proof is immediate from the integral definition of the logarithm), to obtain,
from (4.66), the bound

,0 go\r
sup| 3 4% <w>‘ < Polr) (4.71)
“ I Bso mo
BCAy
As go(r) — 0, we can choose a sequence of integers r;, ¢ = 1,2, ... diverging with ¢ and such that

> () < o0 (4.72)

The idea is now to group the bonds within the regions

L=A,. ,i=1.2,... (4.73)
that is, within the families
S{={BcLy},..S)={BcCL):0eB}\S),, ... (4.74)
The interaction
0 unless A = L? for some ¢ > 1
BesSY

is physically equivalent to the #-vacuum potential ¢ and by (4.71)

0 0
suplopo)| = sup| 30 6w - S o)
@ ¥ ' BeAr, BeAr,
B30 B3>0
< go(ri) + go(ri—1) (4.76)
mo

[90(70) = 0]. Therefore, by (4.72),

Y lpalle < 7730290(7"0 < 00, (4.77)

A30 1>1

To obtain an analogous summability around every site x, the preceding strategy has to be pursued
so as to visit, in some fixed order, the different sites of the lattice while grouping the relevant bonds as
above, taking care of counting each bond only once. In this consists the proof of the following crucial
theorem.
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Theorem 4.78 (Kozlov [27]) A specification is Gibbsian if, and only if, it is uniformly non-null
and quasilocal.

Proof. We only need to prove sufficiency, as necessity has been proven in Proposition (4.24). Let us
choose a vacuum 6 € Q (any choice will do), and consider the corresponding §-vacuum potential. We
fix an order for the sites of the lattice, L = {x,x9,...} and choose sequences rf, i, =1,2,... such
that

Zgw(rf) < o0 (4.79)

for each xy € L [the functions g, have been defined in (4.69)]. We then choose “rectangles” around
each of the sites xy: For i,/ =1,2,...,

Ll ={a; :1<j<m}, Li={a;:2<j <7}, .. Li={x; : 0<j<7, .. (4.80)

where the ?f are chosen so that

rf = diam L! (4.81)
and we assign each bond, in a unique way, to one of such rectangles by defining
S{={BcLi:zeB}\S, (4.82)
for i,/ =1,2,... (S5 = 0). We observe that:
(F1) the families S! are disjoint, and
(FQ) If B> xy, then B € ngl Ui>1 SZ]
Finally we define
0 unless A = L! for some i,/ > 1
PA = Y ey’ iA=L (4.83)
BesS!
As for (4.76),
l V4
r;)+ T
sup|iy ()| < ) Ialri) (4.8
w v Mg,

hence, by observation (F2) above,

> lalls

A3z, j=1i>1

>3] (4.85)

M-
[\

which is finite by (4.79). O

The interaction ¢ constructed in the preceding proof is no longer a vacuum potential, and fur-
thermore, its summability bound worsens with the order £ of the site. So, there is no hope of proving
site-uniformly summability, that is with a supremum over x in (4.9). Another particularly annoying
feature of the proof is that a translation-invariant specification does not lead to a translation-invariant
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interaction. The algorithm can be modified, by fixing the radii ¢ in a f-independent fashion, so as
to produce a translation-invariant potential. But summability is recovered only if the continuity-rate
function gy decreases at sufficient speed. It is not known whether this extra condition is only technical
(the suspicion is that it is not). There is an alternative Gibbsianness theorem by Sullivan [58] which
has the advantage of yielding translation invariance without additional hypotheses. But this theorem
refers to a space of interactions different from B;, and is thus slightly less adapted to current Gibbsian
theory.

4.4 Less Gibbsian measures

Kozlov theorem leaves us with a rather simple symptomatology of non-Gibbsianness, based on only
two properties. While non-nullness is not a property to be ignored, it is not usually the main problem.
Furthermore, already models with exclusions and grammars have given us some familiarity with the
effects of its absence. The absence of quasilocality, on the other hand, leads to more subtle, or at
least less familiar, phenomena. In physical terms, the conditions of Definition (4.20) correspond to
situations in which the intermediate configuration w effectively shields the interior of the region A
from the influence of far away regions. The failure of such type of properties would place us in an
extremely unphysical situation, as it would correspond to the uncontrollability of local experiments.
Mathematically, non-quasilocality causes the breakdown of proofs of a number of important properties
that are behind our understanding of phase diagrams and properties of the extremal phases.

For these reasons there has been a systematic effort to determine a tarxonomy of non-quasilocal
measures, with the hope that of restoring, within each category, a different set of Gibbsian properties.
While this hope has been only partially realized, the classification scheme is well established by now.
To present it we need some notation.

Definition 4.86 For a specification IT on (2, F) and 6 € Q, let us denote

QZ(H) = {w € Q :1I is quasilocal at w in the direction 9} (4.87)
QqII) = {w € Q11 is quasilocal at w} (4.88)

P

sum given in Definition 4.3. Then, a probability measure

and, for an interaction ®, let us recall the set )
woon (Q,F) is

e quasilocal if it is consistent with a quasilocal specification,

e almost quasilocal or almost Gibbs if it is consistent with a specification I1 such that

p[QqD)] =1, (4.89)

e intuitively weakly Gibbs if it is consistent with a specification I1 for which there exist a set
Qreg (IT) such that

([ Qeg(M)] =1 and we QIII), Yw, 8 € Queg(IT) (4.90)

e weakly Gibbs if it is consistent with a specification 11, with density functions {yx : A € L},
for which there exists an interaction ® such that

plQ0m] =1 and (- w) = 73 |w), Yo € Qg - (4.91)
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[In our setting, (almost) quasilocality = (almost) Feller.] Weakly Gibbs measures arose from
an effort to extend an interaction-based description of non-Gibbsian measures. In contrast, almost
quasilocality ignores the Boltzmann prescription and focuses on specification properties. Nevertheless,
due to Theorem 4.65 both almost quasilocal and intuitively weakly Gibbs measures are weakly Gibbs
as well. The configurations in (s are the regular points of the corresponding interaction. We refer
the reader to [67, 69] for a comparison among the different notions. I content myself with the following
remarks summarizing known facts.

Proposition 4.92 Let p € P(Q,F).
(i) If w is consistent with a specification I1 and there exists a 0 € Q such that
p[Q4] =1 (4.93)
then w is weakly Gibbs.

(i1) If p is intuitively weakly Gibbs, then it is consistent with a specification II such that
M{e € Q:p[00()] = 1} =1, (4.94)

The first item follows from Theorem 4.65, the second one is immediate from the definition of IWG
measures. The opposite implications in both items are probably false.

In [69] the following inclusions have been pointed out:

G CAQL CIWG € WG ¢ P(Q. 7). (4.95)

where the acronyms represent the obvious families of measures. Examples of measures that are almost
quasilocal but not Gibbsian include the random-cluster model when there is an almost surely unique
infinite cluster [53, 24|, the modified “avalanche” model of [41], the sign-fields of the SOS model [68]
and the Grising random field [67] below the critical value of site-percolation. Measures that are
intuitively weakly Gibbs but not almost quasilocal are constructed in [69]. They include measures
absolutely continuous with respect to a product of Bernoulli measures on the positive integers and the
invariant measure for the Manneville-Pomeau map whose non-Gibbsianness was determined in [42]. In
this last example discontinuities appear together with lack of non-nullness. The only known example
of a probability measure that is not even weakly Gibbs is the avalanche model worked out in [41].
On the other hand, the inclusions AQL € WG and AQL C P(Q,F) are rather strict. Indeed,
convex combinations of Gibbs measures for different potentials are quasilocal at no configuration [64],
and measures associated to dependent (Fortuin-Kasteleyn) percolation on trees have discontinuities
at a set of full-measure [25]. It is not known whether these measures are weakly Gibbsian. The
combinations of Bernoulli measures with different densities, studied in [41] are such that there exists
no specification IT and no configuration € for which (4.93) is true. But this falls short of showing lack
of weak Gibbsianness. There are, on the other hand, examples of measures associated to disordered
systems (see Section 5.6) that are weakly Gibbsian but almost surely not quasilocal [28].

The proof that a measure is weakly Gibbs involves sophisticated techniques, usually coarse-graining
arguments combined with cluster expansions. Nevertheless, practically all known examples of non-
Gibbsian measures have been proven to be weakly Gibbsian [5, 44, 7, 8, 1, 2, 29]. In fact, if you allow
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me to play with words, this proven weak Gibbsianness turns out often to be rather strong in that it is
associated to absolutely summable interactions, that, moreover, decay at a (configuration-dependent)
exponential rate. Nevertheless, the existence of these strong weak potentials seems to be too weak a
condition to restore useful Gibbsian properties. In particular, only very limited results hold [37, 33]
regarding the extension of the variational approach to these measures.

In contrast, much more of the variational approach can be restored for almost quasilocal measures.
This has been done, through relatively simple proofs [11, 10] —no coarse graining, no expansion—, in
cases where FKG monotonicity can be invoked. The argument shows at the same time that some of
the weak-Gibbsian measures cited above are in fact almost quasilocal. The discussion in [69] strongly
indicates that these good variational-approach results may extend to the larger class of intuitively
weakly measures.

The best description of the differences between the classes introduced above is contained in a
remark in [69]:

e For a quasilocal measure, every configuration shields a finite region from every far away influence.

e For an almost quasilocal measure, almost every configuration shields a finite region from every
far away influence.

e For an intuitively Gibbs measure, almost every configuration shields a finite region from almost
every far away influence.

In practical terms, the difference between every and almost every seems impossible to detect as it
refers to events that will never be measured or appear in a simulation. Nevertheless, these differences
show up through distinctive mathematical properties. This contrast explains the challenge posed by
the study of non-Gibbsian measures.

5 What it takes to be non-Gibbsian

5.1 Linear transformations of measures

Most of the instances of non-Gibbsianness discussed in the literature refer to measures obtained as
transformations of Gibbs measures through probability kernels as defined in (3.5)/(3.6). The only
exceptions are the joint measures for disordered systems. briefly presented in Section 5.6. The setting
is, then, defined by a probability kernel 7 from one configuration space (2 = S™, F) to another, possibly

different, space (' = 5’ Ll,]—"’ ). Non-Gibbsian studies focus on three types of measures obtained from
a measure pu € P(Q, F):

(NG1) The measure obtained after a single transformation, p' = pr.

(NG2) Measures obtained after a number (sufficiently small or sufficiently large) of iterations of the
transformation, u(™ = pr™ = (ur™ )7,

(NG3) Measures obtained through an infinite iteration of the transformation or invariant measures:
p = limy, u7™ or p such that p = pr

[For the last two types, (', F') = (2, F).]
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The kernels of interest here have all a product structure
dw ‘ w H Tac dw ) (5.1)
' e’
where each 7,/( - | w) is measure on S’, and hence defined by a density

To(we | w) = 7o ({wy} |w) - (5.2)

Hence, the transformed measure of p € P(Q, F) satisfies for the weight of a cylinder
/ I ) (dw) | (5.3)

/e

for any A’ € I and W), € €,. In particular, a deterministic transformation is defined by functions
T, : Q@ — S such that
1 ifw, =Ty(w)

0 otherwise (5.4)

Totor |) = {

The transformations used in physics and probability can be classified into various categories:

e A block transformation is such that for each 2’ € I there exists a block B, € L such that
Tp(wly | -) € Fp,, for all ), € §'. Hence T, (w, | -) equals a function on Fp_, which I will
denote with the same symbol, namely T, (w), | wp,,).

e In general terms, renormalization transformations are characterized by at least one of the
following properties:

— The blocks By, z’ € L/, form a partition of I (that is, they are disjoint and their union is
the whole of L).

— The functions T'(w/, | -) are continuous for all w/, € 5.

e Transformations with overlapping blocks are typical of stochastic evolutions. These include
cellular automata (discrete-time) and spin-flip (continuous-time) dynamics.

Here are a few examples of renormalization transformations that have played a benchmark role in
non-Gibbsian studies and Gibbs-restoration projects. If necessary, the reader can suppose that L = Z¢
and L' = Z% but, of course, lattices with a notion of Z%translations (=action of Z? by isomorphisms)
do equally well.

Deterministic block renormalization transformations:
b®-Decimation: L/ =1L, 8" = S, By = Ap_1 + bz, Ty (wB,,) = Wea'-

Spin contractions: L =1L, S5 % S, By = {z'}; two species:

e Sign fields: S C R symmetric, Ty (wyr) = sign(w,).
o “Fuzzy” spins: S = U;erS; (partition), S = I, Ty (wy) =i if wy € S;.

Block average: I =1L, S’ 2 S, Ty (wp,) = ’B;v’rl ZyEBI/ Wy

Magority rule (odd blocks): L' =1L, 8" = S = {~1,1}, (|By| odd), Tor (wp,,) = sign[zyeB L wyl
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Stochastic block renormalization transformations:

Majority rule (even blocks): L' =1L, 8" = S = {—1,1}, (|By| even), wp , = sign[zyeB , wy] if this
last sum is non-zero, and +1 or —1 with probability 1/2 otherwise. [Exercise: write the kernel
densities T, (w!, | wB,,).]

p-Kadanoff transformation: L' =1L, 8" = S,

exp [p w;/ ZyGle Wyi|

5.5
Norm. (5.5)

Tx/ (W:ID/ ’ sz’

Non-block renormalization transformations (deterministic):
Projections: 1. ; L, S =8, T(w) = wr. This is a generalization of decimation. The most important
case is Schonmann’s example: S = {—1,1}, L = Z¢ L' = 797! x {0}.
Momentum transformations: L' =1L, §' O S, Tw(w) = >, F(2' — y)wy for I summable, defined
through a Fourier transform with an :ppropriate smooth cut-off.
The following exercise applies to all the preceding examples.

Exercise 5.6 Let T be either a renormalization transformation with strictly positive densities Ty (- | -)
or a deterministic renormalization transformation such that T;,l(wg,) #0 forallw!, € 5.

(i) Prove that if p is non-null, then ut gives positive measure to any cylinder C’w;\/.

(i) Conclude that T maps non-null measures into non-null measures.

The situation is dramatically different if “non-null” is replaced by “Markovian”: A Markovian mea-
sure, subjected to a “Markovian” (= block-renormalization) transformation may, in fact, not even be
quasilocal.

5.2 Absence of uniform non-nullness

Kozlov’s theorem implies two main causes of non-Gibbsianness: lack of non-nullness and lack of
quasilocality. The manifestation of the former comes from the negation of the following alignment-
suppression property.

Proposition 5.7 If a measure p on (2, F) is consistent with an uniformly non-null translation-
invariant specification, then there exists § > 0 such that

sup p(Co,) < eIl (5.8)

wAEQA

forall A € L.

Proof. Let v, be the single-site specification densities and ¢ = inf, v(y}(0x | ¢) > 0. Then, by
consistency,

H(CWA) = /'Y{x}(wx | o) 1CWA\{I} (o) p(do)
(1—¢) M(CWA\{I}) . (5.9)

IN
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Induction finishes the proof. [

The failure of this property means that the (exponential) cost of inserting a “defect” wy is sub-
volumetric. This is what happens, for instance, for some sign-field measures [35, 9, 68, 38|, where
there are defects that can be placed by paying only a surface-area cost. The non-Gibbsianness of the
invariant measures of some cellular automata also shows up in this way. Alignment needs to appear
only in some lower-dimensional manifold —a surface for the voter model [36] or the non-local dynamics
of [49], a “spider” for the non-reversible automata of [15]— and the dynamics propagates it to a whole
volume. In fact, as proposed in [43], the detection of this alignment propagation can be a numerical
test for non-Gibbsianness. Such a test has indeed been applied [45, 46] to the invariant measure of
the Toom model, with inconclusive results.

As seen in Exercise 5.6, a measure that is non-Gibbsian due to lack of non-nullness can not be
the image of any non-null measure —Gibbsian or not— through strictly positive renormalization
transformations.

For those that know a bit about the variational principle, I comment that (5.8) means that

|An|

lim inf logpu(Cuy, ) =6 > 0. (5.10)
When both p and w are translation-invariant violation of (5.10) implies that the entropy density of the
0., relative to p is zero. This is how the violation of (5.8) is usually presented, linking non-Gibbsianness
to a failure of the variational principle. Furthermore, as the relative entropy is a large-deviation rate
function, this failure indicates the presence of large deviations that are “too large” (its probability
is penalized less than the volume exponential typical of Gibbsianness). Nevertheless, the argument
based on (5.8) is more general, as it requires neither translation invariance nor the existence of relative
entropy densities.

5.3 Absence of quasilocality

Let me explain, in some detail, the subtleties involved in proving that a measure u is not quasilocal.
To make the notation slightly lighter (and to acquaint the reader with yet another usual notation),
let us denote by pa the kernel y ;. of Definition 3.14, that is

pa(f | w) = Bu(f | Fae)(w) (5.11)

is a realization of the corresponding conditional expectation for bounded f € F, A € L and w €
Q. [From our long discussion of Sections 3.2 and 3.3, the reader should retain at least this fact:
conditional expectations admit an infinite number of versions (=realizations) all differing on measure-
zero sets.] Let me reserve the right to denote sometimes this object as pa(f | wae) to emphasize its
Fac-measurability.

The measure u is not quasilocal if it is consistent with no quasilocal specification. To prove
this (recall that every measure is consistent with some specification), it is enough to find a single,
nonremovable, point of discontinuity for a single pa for a single quasilocal f [By Proposition 4.24 this
will already happen for A = {z}, f = 1,, for some x € L, 0, € S.] Let us precise this fact.

Definition 5.12 A measure p € P(§2, F) is not quasilocal at w € Q if there exists A € L and f
(quasi)local such that no realization of pa(f | -) is quasilocal at w.
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In other words, any realization of ua(f | -) must exhibit an essential discontinuity at w; one that
survives zero-measure modifications. Let us understand what this means, for a general measurable
function g. As we shall assume g non-null (otherwise it would already be non-Gibbsian), “essential”
can be associated to “supported on open sets”. Thus, we are led to consider the following twin notions.

Definition 5.13 Let g be a measurable function and pu a probability measure on (2, F). Let w € Q.

(a) g is p-essentially discontinuous at w if every function continuous at w differs from g in a set
of non-zero p-measure.

(b) g is strongly discontinuous at w if every function continuous at w differs from g in a set
having non-empty interior.

[That is: if f is continuous at w, then the set {w : g(w) # f(w)} has pu-measure non-zero in (a) and
contains an open set in (b).]

Remark 5.14 If u is non-null, every strong discontinuity is essential.

Conditional expectations are bounded, hence they can only have jump discontinuities, caused by
the presence of different limits coming from different directions. In order for such a discontinuity to
be essential or strong, the set of directions from which each of the different limits is achieved should
be sufficiently thick. This yields the following basic criteria.

Proposition 5.15 Let p € P(Q,F), g a bounded measurable function and w € Q. Then g is p-
essentially discontinuous [resp. strongly discontinuous| at w iff there exists a § > 0 such that for every
neighborhood N of w there exist two sets Nt and N—, with w € N* C N, such that u(N*) > 0 [resp.
N= open] and

l9(0") = g(07)] > 6 (5.16)

for every o= € N'*E.
As the cylinders are a basis of the topology of  (every open set is a union of such), open neighbor-

hoods of w are (unions of) cylinders of the form C,. for I' € L. Thus, condition (5.16) is equivalent
to

|g(w/\1\7 U+) - g(WAN U_” >0 (5'17)

for N large enough, for o* € A f?v € Fag, of non-zero measure or open, according to the case. After
a little thought we see that we can rewrite Proposition 5.15 in the following equivalent form.

Proposition 5.18 Let u € P(Q,F), g a bounded measurable function and w € €.

(a) g is p-essentially discontinuous at w iff there exist a diverging sequence (N;)i>1 of natural num-
bers and real numbers 64 and 5_ with 5t — 8~ > 0 such that for each i > 1 there exist sets
NF N € Fag, with

limsupu(gICWANi 1Ni+) > 6T and liirgglfu(glcmm 1/\/[) < 6" (5.19)

1—00
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(b) g is strongly discontinuous at w iff there exists a diverging sequence (N;)i>1 of natural numbers
such that for each i > 1 there exist a natural number R; > N; and two configurations n*,n~
such that

limsup |g(way, nXRi\ANi ot) — g(way, nXRZ_\ANi o )| >0 (5.20)

1—00
for every ot € Q.

To settle our non-quasilocality issue we now apply these considerations to functions of the form
g(+) =pa(f]+). From Definition 5.12 and the previous proposition we obtain:

Proposition 5.21 Let p € P(Q, F). Then:

(a) p is not quasilocal at w iff there exist a diverging sequence (N;)i>1 of natural numbers and real
numbers 64 and 6_ with 6T — 6~ > 0 such that for each i > 1 there exist sets Nj", N~ € Fas,
with

. Jr . . -
hliriiljpu<f 1C”szi 1Ni+) > 0" and llinléilf“(f 10““‘1\%- 1N[> <46 (5.22)

(b) If i is non-null, then it is not quasilocal at w if there exists a diverging sequence (N;);>1 of natural
numbers such that for each i > 1 there exist a natural number R; > N; and two configurations
nt,n~ such that

limsup |p(f [ wan, My, \ay, @) = #F TN, M2y 0 )| 26 (5.23)

1—00
for every ot € Q.

As we have seen, condition (5.23) is a stronger form of non-quasilocality [(b) of Definition 5.13]. In
this case it is appropriate to say that u is strongly non-quasilocal, or strongly non-Feller [64, Definition
4.14]. To obtain (5.22) we have used consistency.

In practice, the lack of quasilocality has been detected by proving (5.23) for functions of the form
f(0) = op. Furthermore, only single-site regions need to be checked due to Proposition 4.24. In the
presence of translation invariance, then, non-quasilocality proofs typically refer to (5.23) for A = {0}
and f(o) = op. (This is not always the case, see for instance Section 4.3.5 in [64].)

After all these mathematical considerations, it is natural to wonder about the physical reasons for
non-quasilocality. In quasilocal measures instead of (5.23) we get a limit zero as I' — L. This means
that the influence of o is shielded off if the intermediate spins are frozen in some configuration w. In
heuristic terms, in quasilocal measures the influence of far away regions is carried by the fluctuations
of the spins in between; if these fluctuations are stopped so is the connection between the regions.
Non-quasilocality means, thus, that there is some mechanism connecting distant regions that remains
active even in the absence of fluctuations.

For measures obtained as images of a transformation the mechanism is clear; it goes under the
keywords “hidden variables”. While the measure acts on the space of “unhidden” image variables
', it is also determined by the “hidden” object variables in Q acting through the transformation.
In such a situation, the freezing of an image spin configuration acts as a conditioning on the object
spin variables, under which the latter may still keep a certain amount of freedom to fluctuate. For
some choice w’ of image variables, the conditioned object system may exhibit a phase transition which
causes a long-range order that correlates local behavior to what happens at infinity. This produces
non-quasilocality —that is nonzero differences (5.23)— for this particular '
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This “hidden variables” scenario explains non-quasilocality for renormalized measures and for
measures obtained through cellular automata or spin-flip dynamics. While the non-quasilocality of
joint measures of disordered models is of a different nature, still phase transitions are behind it [28, 66],
as we shall discuss in Section 5.6 below.

The actual proofs of the failure of quasilocality are typically very technical. They combine a number
of analytical tools (correlation inequalities, Pirogov-Sinai theory, strict convexity of thermodynamical
potentials,...) with particular properties of each model in question. A systematic exposition of them
is well beyond the scope of this course and may not be pedagogically useful. I prefer to discuss,
instead, the overal strategy of the proof of non-quasilocality for block-renormalized measures, and
illustrate other mathematical features through examples. These examples are relatively simple to
analyze, and, in part due to its simplicity, have played a benchmark role in the understanding of the
different manifestations of non-Gibbsianness.

5.4 Surprise number one: renormalization maps
5.4.1 The scenarios

Physicists define and work with renormalization transformations at the level of interactions (they
speak of Hamiltonians, but they are really referring to interactions). Formally, they consider maps R
related to our measure transformations 7 according to the following diagram:

T /
o= K
T ! (5.24)

o X o

The diagram gives hints as to the possible mathematical complications of computing R. While the
upwards arrow on the left roughly corresponds to an exponential (Boltzmann prescription), the down-
wards arrow on the right corresponds to a log. This step is at the origin of the complicated diagram-
matics associated to renormalization transformations. In contrast, the transformation 7 is a linear
object, much cleaner and straightforward at the mathematical level. In fact, from a computational
standpoint, 7 and R have complementary disadvantages: R involves logarithms, but 7 acts on spaces
of much larger dimensions. Conceptually, however, 7 has the advantage of being always well defined
while the status of R is less clear.

Renormalization transformations were initially devised to study critical points, approaching them
from the high-temperature side where there is only one measure to contend with. But quickly physicists
started to apply the successful renormalization ideas to first-order phase transitions, where there are
several measures consistent with the same interaction. In these cases it is natural to wonder whether
the different renormalized measures are associated to the same or different potentials:

—

-y = ) {pa--} — Am,-}
M1 NI or m 1 ? (5.25)
0] — o’ P 5 {(I)/lv}

While the leftmost scenario would be consistent with the renormalization paradigm, the rightmost
one would indicate a multivalued map R quite contradictory to usual ideas. In fact, some numerical
evidence did suggest the actual occurrence of this last scenario. To add to the confusion, the celebrated
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work of Griffiths and Pearce [22] pointed to the possible presence of “peculiarities” that would prevent
any reasonable definition of R. (The reader is referred to [64, Section 1.1] for historical references.)
Non-Gibbsian theory provided the necessary clarifications. It led to the following conclusions:

(a) The “multivaluedness scenario” [rightmost possibility in (5.25)] is impossible within reasonable
spaces of interactions [64, Theorem 3.6].

(b) In many instances, however, as initially shown by Israel [26], renormalized measures may fail to
be quasilocal. That is, the downwards arrows in (5.25) may fail to exist.

(c) If the interaction ® and measures p; are translation invariant, either the renormalized measures
wi are all Gibbsian for the same interaction, or they are all non-Gibbsian [64, Theorem 3.4].

In conclusion, instead of those in (5.25), the two competing scenarios are

{pa, -} 3 (-} {pa, -} 5’ (-}
11 N/ or 11 I (5.26)
® — P’ ® — 77

Both of these scenarios occur —the left one probably more often— but I will concentrate on the
general strategy to prove the validity of the rightmost scenario. I will only sketch the different steps,
relying on two examples as an illustration: 2 x 2-decimation and Kadanoff transformations of the
translation-invariant states of the two-dimensional Ising model in zero magnetic field at low enough
temperature. The decimation example is the first and simplest example of non-quasilocal renormalized
measure, which carefully analyzed by Israel [26], and is the genesis of the non-Gibbsianness work in
[64]. Kadanoff transformations, on the other hand, illustrate transformations with strictly positive
kernels and they were already considered by Griffiths and Pearce as sources of “pathologies”. I will
skip all fine calculational details —which are fully given in [64, Section 4.1.2]— and concentrate on the
main brush strokes (which are already complicated enough). The strategy, which is naturally divided
into four steps, in fact shows that the non-quasilocality of the renormalized measures p' = u7 satisfies
the stronger property (5.23).

5.4.2 Step zero: Understanding the conditioned measures

To understand the meaning of y,(- | &), for A’ C L/, o' € &, we introduce the measure on
(Q x ', F x F') with marginals (=projections on Q and Q') p and p/. Explicitly,

W(F) = / Flw, o) pldw) (o | w) (5.27)

for every function F that is F x F’-measurable and bounded. It is useful to visualize Q x ' as
configurations on two parallel “slices”, I and /. The spins on the former are the original, object ot
internal spins and those on the latter the renormalized or image spins. A simple verification of the
properties determining Definition 3.9 shows that

(1) = T (- | wye) - (5.28)

We see, then, that p/y,(- | w’) is a measure on an infinite spin space formed by the spins in L plus
those in the finite region A’. The proper definition of measures for unbounded regions needs some
care. In our case we count on the help of specifications.
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Indeed, we are interested in a measure u that is Gibbsian for some interaction ® and in product
transformations (5.1)/(5.2). The measure g must then be consistent with a specification defined by
the interaction ® on the slice L. and “conic bonds” connecting I and I defined by the functions 7.
Rather that writing the full details for z let us focus on our target measure fip/xr( - | w),c). To simplify
matters still further, let me advance the fact that the addition of the finitely many spins in A’, being
only a local modification, does not produce any major change in the properties we are after (we shall
come back to this in step 3 below). Hence, we look at fy, (- | ') which we interpret as the measure
on Q obtained by conditioning the original spins to be “compatible” with the image configuration w’.
Our previous comment on a ®-T" interaction is formalized, even more generally, as follows.

Proposition 5.29 Let u be consistent with a specification I1 whose density functions are {ya : A € L}
and let T be a block transformation defined by densities {T,(w., | wp_,)}. For each o' € Q' let

QUJI = {w S Q: Tz’(w;/r’ | sz/) >0 ) x/ € L/} . (530)

The, the measure py(- | &') is consistent with the specification " on Q' defined by the density
functions

/ 1
7 (oa | wae) = m(onlwne) T] T (vl | (orw)n, ) (5.31)

Norm.
z'eB)

where By = {2’ € L' : By N A # 0} and “Norm” stands for the sum over op of the numerator. The
pair (¥, TI™") is the w' constrained internal-spin system.

Exercise 5.32 Prove this proposition. (Hint: The shortest route to prove that (5.31) indeed defines
a specification is through property (3.51).)

If IT is defined by an interaction ® and the functions T, are strictly positive, then Q¥ = Q and
™" is Gibbsian for the interaction

—log T, (W, | wp,,) if B = By for some 2’ € I

EW/ (W) = dp(w)+ { 0 otherwise . (5.33)

Observe that if the temperature is considered, then the factor G multiplies only the terms ¢p, but not
the last logarithm. For example, for the p-Kadanoff transformation of the Ising model with magnetic
field h at inverse temperature (3, the measure pi(- | w’) is Gibbsian for the interaction with formal
Hamiltonian

5{2 wpwy =Y we = pB Y W, S w+ A log [2 cosh(p 3 wy)} } (5.34)
(o) : : -

yEBy yEB:

which corresponds to an Ising model with an additional magnetic field that is positive, block-dependent,
and also temperature-dependent, plus a multispin non-linear antiferromagnetic term with temperature-
dependent couplings.

If the renormalization transformation is not strictly positive, for instance if it is deterministic, we
fall into the framework of models with exclusions. Its analysis depends on the type of exclusion. The
example of decimation transformations is particularly simple, as the constraints determined by each
w' amount to fixing the spins at the sites in bZ¢. In such a situation it is better simply to ignore these
decimated sites and consider the measure fiza\yza( - | w') on the remaining internal spins. That is, we
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take as internal spin system €2za\;74 and the interaction obtained from the original one by fixing the
decimated spins. For the decimation of the Ising model, this internal-spin interaction corresponds to
the same original Ising interaction plus a field on neighbors to decimated sites induced by the links
to them. In Israel’s example, three sublattices arise naturally. The decimated spins are on the even
sublattice Leven formed by sites with both coordinates even. The neighbors to decimated sites occupy
the odd/even sublattice Loqq/even Where the two coordinates have different parity. The remaining
sites, with both coordinates odd, form the odd sublattice Loqq. The interaction defining fiz2\o72( - | W)
corresponds to the formal Hamiltonian

_B{Z Yoo wewy + Y (Z w;)%}. (5.35)

z€Lodd ¥€lodd/even we]l‘odd/even fJeLereri
lz—y|=1 T—Y|=

In conclusion, step zero teaches us that each conditioned measure in question —fip/xp (- | W) =
(- |w') or pr(- | w)— is determined through consistency with some interaction. If the interaction
presents a first-order phase transition, there are infinitely many measures to choose from. The proof
of non-Gibbsianness, in fact needs the presence of such phase transitions. Let us now move to the
remaining steps.

5.4.3 The three steps of a non-quasilocality proof

Step 1: Choice of an image configuration producing a phase transition on the internal
spins We need to choose some special configuration @’ for which the constrained internal spins
undergo a first order phase transition. That is, @’ must be such that there exist two different measures
ui/, ;ﬁ, eg (HT@,). Those being different means that there exists a local observable f such that

~/

WS (F) = 1 ()] =6 > 0. (5.36)

In such a situation, one may wonder which measure has the right to be denoted gy, (- | @"). While we
do not answer this, the rest of the argument shows that whichever the choice, it leads to a discontinuity
at &',

The choice of &', of course, depends on the problem. If the original model already exhibits multiple
phases, then the rule of thumb is to choose @’ so as not to favor any of these phases. For the Kadanoff
and decimation examples this means that @’ must be “magnetically neutral”. The simplest choice,
the alternating configuration &/, = (—1)‘:”', is already suitable.

For Israel’s example, this choice causes the cancellation of the effective field due to neighboring
decimated spins, which corresponds to replacing the even spins by holes. Formally, the second sum in
the internal-spin interaction (5.35) disappears. This corresponds to an Ising model on the decorated
lattice L \ Leven, formed by sites with four neighbors —those in Lyqq— and the “decorations” —sites
in Logd/even— linked only to two other sites. If we are only interested in observables on the odd lattice
we can sum first over the spins at the decorations. A little bit of algebra shows that

Z exp(ﬂ o104+ 0 0'd0'2) = Cexp(ﬂ'alag) (5.37)
oqg==%1

where C is an uninteresting constant and

B = logcosh2f . (5.38)
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This means that the internal-spin system, constrained by the alternating configuration, becomes equiv-
alent to an Ising model at a lower temperature. If the initial model is at a low enough temperature,
(' exceeds the critical Onsager value and the internal-spin model acquires two different pure phases,
respectively supported on configurations formed by a percolating sea of “+1” and a sea of “—17,
with fluctuations on finite and isolated “islands”. These are our measures ,u‘_’? and *'; they are
characterized by the fact that

!

0 < m(f) := 1Y (00) = —n¥(00) . (5.39)

The analogous proof for the Kadanoff transformed measure is much more involved. It demands a
technical, but widely used, perturbative approach starting from the zero-temperature phase diagram.
Let me describe it briefly, while referring the reader to [64, Appendix B] for a detailed presentation
and all relevant definitions and references. In a nutshell, the approach has two stages:

Stage 1: Determination of the translation-invariant ground states of the model. These are the
translation-invariant measures consistent with the specification obtained as the zero-temperature
(8 — o0) limit of the specification under study. Two type of conditions must be met for the
approach to be applicable. First, the extremal points of such set of measures (pure phases) must
be d-like, that is, supported by single configurations. Second, the resulting phase diagram (that
is, the catalogue of ground states for different values of parameters like A) must be regular, in some
precise sense, or have appropriate symmetry properties. In particular the number of extremal
translation-invariant ground states must be finite throughout a whole region of parameter values.

Stage 2: Stability of the zero-temperature phase diagram. This is proven through a very powerful
and sophisticated theory due to Pirogov and Sinai. Its hypotheses include the regularity features
mentioned above plus the so-called Peierls condition which roughly means that local fluctuations
of ground states are suppressed exponentially in its volume. This allows to show stability of
phases by suitably generalizing the Peierls contour argument for the Ising model.

It is relatively simple to verify that the translation-invariant ground states interaction (5.34) with an
alternating block-field w), are (d-measures on) the all-“+1” or the all-“—1” configurations, depending
on h, with coexistence for h = 0 (by symmetry reasons). The validity of the Peierls condition follows,
by continuity considerations, from that of the Ising model. Some subtleness arises from the fact
that (5.34) has (-dependent parameters (the last two). This requires a stronger (uniform) version
of Pirogov-Sinai theory. The conclusion of all this analysis is that the interaction (5.34) admits two
different consistent measures u“z and ,u‘Ai/, with properties similar to those of the decimation case. In
particular they satisfy (5.39).

Step 2: Choice of discontinuity neighborhoods To prove (5.23) the measures consistent with
II™*" need to be approximated by measures obtained similarly for image spins fixed in configurations
of the form @j\,n},\ A0’ The idea is to find configurations 7’ + ¢  and a sequence of natural

numbers Ng, with Np > R, such that all measures ,uRvU,+ and MR"’P, respectively consistent with

. . & M w, " UIVRVIRVC A . .
the specifications II  "® "Nr'"R  and II "R "Nr'“R  gatisfy that, for any choice of o/T, 0’ €
Ro'* & 5.40
K (f) TR nt (f) (5.40)
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where f is the observable satisfying (5.36). Combining the latter with (5.40) we thus obtain that

i 7 (£ @iy, g o) = (| @i i, o) 2 0 41
for any o/ ,0'~ € € for R large enough. In view of (5.28), this almost proves (5.23) for the renor-
malized measure p/. The existence of configurations n’* with the above properties is, as a matter of
fact, a further condition for the choice of &'.

For the 2 x 2-decimation of the Ising model it is relatively simple to prove (5.40). Indeed, a short
calculation shows that if the decimated spins are fixed in the alternating configuration inside a region
AR and equal to +1 in the annulus immediately outside, the internal spins in the region Ay, are
subjected to an Ising interaction with a magnetic field at the boundary. This field is at least equal to
B' whatever the configuration of the spins further out (internal or otherwise). Hence, regardless of the
image configuration on A%, the expected magnetization at the origin is (by Griffiths inequalities)
no smaller than that of an Ising model on a square with “4+” boundary conditions, which converges
to that of the “+” Ising measure when the size of the square diverges. An analogous argument can
be done for a “~1” boundary condition. We conclude that (5.40) is verified for Ng = R+ 1, /T = +
and f(o) = 0p, and thus

lim
R—o00

ﬁL(ao\a’Ak<+1>A;w\%a'+)—ﬁL(ao]a’Ag—l)’A;H%o’)] = 2m(f)  (542)

which is nonzero if the temperature of the original Ising model is low enough.
The argument for all other cases (including decimation in higher dimensions) is less simple. The
standard strategy involves finding configurations n'*,n'~ € Q' such that:

i) The specifications 77" and II™" admit unique consistent measures respectively denoted b
Yy Yy
r4 ’—
pm and pm o

=~/ /
’wA/ n +
R

/ . . T — .
(ii) For any R > 0, all measures p/%" " consistent with II and all measures /" consistent

—

with HT@;‘% ! satisfy
W) = B = [k () = 1 () (543)

(this is often done with the help of correlation inequalities).
~/ 1+
Property (i) implies that each of the specifications II"“4r” | R > 0, has also a single consistent
measure because it is obtained from 177~ by a local change. We also make use of the following
fact: Let (up) and (®,) be respectively sequences of measures and interactions on (€2, F) such that

tn € G(®y,). Then, if &, converges (in B;) to an interaction ®, every convergent subsequence of (i)
~ 1+

War My .
Ar AN which converges, as

is consistent with II®. We apply this to the sequence of interactions ®
~ I+

N — oo, to N , to conclude, from (5.43) and (5.36), that for each R > 0 one can choose Np
sufficiently large so that (5.41) is valid for a ¢ slightly smaller than that in (5.36).

Step 3: “Unfreezing” of A’ The last step consists in showing that, as a consequence of the
previous steps, we can actually find an observable f' € F},, somehow related or inspired by f, so
that the analogue of (5.41) holds for fia/xi(f’ | -). In fact, for each w’ € € the specification II™A" '
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defining the measures fip/xr.(- | w),) is obtained from the specification 1™ defining fip.(- | «') by
“unfreezing” the factors Ty (- | wp,,) for 2" € A’. This corresponds to a multiplication of the kernels
of II™" by a local density, or to the addition of a finite number of bonds to the interaction defining
the latter. Therefore there is a canonical bijection between G(II™«") and G(II™*") for each fixed '
In particular, the existence of unique or multiple phases in one of them implies the same feature in
the other one. We conclude that the configurations @' and 7% chosen above allow also the successful
completion of steps 1 and 2 for jip/«p, for every A’ € . We only need to show the existence of f’
such that

N () =N > 0. (5.44)
where
~w A Z/f o) H Ty (o, sz,) ui(dw). (5.45)
z'eN’

The properties of mui/ must now be exploited. For the decimation and Kadanoff examples, we have
to consider

Z / a6 To(o0 | ws,) [M“Z(dW) —ﬁ(da))} - (5.46)

At low enough temperatures the measure /ﬁ, favors “+1” spins, while p* favors “—17 (this can be
seen by correlation inequalities or contour arguments: the probability that a finite region be inside or
intersecting a contour goes to zero as temperature decreases). The transformation density Tp, on the
other hand, favors alignment of o(, with the majority of the spins in wp,. Both effects combined lead
to m’ > 0.

5.4.4 Non-quasilocality throughout the phase diagram

Following the preceding argument, non-quasilocality has been exhibited for renormalizations of the
Ising model at low temperature and zero field, for all of the block transformations described in Section
5.1. The renormalized measures have subsequently been shown to be weakly Gibbs [1], while decimated
measures are, in fact, almost quasilocal [11, 10].

We see, however, that the above argument relies on the existence of phase transitions for the
constrained internal spin system rather than for the original system. Therefore, non-quasilocality
should be expected also outside the coexistence region of the original model, in situations where the
constraints produced by the renormalized spins act like fields that bring the internal system into a
phase coexistence region. So we must add the scenario

T

B p
i ! (5.47)
o A 77

in competition with scenario (5.24). Israel [26] already exhibited such a phenomenon in his 2 x 2-
decimation example: A small but non-zero magnetic field of the original Ising model can be com-
pensated by the (non translation-invariant) field created by a suitable @' so that, at low (original)
temperatures, the non-decimated spins undergo a phase transition and the decimated measure be-
comes non-quasilocal. This measure is, however, almost-quasilocal [14], and its quasilocality can be
restored by further decimations [47]. More dramatic examples include block-averaging [64, Section
4.3.5] and majority [63] transformations of the Ising model at high magnetic field, and decimations of
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high-g-Potts models above the critical temperature [63]. One can even design, for each temperature,
a perverse transformation such that the renormalization of the Ising measure at this temperature is
non-quasilocal [59].

There is a clear message coming from these examples: The choice of a renormalization trans-
formations is a touchy business. Top-of-the-shelf choices may lead to non-Gibbsian renormalized
measures for which calculations of Hamiltonian parameters —renormalized temperature, renormal-
ized couplings— have a doubtful meaning. The transformation must be well-adapted to the problem,
and the questions, at hand. In particular, block-spin transformations may not be a good idea at low
temperatures, where long-range order pervades. Rather, renormalization ideas should be applied at
the level of collective variables, like contours [17].

5.5 Surprise number two: spin-flip evolutions

Metropolis and heath-bath algorithms have been instrumental for the simulation of statistical me-
chanical systems. They are processes in which each spin of a finite lattice is visited according to a
certain routine (sequentially, randomly, by random shuffling) and updated stochastically by compar-
ing energies before and after the proposed flip. Their continuous-time counterpart are the Glauber
spin-flip dynamics in which the updates are attempted according to independent Poissonian clocks
attached to each site. The dynamics are tailored so as to converge to a target spin measure which is
the object of the simulation. Each simulation realization is started as some initial configuration, and
a sample configuration is collected after a number of steps. If this number is sufficiently large, the
samples are distributed almost like in the target measure. Often, the initial configuration is a ground
state, or zero-temperature measure, and the simulation acts as a numerical furnace that heats it up
(“unquenches” it) so to bring it to a typical configuration at the intended temperature.

These simulation schemes define a sequence of transformations of measures as considered in Sec-
tion 5.1. Actual simulations apply these transformations to Boltzmann measures in finite regions
(usually with periodic boundary conditions), but ideally they should be applied to measures on the
whole lattice. An ideal “unquenching” transformation is, then, a high-temperature Metropolis or
Glauber dynamics (that is, a dynamics converging to a high temperature Gibbs state) applied to
a low-temperature Gibbs state. We were surprised by the fact that, if the temperature difference
between the initial and final states is big enough, non-Gibbsianness enters into the picture [62].

To see how, let us consider a very simple updating process for Ising spins, in which at successive
time units each spin is flipped independently with probability € € (0,1). The invariant measure for this
process gives equal probability to each spin configuration, thus the process can be interpreted either as
an infinite-temperature parallel Metropolis algorithm, or an infinite-temperature discrete time Glauber
dynamics. Mathematically, this process is a block transformation with Q' = Q = {—1, 1}Zd, single-site
blocks and kernel densities

Tiay(wz |wz) = 1—c¢

5.48
Ty (~we |wz) = ¢ ( )

Such densities are better expressed as a matrix (T5)qy := T, (0 | 1) which takes the form

1—¢ € 1 -1
T, = < . 1—e> :H—e<_1 1 )z.]l—e.,]]. (5.49)

The n-th iteration of such a transformation corresponds, thus, to single-site kernels T’ {”x}(o*x | n2) =
(T, n. Wwhere T is the n-th power of the matrix 7,. Given that J¢ = 2¢-1J if £ > 1 (and equal to I
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if £ =0), we obtain

™ = Y (Z)(—e)fﬂf = H+;i (;‘)(—26){11 = ]I—i—%[(l—Qe)”— 17 (5.50)

=0 /=1
- ;(iizz i—ZZ) (5.51)
with
an = (1—2€)" (5.52)
Therefore 1
Tip(wy | ws) = §+%"w’a:wx = A, ehnees (5.53)

where the factor A, = [2 cosh hn] ~! will be eaten up by normalizations and

1+an)

1—a,

hy = 1og( (5.54)

[In fact, T™ is a Kadanoff transformation with single-site blocks and p = h,,.] Let me observe that

hn, . 0 and hy /" 0. (5.55)
n—00 e—0

We can now make use of the analysis of the previous section. For fixed n we look to the pair of
slices Q x ' respectively formed by the initial configurations and those at “time” n, that is at the
n-th iteration of the process. The non-quasilocality of the transformed measure y’ is related to the
existence of some &’ for which the resulting constrained initial-spin system exhibits multiple phases.
Such a system corresponds to an interaction which includes, as additional terms, the bonds (5.53).
Therefore, if we start with an Ising measure, the condition of observing a configuration w’ at time n

is seen by the initial spins as a correction to the magnetic field leading to a formal Hamiltonian

S

x
We can distinguish three regimes:

(i) Short times: For n small, the effective magnetic field ‘h + %”w;,‘ is large if € is sufficiently small
[rightmost observation in (5.55)]. Hence no phase transition is present and the time-n measure
is expected to be quasilocal. This can be proven, for n small enough, through an argument
that relies on the existence of “global” specifications from which the specifications ™" are
derived. The argument exploits FKG monotonicity and Dobrushin uniqueness criterion. If the
initial model is itself at high temperature, then the measure remains Gibbsian throughout the
evolution.

(ii) Long times: For n large, h+ %"w; ~ h [rightmost observation in (5.55)] hence no phase transition,
and thus the quasilocality of 1/, is expected (and proven) if A > 0, while for large § and h =0 a
phase transition makes the transformed measure discontinuous at @’ =alternating configuration.

(iii) Intermediate times: If h > 0 and € small, then for large enough (3 there is a range of n for
which a configuration @’ exists such that %"55; effectively compensates h. The resulting phase
transition leads to the non-quasilocality of the evolved measure.
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Figure 5.1: Proven regimes of Gibbsianness and non-Gibbsianness for a low-temperature Ising measure
subjected to fast heating

The situation is summarized in Figure 5.5 when the stirring probability € is small. Larger values
of € lead to larger changes in each time unit and some of the initial regions may disappear (some
n; may turn out to be smaller than one). Through a more complicated but similar analysis the
same statements are proven for general high-temperature stochastic dynamics both in discrete and
continuous time [62]. In these cases the effective Hamiltonian for the evolved measure acquires some
long-range terms that decay exponentially with the diameter of the bond. They must be controlled
by perturbative arguments (cluster expansions, Pirogov-Sinai theory).

The heuristic explanation of these results is as follows. For short enough times the evolution
causes only a few changes. Therefore the evolved measure differs little of the initial measure and, in
particular, preserves its Gibbsian character. This is true for more general reversible dynamics, for
instance for dynamics of Kawasaki type —which conserve the total number of spins in each value— or
mixtures of Glauber and Kawasaki dynamics [51]. The onset of non-Gibbsianness at later times —and
of the subsequent Gibbsianness if h > 0— corresponds to a transition in the most probable history
of an improbable configuration (the expression is of Aernout van Enter). There are two competing
mechanisms to explain the presence of a droplet wp at some instant of the evolution: (i) It has
been created by the dynamics, and (ii) the droplet was already present initially and it survived the
evolutionary period. The probabilistic cost of the first event increases, roughly, exponentially with the
volume |A| of the droplet. The second mechanism is even more costly if the droplet is atypical for the
initial measure, because its initial presence costs already a volume exponential. But if w is typical of
any of the phases of the initial system, this factor becomes exponential only in the surface area |OA].
As droplets at worst shrink at constant velocity, the second mechanism is more probable for such a
droplet for intermediate times.

Suppose now that at some not-too-short time we observe a configuration @ng\ A With A large and
I’ enormous, @' atypical of any of the phases of the initial system and o’ typical of one of them. The
most likely explanation is, thus, that &) was formed during the evolution, while of. remains of the
initial configuration. The initial gigantic o’ droplet causes a bias on the evolved configuration around
the origin. In this way, through the original (“hidden”) spins, the far-away annulus Jf\  determines
the evolved measure close to the origin; quasilocality is lost. For non-zero magnetic field, the initial
system has only one phase. If the elapsed time is large enough, only droplets typical of this phase
are able to survive, any other ¢/ must have been created by the evolution. This creation is a local
phenomenon, so quasilocality is recovered.

Whereas in a renormalization context, lack of quasilocality implies that a renormalization group
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map does not exist, here the physical interpretation is that the evolved (fastly heated) measure cannot
be described by a temperature, after some time. This phenomenon has been the object of a numerical
study [52].

5.6 Surprise number three: disordered models

A statistical mechanical system is disordered if there are parameters in the interaction that are them-
selves random variables. Its mathematical framework is as follows. Besides the space of spin configu-
rations (Q = S¥, F) there is another space of disorder variables (Q* = (S*)", F*), where S* is some
space that need not be finite or discrete, IL* is a countable set and F* is the product o-algebra of
some natural Borel measure structure of S*. The disorder variables come equipped with some disorder
measure P that is often extremely simple, typically a product measure. A disordered interaction is
a family of functions {¢a(- | -) € F x F* : A € L} such that ¢a(- | n*) € Fa for each A € L
and n* € Q*. Often, the disorder dependence is also local in the sense that for each A € L there
exists A* € L* such that ¢(c | -) € Fj. for each 0 € Q. A disordered interaction defines for each
value 7* an interaction ®(- | n*) = {da(- | 7n*) : A € L} on (Q,F) which, under the B;-summability
condition ) 45 [léa(- | n*)|| < oo, 2 € L, leads to Gibbsian specifications 11°C17") on (Q, F). The
study of quenched disorder amounts to the determination of features of the phase diagram and prop-
erties of extremal measures of the models defined by these specifications for fixed typical choices of
the disorder. More precisely, the interest focuses on features and properties valid P-almost surely, that
is, for almost all disorder configurations n*. In contrast, in the analysis of annealed disorder there
is a previous P-average over the Gibbs weights of the magnitude in question. This averaging makes
annealed disorder much easier to study than its quenched counterpart.
Let me mention three well-known examples.

Random-field Ising model: It represents an Ising model with a random independent magnetic field at
each site. That is, L* =L, S* C R, P is the product of reasonable single-site distributions (ex.
Gaussian or of bounded support) and the disordered interaction yields the formal Hamiltonians

- Z 20y — th; o (5.57)
(z.y) x

Edwards-Anderson spin glass: It corresponds to a zero-field Ising model with random independent
couplings. Therefore the disorder acts on the bond-lattice, L* = {{a:,y} cxyy € Lz —y| =
1}, S* C R, P is a product of reasonable single-bond distributions and the formal disordered
Hamiltonians are
- Nz} OOy - (5.58)
(z,y)

Griffiths singularity (GriSing) random field: It describes an Ising model on the random lattice de-
termined by independent site-percolation. Thus L* = L, S* = {0,1} and P is the product of
Bernoulli variables taking value 1 with probability p and 0 with probability 1 — p. The formal

Hamiltonians are
—> gy osoy—hY nios . (5.59)
(zy) z

This model was introduced by Griffiths to illustrate the appearance of singularities, now known
as Griffiths singularities, that prevent the infinitely derivable disordered free energy from being
analytic.

46



A natural approach to the study of quenched disorder is to place spin and disorder variables on
the same footing and consider a “grand-canonical ensemble” on the product space 2 x Q* from which
quenched measures are obtained as projections on €). In this way quenching is incorporated within the
grand-canonical average and hence constitutes an “annealed approach to quenching disorder”. Such
an approach was first advocated by Morita in the sixties [50]. Formally, this corresponds to considering
the skew space (2 x Q*, F x F*) and joint-variable measures K obtained as weak limits

. ) P(-Imys a¥)
K(dw,dn*) = lim lim Pay (dn*|o®)my ="

n—0o0 Mm—00

(dw | o) (5.60)

where (r,,) and (s,,) are diverging sequence of box sizes and o™ and o are disorder and spin boundary
conditions. Such limits always exist, by compactness, if S* is compact.

Morita’s theory supposed the existence of an effective Hamiltonian for the joint variables, that is,
the Gibbsianness of these measures K. It is now known that this assumption is false in general [28,
66, 65]. A rough explanation of this fact comes from the fact that a joint effective Hamiltonian should

deal with terms of the form P(rt.)
U
A

which become ill-defined, in the limit A — L, precisely when there are Griffiths singularities (or other
phase transitions).

As an illustration, let us consider the conditional probability at the origin of a measure of type
(5.60) for the GriSing model. After a brief verification we see that

Koy(my = +1| o)

Pl = 1) Vf(-\l{o}ﬁfxn\m})(g[\ one)
= lim n s i
- . ®(-|1401m3, 1\ 01) . ®(-10401m3,\ 01)
TP =1y, N oangoy oag) + P =0)7, N (o0 oy [ oag)
p
= 5.62
B+ (L—p) By (562
(if necessary, A,, should be replaced by A,, ). The term
CD('H{O}UZ \{0}) ¢’(’|1{0}’77\n\{o})
" g O Ac Y (*O’O | ) c)
Agu = Jim M U@ los) oy T O ey
n—00 (11103 m3,1\ foy) G0y MR, 03)
YA, (oA, | UA%) {0y (o0 | U{O}C)
is perfectly continuous with respect to both »* and o. The discontinuity appears in
q>(“0{0}77/*\n\{0})
g T Ac
ANQL = lim ’Ygr(l‘l = ( An\{O}‘ n> (564)
n— 00 {O}WAn\{O})
Y, (oa\foy | oac)
because of the presence of the ratio
CI>("1{O}7]7\ \{0})
* 7% " (oag) (070313 1 {03 *
Ap(n*, o) = 0T ) = Tp\(0} <2czosh[ﬁ Z My Uy:| )O'A%) . (5.65)
Zy, (oag) lyl=1
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The discontinuity takes place at disorder configurations n* with more than one percolation clusters,
all of them excluding the origin. Then, it is not hard to see [66] that a local modification causing a
connection between clusters produces a finite change en the expectation (5.65). The absolute value of
this change is is bounded below by a positive constant that does not depend on the distance at which
the connection is established. Quasilocality is thereby lost. The point of discontinuity depends only
on the disorder variable n*; the conditioning spin configuration o is irrelevant.

This type of non-quasilocality is, in my opinion, more subtle and surprising than those analyzed
in the previous sections. It appears for values of the disorder that are close to those for which the
quenched system has a phase transition. These are precisely the disorder configurations triggering the
presence of arbitrary long, but finite, order that leads to Griffiths singularities. In the present model,
these configurations are unlikely if p is smaller than the critical percolation probability. Thus, the
model is almost quasilocal for those p [66]. The random-field Ising model in three or more dimensions
has a more dramatical feature [28]. At low temperature there is a full measure set of random fields for
which the quenched model has a phase transition. Hence the joint measure is almost non-quasilocal
that is, the set of discontinuities has full measure. On the other hand, the joint measures of finite-range
disordered models can be proven to be weakly Gibbsian [30], hence we have here the largest possible
divorce between the notions of almost quasilocality and weak Gibbsianness.

There is another sense in which the non-Gibbsianness of joint disorder measures is complementary
to that caused by renormalization transformations or spin dynamics. In the previous cases there
was a two-slice system, defined on Q x @' that was Gibbsian, and non-Gibbsianness appeared upon
projection to the € variables. In the present case, the two-slice model on € x Q* is non-Gibbsian,
while projections to each of the slices can restore Gibbsianness. [The € projection is the quenched
average of Gibbsian measures which can be Gibbsian, while the 2*-projection is the disorder measure
P which is usually a product measure, and thus trivially Gibbsian.]

In fact, the non-Gibbsianness of the joint measures turned out to be beneficial to Morita’s approach.
Indeed, besides the hypothetical joint Hamiltonian, Morita’s theory included other assumptions equally
contradictory with Gibbsianness. And yet, the approach was undeniably successful. Non-Gibbsianness
does solve such a paradox [32]. First, it removes inconsistencies related with the untenable Gibbsian
hypothesis, and second, it allows for a rigorous justification of the equations solving the model. This
has been a remarkable achievement of non-Gibbsianness theory.

Acknowledgments

Our field is blessed by the fact that its founding fathers set up a friendly, open an unassuming style
of work, where ideas are discussed generously and freely. I thank wholeheartedly Aernout, Anton,
Francois and Frank for the immense task of setting up a school fully inscribed in such a tradition. I
also thank Aernout van Enter for an invaluable critical reading of the manuscript.

References

[1] J. Bricmont, A. Kupiainen, and R. Lefevere. Renormalization group pathologies and the definition
of Gibbs states. Comm. Math. Phys., 194(2):359-388, 1998.

48



2]

[10]

[11]

[12]

[13]

[14]

J. Bricmont, A. Kupiainen, and R. Lefevere. Renormalizing the renormalization group patholo-
gies. Phys. Rep., 348(1-2):5-31, 2001. Renormalization group theory in the new millennium,
IT.

S. Dachian and B. S. Nahapetian. Description of random fields by means of one-point conditional
distributions and some applications. Markov Proc. Rel. Fields, 7:193-214, 2001.

S. Dachian and B. S. Nahapetian. Description of specifications by means of probability distri-
butions in small volumes under condition of very weak positivity. J. Stat. Phys., 117:281-300,
2004.

R. L. Dobrushin. A Gibbsian representation for non-Gibbs fields. Lecture given at the workshop
“Probability and Physics”, Renkum, The Netherlands, 1995.

R. L. Dobrushin. The description of a random field by means of conditional probabilities and
conditions of its regularity. Theor. Prob. Appl., 13:197-224, 1968.

R. L. Dobrushin and S. B. Shlosman. Gibbsian description of “non-Gibbsian” fields. Russian
Math. Surveys, 52:285-97, 1997.

R. L. Dobrushin and S. B. Shlosman. “Non-Gibbsian” states and their Gibbs description. Comm.
Math. Phys., 200(1):125-179, 1999.

T. C. Dorlas and A. C. D. van Enter. Non-Gibbsian limit for large-block majority-spin transfor-
mations. J. Stat. Phys., 55:171-181, 1989.

R. Fernandez, A. Le Ny, and F. Redig. Restoration of Gibbsianness for projected and FKG
renormalized measures. Bull. Braz. Math. Soc. (N.S.), 34(3):437-455, 2003.

R. Ferndndez, A. Le Ny, and F. Redig. Variational principle and almost quasilocality for renor-
malized measures. J. Statist. Phys., 111(1-2):465-478, 2003.

R. Ferndndez and G. Maillard. Chains with complete connections and one-dimensional Gibbs
measures. Flectron. J. Probab., 9:145-76, 2004.

R. Ferndndez and G. Maillard. Construction of a specification from its singleton part, 2005. Paper
05-288 at http://www.ma.utexas.edu/mp_arc.

R. Ferndndez and C.-Ed. Pfister. Global specifications and non-quasilocality of projections of
Gibbs measures. Ann. Probab., 25:1284-1315, 1997.

R. Ferndndez and A. Toom. Non-gibbsianness of the invariant measures of of non-reversible
cellular automata with totally asymmetric noise. Asthérisque, 287:71-87, 2003.

M. E. Fisher. Scaling, universality and renormalization group theory. In F. J. W. Hahne, editor,
Critical Phenomena (Stellenbosch 1982), pages 1-139. Springer-Verlag (Lecture Notes in Physics
#186), Berlin—Heidelberg—New York, 1983.

K. Gawedzki, R. Kotecky, and A. Kupiainen. Coarse-graining approach to first-order phase
transitions. In Proceedings of the symposium on statistical mechanics of phase transitions—
mathematical and physical aspects (Trebon, 1986), volume 47, pages 701-724, 1987.

49



[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

H.-O. Georgii. Gibbs Measures and Phase Transitions. Walter de Gruyter (de Gruyter Studies
in Mathematics, Vol. 9), Berlin—New York, 1988.

N. Goldenfeld. Lectures on Phase Transitions and the Renormalization Group. Addison-Wesley
(Frontiers in Physics 85), 1992.

R. B. Griffiths. Mathematical properties of renormalization-group transformations. Physica,
106A:59-69, 1981.

R. B. Griffiths and P. A. Pearce. Position-space renormalization-group transformations: Some
proofs and some problems. Phys. Rev. Lett., 41:917-920, 1978.

R. B. Griffiths and P. A. Pearce. Mathematical properties of position-space renormalization-group
transformations. J. Stat. Phys., 20:499-545, 1979.

G. Grimmett. A theorem about random fields. Bull. London Math. Soc., 5:81-4, 1973.

G. Grimmett. The stochastic random-cluster process and the uniqueness of random-cluster mea-
sures. Ann. Prob., 23:1461-510, 1995.

O. Héggstrom. Almost sure quasilocality fails for the random-cluster model on a tree. J. Stat.
Phys., 84:1351-61, 1996.

R. B. Israel. Banach algebras and Kadanoff transformations. In J. Fritz, J. L. Lebowitz, and
D. Széasz, editors, Random Fields — Rigorous Results in Statistical Mechanics and Quantum Field
Theory, volume II, pages 593—-608. North-Holland, Amsterdam, 1981. Colloquia Mathematica
Societatis Janos Bolyai 27, Esztergom (Hungary), 1979.

O. K. Kozlov. Gibbs description of a system of random variables. Probl. Inform. Transmission,
10:258-65, 1974.

C. Kiilske. (Non-) Gibbsianness and phase transitions in random lattice spin models. Markov
Process. Related Fields, 5(4):357-383, 1999.

C. Kiilske. On the Gibbsian nature of the random field Kac model under block-averaging. J.
Statist. Phys., 104(5-6):991-1012, 2001.

C. Kiilske. Weakly Gibbsian representations for joint measures of quenched lattice spin models.
Probab. Theory Related Fields, 119(1):1-30, 2001.

C. Kiilske. Analogues of non-Gibbsianness in joint measures of disordered mean field models. J.
Statist. Phys., 112(5-6):1079-1108, 2003.

C. Kiilske. How non-Gibbsianness helps a metastable Morita minimizer to provide a stable free
energy. Markov Process. Related Fields, 10(3):547-564, 2004.

C. Kiilske, A. Le Ny, and F. Redig. Relative entropy and variational properties of generalized
Gibbsian measures. Ann. Probab., 32(2):1691-1726, 2004.

O. E. Lanford III and D. Ruelle. Observables at infinity and states with short range correlations
in statistical mechanics. Commun. Math. Phys., 13:194-215, 1969.

50



[35]

[36]

[37]

[38]
[39]

[40]

[41]

[46]

[47]

[48]

[49]

J. L. Lebowitz and C. Maes. The effect of an external field on an interface, entropic repulsion.
J. Stat. Phys., 46:39-49, 1987.

J. L. Lebowitz and R. H. Schonmann. Pseudo-free energies and large deviations for non-Gibbsian
FKG measures. Prob. Th. Rel. Fields, 77:49-64, 1988.

R. Lefevere. Variational principle for some renormalized measures. J. Statist. Phys., 96(1-2):109—
133, 1999.

J. Lorinczi. Non-Gibbsianness of the reduced SOS-measure. Stoch. Proc. Appl., 74:83-8, 1998.

J. Lorinczi and K. Vande Velde. A note on the projection of Gibbs measures. J. Stat. Phys.,
77:881-7, 1994.

J. Lorinczi and M. Winnink. Some remarks on almost Gibbs states. In N. Boccara, E. Goles,
S. Martinez, and P. Picco, editors, Cellular Automata and Cooperative Systems, pages 423-432,
Dordrecht, 1993. Kluwer.

C. Maes, A. Van Moffaert, and F. Redig. Almost Gibbsian versus weakly Gibbsian measures.
Stoch. Proc. Appl., 79:1-15, 1998.

C. Maes, F. Redig, F. Takens, A. van Moffaert, and E. Verbitskiy. Intermittency and weak Gibbs
states. Nonlinearity, 13(5):1681-1698, 2000.

C. Maes and K. Vande Velde. The (non-)Gibbsian nature of states invariant under stochastic
transformations. Physica A, 206:587-603, 1994.

C. Maes and K. Vande Velde. Relative energies for non-Gibbsian states. Commun. Math. Phys.,
189:277-86, 1997.

D. Makowiec. Gibbsian versus non-Gibbsian nature of stationary states for Toom probabilistic
cellular automata via simulations. Phys. Rev. E, 55:6582-8, 1997.

D. Makowiec. Stationary states of Toom cellular automata in simulations. Phys. Rev. E, 60:3787—
95, 1999.

F. Martinelli and E. Olivieri. Some remarks on pathologies of renormalization-group transforma-
tions. J. Stat. Phys., 72:1169-1177, 1993.

F. Martinelli and E. Olivieri. Instability of renormalization-group pathologies under decimation.
J. Stat. Phys., 79:25-42, 1995.

F. Martinelli and E. Scoppola. A simple stochastic cluster dynamics: rigorous results. J. Phys.
A, 24:3135-57, 1991.

T. Morita. Statistical mechanics of quenched sollid solutions with applications to magnetically
diluted alloys. J. Math. Phys., 5:1402-5, 1964.

A. Le Ny and F. Redig. Short time conservation of Gibbsianness under local stochastic evolutions.
J. Statist. Phys., 109(5-6):1073-1090, 2002.

ol



[52]

[53]

[54]

[55]

[56]

[57]

[63]

[64]

M. Oliveira and A. Petri. Boltzmann temperature in out-of-equilibrium lattice gas. ArXiv
cond-mat/0511263, 2005.

C.-E. Pfister and K. Vande Velde. Almost sure quasilocality in the random cluster model. J.
Stat. Phys., 79:765-74, 1995.

C.-Ed. Pfister. Thermodynamical aspects of classical lattice systems. In In and out of equilibrium
(Mambucaba, 2000), volume 51 of Progr. Probab., pages 393-472. Birkhauser Boston, Boston,
MA, 2002.

C. Preston. Random Fields. Springer-Verlag (Lecture Notes in Mathematics #534), Berlin—
Heidelberg—New York, 1976.

R. H. Schonmann. Projections of Gibbs measures may be non-Gibbsian. Commun. Math. Phys.,
124:1-7, 1989.

A. D. Sokal. Existence of compatible families of proper regular conditional probabilities. Z.
Wahrscheinlichkeitstheorie verw. Geb., 56:537-548, 1981.

W. G. Sullivan. Potentials for almost Markovian random fields. Commun. Math. Phys., 33:61-74,
1973.

A. C. D. van Enter. Ill-defined block-spin transformations at arbitrarily high temperatures. J.
Stat. Phys., 83:761-5, 1996.

A. C. D. van Enter. A remark on the notion of robust phase transitions. J. Statist. Phys.,
98(5-6):1409-1416, 2000.

A. C. D. van Enter and R. Ferndndez. A remark on different norms and analyticity for many-
particle interactions. J. Stat. Phys., 56:965-972, 1989.

A. C. D. van Enter, R. Fernandez, F. den Hollander, and F. Redig. Possible loss and recovery of
Gibbsianness during the stochastic evolution of Gibbs measures. Comm. Math. Phys., 226(1):101-
130, 2002.

A. C. D. van Enter, R. Fernandez, and R. Kotecky. Pathological behavior of renormalization-
group maps at high fields and above the transition temperature. J. Stat. Phys, 79:969-92, 1995.

A. C. D. van Enter, R. Fernandez, and A. D. Sokal. Regularity properties and pathologies of
position-space renormalization-group transformations: Scope and limitations of Gibbsian theory.
J. Stat. Phys., 72:879-1167, 1993.

A. C. D. van Enter, C. Kiilske, and C. Maes. Comment on: Critical behavior of the randomly
spin diluted 2d ising model: A grand ensemble approach, by r. kithn. Phys. Rev. Lett., 84:6134,
2000.

A. C. D. van Enter, C. Maes, R. H. Schonmann, and S. B. Shlosman. The Griffiths singularity
random field. In On Dobrushin’s way. From probability theory to statistical physics, volume 198
of Amer. Math. Soc. Transl. Ser. 2, pages 51-58. Amer. Math. Soc., Providence, RI, 2000.

92



[67) A. C. D. van Enter, C. Maes, and S. B. Shlosman. Dobrushin’s program on Gibbsianity restora-
tion: weakly Gibbs and almost Gibbs random fields. In On Dobrushin’s way. From probability
theory to statistical physics, volume 198 of Amer. Math. Soc. Transl. Ser. 2, pages 59-70. Amer.
Math. Soc., Providence, RI, 2000.

[68] A. C.D. van Enter and S. B. Shlosman. (Almost) Gibbsian description of the sign fields of SOS
fields. J. Statist. Phys., 92(3-4):353-368, 1998.

[69] A. C. D. van Enter and E. A. Verbitskiy. On the variational principle for generalized Gibbs
measures. Markov Process. Related Fields, 10(3):411-434, 2004.

[70] D. Williams. Probability with Martingales. Cambridge University Press, Cambridge, 1991.

93



