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Chapter 1

Introduction

These notes are dedicated to Ted Harris who taught us how to construct
particle systems using random graphs, cutting and pasting pieces so that to
put in evidence, in the most elementary way, the properties of the process.

The purpose of these notes is to explain in an elementary way how cou-
pling and regeneration can be used to construct and study chains of infinite
order. These are stochastic processes taking values on a finite alphabet in
which the choice of each new symbol depends on the whole past history.
This is in contrast with Markov chains, in which the choice depends on only
a fixed finite number of preceding values. Our approach does not use mea-
sure theory as it adopts a constructive point of view inherent to the notion
of simulation and coupling of random variables or processes.

Chains of infinite order seem to have been first studied by Onicescu and
Mihoc (1935a) who called them chains with complete connections (châınes à
liaisons complètes). Their study was soon taken up by Doeblin and Fortet
(1937) who proved the first results on speed of convergence towards the
invariant measure. The name chains of infinite order was coined by Harris
(1955) . We refer the reader to Iosifescu and Grigorescu (1990) for a complete
survey.

To couple two random variables means to construct them simultaneously
using the same random mechanism. More informally: coupling is just to
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8 CHAPTER 1. INTRODUCTION

simulate two random variables using the same random numbers. The first
coupling was introduced by Doeblin (1938) to show the convergence to equi-
librium of a Markov chain. Doeblin considered two independent trajectories
of the process, one of them starting with an arbitrary distribution and the
other with the invariant measure and showed that the trajectories meet in a
finite time. For a description of Doeblin’s contributions to probability theory
we refer the reader to Lindvall (1991).

Perhaps due to the premature and tragical death of Doeblin and the ex-
treme originality of his ideas, the notion of coupling only come back to the
literature with Harris (1955). Coupling become a central tool in interacting
particle systems, subject proposed by Spitzer (1970), Harris (1972) and the
sovietic school of Dobrushin, Toom, Piatevsky-Shapiro, Vaserstein and oth-
ers. This names gave rise to a new area in stochastic processes developed
extensively by Harris, Holley, Liggett, Durrett, Griffeath, Kipnis and others.
We refer the interested reader to the books by Liggett (1985), (1999) and Kip-
nis and Landim (1999) for recent developments in the field. Liggett (1994)
reviews the use of the coupling technique for interacting Markov systems.

Our constructive approach comes directly from the graphical construction
of interacting particle systems introduced by Harris (1972, 1978). The way
we couple chains can be traced back to Dobrushin (1956), even when there
is no coupling in his paper. A coupling approach related to what to do in
Chapter 8 has been used by Marton (1996).

Coupling techniques had a somehow independent development for “classi-
cal” processes. The books of Lindvall (1992) and the recent book of Thorisson
(2000) are excellent sources for these developments.

The art of coupling consists in looking for the best way to simultaneously
construct two processes or, more generally, two probability measures. For
instance, to study the convergence of a Markov chain, we construct simulta-
neously two trajectories of the same process starting at different states and
estimate the time they need to meet. This time depends on the joint law
of the trajectories. The issue is then to find the construction “minimizing”
the meeting time. In the original Doeblin’s coupling the trajectories evolved
independently. This coupling is a priori not the best one in the sense that it
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is not aimed to reduce the meeting time. But once one realizes that coupling
is useful, many other constructions are possible. We present some of them
in these notes.

The central idea behind coupling can be presented through a very simple
example. Suppose we toss two coins, and that the probability to obtain a
“head” is p for the first coin and q for the second coin with 0 < p < q < 1. We
want to construct a random mechanism simulating the simultaneous tossing
of the two coins in such a way that when the coin associated to the probability
p shows “head”, so does the other (associated to q). Let us call X and Y
the results of the first and second coin, respectively; X, Y ∈ {0, 1}, with the
convention that “head” = 1. We want to construct a random vector (X, Y )
in such a way that

P(X = 1) = p = 1− P(X = 0)

P(Y = 1) = q = 1− P(Y = 0)

X ≤ Y.

The first two conditions just say that the marginal distribution of X and Y
really express the result of two coins having probabilities p and q of being
“head”. The third condition is the property we want the coupling to have.
This condition implies in particular that the event

{X = 1, Y = 0},

corresponding to a head for the first coin and a tail for the second, has
probability zero.

To construct such a random vector, we use an auxiliary random variable
U , uniformly distributed in the interval [0, 1] and define

X := 1{U ≤ p} and Y := 1{U ≤ q}.

where 1A is the indicator function of the set A. It is immediate that the
vector (X, Y ) so defined satisfies the three conditions above. This coupling
is a prototype of the couplings we use in this notes.

With the same idea we construct stochastic processes (sequences of ran-
dom variables) and couple them. One important product of this approach is
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the regenerative construction of stochastic processes. For instance, suppose
we have a sequence (Un : n ∈ Z) of independent, identically distributed uni-
form random variables in [0, 1]. Then we construct a process (Xn : n ∈ Z)
on {0, 1}Z, using the rule

Xn := 1{Un > h(Xn−1)} (1.1)

where h(0) < h(1) ∈ (0, 1) are arbitrary. We say that there is a regeneration
time at n if Un ∈ [0, h(0)]∪ [h(1), 1]. Indeed, at those times the law of Xn is
given by

P(Xn = 1 | Un ∈ [0, h(0)] ∪ [h(1), 1]) =
1− h(1)

h(0) + 1− h(1)
(1.2)

independently of the past. Definition (1.1) is incomplete in the sense that
we need to know Xn−1 in order to compute Xn using Un. But, if we go back
in time up to τ(n) := max{k ≤ n : Uk ∈ [0, h(0)] ∪ [h(1), 1]}, then we can
construct the process from time τ(n) on. Since this can be done for all n ∈ Z,
we have constructed a stationary process satisfying:

P(Xn = y |Xn−1 = x) = Q(x, y) (1.3)

where
Q(0, 0) = h(0) Q(0, 1) = 1− h(0)
Q(1, 0) = h(1) Q(1, 1) = 1− h(1) .

(1.4)

Processes with this kind of property are called Markov chains. The princi-
pal consequence of construction (1.1) is that the pieces of the process between
two regeneration times are independent random vectors (of random length).
We use this approach to construct perfect simulation algorithms not only for
Markov chain but, more generally, for chains of infinite order, with a suitable
memory-loss rate.

Regenerative schemes have a long history, starting with Harris (1956)
approach to recurrent Markov chains in non countable state-spaces passing
by the basic papers by Athreya and Ney (1978) and Nummelin (1978). We
refer the reader to Thorisson (2000) for a complete review. Perfect simulation
was recently proposed by Propp and Wilson (1996) and become very fast an
important issue of research. See Wilson (1998) .
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In these notes we adopt the graphic construction philosophy introduced
by Ted Harris to deal with interacting particle systems. Our first elementary
systematic presentation of Harris’ point of view is contained in the booklet
Acoplamento em Processos Estocásticos in Portuguese for a mini-course tow
of us offered at the XXI Coloquio Brasileiro de Matemática, held in Rio de
Janeiro in July of 1997 (Ferrari and Galves 1997), followed by Construction of
Stochastic processes, Coupling and Regeneration (Ferrari and Galves 2000),
notes for the XIII Escuela Venezolana de Matemáticas. In these references,
Markov processes were the main concern. In the present set of lectures
we focus instead on recent results on chains of infinite order presented in
Bressaud, Fernández and Galves (1999a, 1999b) and Comets, Fernández and
Ferrari (2000). We refer the reader to these papers for further technical
details and more extensive references.
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Chapter 2

Basic definitions

2.1 Simulation algorithms

We consider an evolution in discrete time Z taking values in a finite alphabet
A. The evolution is random, that is, its possible realizations are described by
a family of random variables (Xn)n∈Z, with images in A, defined on a certain
measure space.

The existence of a probability space in which a given stochastic process
can be defined is a basic issue in probability theory. One of the advantages
of Harris’ constructive approach is that it shows that the processes consid-
ered in these notes, and many others, can be rigorously constructed using
only a double infinite sequence of independent random variables uniformly
distributed in [0, 1]. The existence of such a sequence is the only measure-
theoretical fact we will need in these lectures. This sequence will be denoted
(Un, n ∈ Z). In some applications the uniform variables will be relabelled
so that each Un will in fact correspond to a N -tuple of independent random
variables U

(1)
n , · · · , U (N)

n , with N fixed. People that do not feel comfortable
with measure theory should simply think these variables as the outcomes of
a random number generator in a computer simulation.

The only probability space we shall be concern with is the one in which
the variables (Un) are defined. Let us call it (Ω,F ,P) and use E for the

13
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corresponding expectation.

The value of Xn is interpreted as the “state” of the process at “time” n.
The outcomes of such an evolution corresponds to strings of symbols x =
(xn)n∈Z ∈ AZ which we shall call a path of the process. The theory is
developed purely in terms of the path space AZ, and the specific choice for
the space of definition of the Xn plays no role. Formally this is because
evolutions are described in terms of joint laws of the variables Xn.

The traditional way to introduce a stochastic process is starting from
the family of joint probability distributions or, equivalently, by a probability
measure on AZ corresponding to the joint laws. This has two drawbacks.
First, the existence of a process so defined is not an easy matter. Second,
these measures are seldomly directly accesible. Rather, the starting objects
are conditional probabilities of the form

P (Xn+` = xn+`, · · · , Xn = xn|Xn−1 = xn−1, Xn−2 = xn−2, · · ·) , (2.1)

which are either explicitly defined from modelling considerations or esti-
mated from actual outputs. For process of truly infinite order, some care
must be taken to give a rigorous meaning to (2.1) because the condition-
ning usually refers to an event of probability zero. A possible formalization,
adopted for instance by Lalley (1986) , is to define a process as a measure for
which the conditional probabilities on finite pasts, P (Xn+` = xn+`, · · · , Xn =
xn|Xn−1 = xn−1, · · · , Xn−s = xn−s) have a well defined limit as s → −∞.
This is a natural setup when describing experiences started at some initial
time before which there is no meaningful past [eg. in Onicescu and Mihoc
(1935a)]. The limit s→ −∞ corresponds to pushing this initial time to the
remote past. The only conceptual disadvantage of this approach is that the
limit s→ −∞ depends, in principle, on the process considered, that is on the
inaccessible joint measure of the random variables. This makes the approach
less direct from the computational point of view.

We introduce now the formal definitions necessary for Harris’ approach.
We leave for Section 2.2 the presentation of the “traditional” formalism in
terms of objects like (2.1). The relation between both appraoches is discussed
in Section 2.3.
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To state the necessary definitions we need some notation. For k ≤ n ∈ Z
let xnk denote the sequence xk, · · · , xn, and let Ank denote the set of such
sequences. Likewise, let xn−∞ denote the sequence (xi)i≤n —histories up to
time n— and An−∞ the corresponding space. Full sequences will be denoted
without sub or superscripts, x ∈ A. The notation ymn+1x

n
k indicates the

sequence that takes values xk, · · · , xn, yn+1, · · · , ym.

Remark 2.2 Before starting with the definitions, let us insist that in these
notes we do not wish to make an issue of measurability. We shall mention the
word “measurable” only sparingly and always in a context such that: (i) the
σ-algebra in question is the natural one, and (ii) the measurability require-
ment is practically a formality, as every function used for the corresponding
application will invariably be measurable. Readers can safely ignore mea-
surability issues, and concentrate instead on the algorithmic aspects of our
constructions and proofs.

Let us now define the central objects of our approach.

Definition 2.3 A simulation algorithm is a family of measurable func-
tions (fn)n∈Z, where fn : [0, 1]×An−∞ −→ A.

For completeness (but see Remark 2.2), let us state for the first and last
time that the σ-algebra

• of [0, 1] is the Lebesgue σ-algebra,

• of (finite or infinite) products of A is the product of the discrete σ-
algebra of A,

• of products of these spaces is the corresponding product σ-algebra.

Definition 2.4 A simulation algorithm (fn) is time-homogeneous if the
functions fn coincide up to a shift. That is, if xn−∞ ∈ An−∞ and yn+1

−∞ ∈ An+1
−∞

are such that xi = yi+1 for i ≤ n, then

fn+1(u, y
n+1
−∞ ) = fn(u, xn−∞) . (2.5)

In this case, we will eliminate the subscript from fn.
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Definition 2.6 A stochastic process with alphabet A is a sequence of A-
valued random variables (=measurable functions) (Xn)n∈Z defined in our one
and only space (Ω,F ,P). The process is stationary if P(Xn+k

n = xk0) is
independent of n for each k ∈ N and each xk0 ∈ Ak0.

Definition 2.7 A stochastic process defined by the simulation algo-
rithm (fn)n∈Z is a sequence of random variables (Xn)n∈Z such that

Xn = fn(Un, X
n−1
−∞ ) . (2.8)

The variable Un is, in general, a finite family U
(1)
n , · · · , U (N)

n of uniform ran-
dom variables, with N fixed. All the random variables U

(i)
j are independent.

Definition 2.9 A stochastic process is a Markov chain if the fn are local in
their second coordinate, that is if there exist a fixed k, such that fn(u, yn−∞) =
fn(u, xn−∞) whenever xnn−k = ynn−k. The integer k is called the order of the
Markov chain.

Chains of infinite order are more general process for which there may
exist no such k. They are usually required to satisfy some continuity and
non-nullness hypotheses. We defer formal definitions to Chapter 3.

Prescription (2.8) is not enough to construct the process. We need a
starting past from which to apply it iteratively.

Definition 2.10 For ` ∈ Z and z`−∞ ∈ A`−∞, the stochastic process with
fixed past z`−∞ defined by the simulation algorithm (fn) is the se-
quence of random variables (Xn[z`−∞])n∈Z defined by

Xn[z`−∞] = zn for n ≤ ` ,

X`+1[z
`
−∞] = f`+1(U`+1, z

`
−∞) and

Xn[z`−∞] = fn(Un, X
n−1
`+1 [z`−∞] z`−∞) for n > `+ 1 .

(2.11)

While these fixed-past processes (Xn[z`−∞])n>` are always well defined,
they are not processes in the sense of Definition 2.7 because they verify
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(2.8) only for times larger than `. The existence problem of the theory of
stochastic processes is, precisely, to obtain process without a fixed past for
the given algorithm (fn). That is, to determine variables (Xn)n∈Z such that
Xn = fn(Un, X

n−1
−∞ ) for all n ∈ Z. A second central issue in the theory of

stochastic processes, is the uniqueness problem, namely whether there exist
a unique such process (Xn)n∈Z or several (phase transitions!). The approach
we shall use here to solve the existence problem is to construct the function
f in such a way that for each realization of the uniform random variables
(Un) a realization of the process can be constructed in any finite interval.
We will show that this construction coincides with the process obtained as
a limit of fixed-past processes. Furthermore, for the processes considered in
these notes, uniqueness corresponds to such a limit being independent of the
fixed past chosen. We shall use two main tools to analyze limits of fixed-past
processes and their insensitivity to the past: (1) regeneration schemes, and
(2) coupling techniques. The former schemes are the subject of next chapter.
The formal definition of the notion of coupling will be discussed in Section
2.4.

2.2 Transition probabilities

To make the connection with the traditional approach, based on the objects
(2.1), let us briefly formalize the basic definitions on which the latter relies.

Definition 2.12 A system of transition probabilities is a family {Pn( · | · ) :
n ∈ Z} of functions Pn : A×An−1

−∞ −→ [0, 1], such that the following condi-
tions hold for each n ∈ Z:

(i) Measurability: For each xn ∈ A the function Pn(xn| · ) is measurable
with respect to the product σ-algebra.

(ii) Normalization: For each xn−1
−∞ ∈ An−1

−∞∑
xn∈A

Pn(xn|xn−1
−∞ ) = 1 . (2.13)



18 CHAPTER 2. BASIC DEFINITIONS

In the following definition we consider excepcionally an abstract proba-
bility space that nevertheless we denote (Ω,F ,P) as before.

Definition 2.14 A stochastic process defined on (Ω,F ,P) is consistent
with a system of transition probabilities (Pn) if

P(Xn = xn|Xn−1
−∞ = xn−1

−∞ ) = Pn(xn|xn−1
−∞ ) (2.15)

for all n ∈ Z, x ∈ AZ.

Equation (2.15) means that the functions Pn are regular versions of the
conditional probabilities with respect to the natural filtration Fn = σ(Xn

−∞).
Equivalently, a stochastic process is consistent with a system of transition
probabilities (Pn) iff

E
[
g(Xn

−∞)
]

= E
[∑
yn∈A

g(ynX
n−1
−∞ )Pn(yn|Xn−1

−∞ )
]

(2.16)

for every n ∈ Z and g measurable with respect to Fn.

The transition probabilities of Definition 2.12 can be thought as next-
move transition probabilities. They can be used to construct the `-move
transitions (` ≥ 1) probabilities

P[n,n+`](x
n+`
n |xn−1

−∞ ) :=
∏̀
i=1

Pn+i(xn+i|xn+i−1
−∞ ) . (2.17)

[We adopt the convention P[n,n] :=Pn.] These transitions satisfy the consis-
tency condition∑
xn+`

n ∈An+`
n

P[n,n+`](x
n+`
n |xn−1

−∞ )
∑

yn+j
n+i∈A

n+j
n+i

g(yn+j
n+ix

n+i−1
−∞ )P[n+i,n+j](y

n+j
n+i |xn+i−1

−∞ )

=
∑

xn+`
n ∈An+`

n

g(xn+j
−∞)P[n,n+`](x

n+`
n |xn−1

−∞ ) (2.18)
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for all n ∈ Z, i, j, ` ∈ N, 0 ≤ i ≤ j ≤ `, x ∈ A and all Fn+j-measurable
functions f . Furthermore, (2.16) implies that

E
[
g(Xn+`

−∞ )
]

= E
[ ∑
yn+`

n ∈An+`
n

g(yn+`
n Xn−1

−∞ )P[n,n+`](y
n+`
n |Xn−1

−∞ )
]

(2.19)

for every n ∈ Z, ` ∈ N, and g measurable with respect to Fn+`. The verifi-
cation of formulas (2.17)–(2.19) is left as an straightforward exercise to the
reader. Condition (2.18) implies that the kernels P[n,n+`]( · | · ) constitute the
one-sided analogous of a statistical mechanical specification, while identities
(2.19) are the analogous of the DLR equations [see, for instance, Georgii
(1988) for the statistical mechanical framework].

The basic mathematical problem of the theory of stochastic processes is,
precisely, to construct and characterize the processes consistent with a given
system of transition probabilities. The comments of the end of Section 2.1
can be transcribed in this framework in a natural way. In particular, we can
transcribe notions related with fixed pasts.

Definition 2.20 Given a system of transition probabilities {Pn( · | · ) : n ∈
Z}, an ` ∈ Z and a z`−∞ ∈ A`−∞, the system of transition probabilities
with fixed past z`−∞ is the family of functions

P
z`
−∞

n : A×An−1
−∞ −→ [0, 1] , (2.21)

defined as

P
z`
−∞

n (xn|xn−1
`+1 ) =

{
Pn(xn|xn−1

`+1 z
`
−∞) 1[x`−∞ = z`−∞] for n ≥ `+ 1

1[xn−∞ = zn−∞] for n ≤ ` .
(2.22)

It is simple to check that these functions qualify as transition probabilities,
as they satisfy requirements (i) and (ii) of Definition 2.12. It is also easy to
verify that such a system defines a unique process.

Definition 2.23 For ` ∈ Z and z`−∞ ∈ A`−∞, the process consistent with
the system (2.22) is called the stochastic process with fixed past z`−∞
consistent with a system of transition probabilities (Pn).
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2.3 Simulation algorithms and transition prob-

abilities

Let us now establish the equivalence of the simulation-oriented (Harris’) ap-
proach of Section 2.1 with the transition-probability (“traditional”) approach
of Section 2.2.

Given a simulation algorithm (fn)n∈Z, the prescription

Pn(a|xn−1
−∞ ) = P{fn(Un, x

n−1
−∞ ) = a} , (2.24)

defines a system of transition probabilities (Exercise 2.48).

Now let {Pn( · | · ) : n ∈ Z} be a system of transition probabilities. We
construct a simulation algorithm by mimicking the way such transition prob-
abilities would be simulated in a computer, namely by partitioning the in-
terval [0, 1] into intervals of length equal to the probabilities. For each xn−1

−∞
let us consider a partition of [0, 1]

Px
n−1
−∞ = {Ix

n−1
−∞

a : a ∈ A} , (2.25)

each of the sets I
xn−1
−∞

a being a union of intervals, such that

length
(
I
xn−1
−∞

a

)
= Pn(a|xn−1

−∞ ) . (2.26)

The prescription

fn(u, xn−∞) = a iff u ∈ Ix
n−1
−∞

a (2.27)

defines a simulation algorithm.

The previous considerations amount to a procedure to transcribe simu-
lation algorithms into transition probabilities and viceversa. The following
proposition summarizes its main features. It proofs is basically contained in
the preceding discussion, except for some minor mathematical details left to
the reader.

Proposition 2.28 (i) For a given a simulation algorithm (fn)n∈Z, pre-
scription (2.24) defines a system of transition probabilities {Pn( · | · ) :
n ∈ Z}
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(ii) For a given system of transition probabilities {Pn( · | · ) : n ∈ Z}, each

choice of partitions {Px
n−1
−∞ : n ∈ Z, xn−1

−∞ ∈ An−1
−∞} satisfying (2.26)

defines, through (2.27), a simulation algorithm (fn)n∈Z such that:

(ii.a) every process consistent with (Pn) is defined by (fn), and

(ii.b) the system of transition probabilities constructed from such (fn)
by the procedure of part (i) is the original (Pn).

Remark 2.29 In part (i) there is no claim that every process defined by
(fn)n∈Z be consistent with

Pn(a|xn−1
−∞ ) := P{fn(Un, x

n−1
−∞ ) = a} (2.30)

By (2.16), this would require that such a process verify

E
[
g(Xn

−∞)
]

= E
[
g
(
fn(Un, X

n−1
−∞ ) , Xn−1

−∞ )
)]

(2.31)

for n ∈ Z and g measurable with respect to Fn. This may fail to be true unless
the algorithm (fn) satisfy some suitable properties. However, we remark that,
by construction, the consistency (2.31) holds for fixed-past processes.

Proposition 2.28 allows the transcription of properties defined for simu-
lation algorithms to properties of transition probabilities and viceversa. For
instance, the system of transition probabilities is Markovian of order
k if for each xn ∈ A the function Pn(xn| · ) depends only on the k preceding
symbols, that is if

Pn(xn|xn−1
n−k y

n−k
−∞ ) = Pn(xn|xn−1

n−k z
n−k
−∞ ) =: Pn(xn|xn−1

n−k) (2.32)

for every yn−k−∞ , z
n−k
−∞ ∈ An−k−∞ . We leave to the reader the exercise of defining

a time-homogeneous system, transcribing property (2.5) (Exercise 2.49).

In the sequel we shall only consider time-homogeneous chains and denote
simply f the function in (2.8). In this case, it is enough to work with the
transitions at time zero, i.e.

P (a|x−1
−∞) = P(X0 = a|X−1

−∞ = a−1
−∞) . (2.33)

To simplify we shall denote x = x−1
−∞, X = X−1

−∞ and A = A−1
−∞.
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2.4 Coupling and coupling algorithms

Let us now present the main tool used in these notes.

Definition 2.34 A coupling of the stochastic processes

(X [1]
n )n∈Z, · · · , (X [k]

n )n∈Z

is a stochastic process (X̃n)n∈Z with alphabet Ak whose marginal distributions

are those of the processes (X
[i]
n ). That is, such that for each i = 1, . . . , k and

each xml ∈ Aml , l ≤ m ∈ Z, the probabilities of cylinders satisfy

P
(
i-th component of X̃m

l = xml

)
= P

(
(X [i])ml = xml

)
. (2.35)

Couplings will be defined via simulation algorithms.

Definition 2.36 A coupling algorithm of stochastic processes

(X [1]
n )n∈Z, · · · , (X [k]

n )n∈Z

is a simulation algorithm (f̃n)n∈Z for the process (X
[1]
n , · · · , X [k]

n )n∈Z. Ex-

plicitly, f̃n is a function of the form (f
[1]
n , · · · , f [k]

n ), with each f [i] : [0, 1] ×
(Ak)n−∞ → A, such that

X [i]
n = f [i]

n

(
Un, (X

[1], · · · , X [k])n−1
−∞

)
(2.37)

for i = 1, · · · , k, for the common (vector) independent uniform variables Un.

Thus, a coupling algorithm produces at time n simultaneously the time-
n state of all the processes (X

[i]
n ) using the same random number Un for

all of them. There is considerable freedom and some potential danger, in
the construction of coupling algorithms. On the one hand condition (2.37)
leaves plenty of room for designing algorithms with features suited to each
particular application. These notes will repeatedly illustrate this fact. On
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the other hand, the algorithm (f̃n) may define several processes in Ak, and
some of them may fail to be a coupling of the target processes (X [i]) —that
is, (2.35) may not hold.

From a constructive point of view Definition 2.36 does not look very
informative. Indeed, processes are seldomly given directly. Rather, in these
lectures they are constructed starting from simulation algorithms. What we
would need, then, are prescriptions on how to construct a coupling algorithm
starting from the simulation arguments of the individual processes.

Let us settle these issues while doing at the same time the connection
with the transition-probability framework.

Definition 2.38 A coupling of the systems of transition probabili-
ties P

[1]
n ( · | · ), · · · , P [k]

n ( · | · ) is a system of transition probabilities P̃n : Ak ×
(An−1
−∞ )k −→ [0, 1] such that∑

x
[1]
n ,···,x[j−1]

n ∈A
x
[j+1]
n ,···,x[k]

n ∈A

P̃n

(
x[1]
n , . . . , x

[k]
n

∣∣∣ (x[1])n−1
−∞ , . . . , (x

[k])n−1
−∞

)
= P [j]

n

(
x[j]
n

∣∣∣ (x[j])n−1
−∞

)
(2.39)

for all j = 1, . . . , k, all x
[j]
n ∈ A and all (x[1])n−1

−∞ , . . . , (x
[k])n−1
−∞ ∈ An−1

−∞ .

[This definition is, in fact, a particular instance of the notion of coupling
among probability measures.]

Every coupling of transition probabilities produces a coupling algorithm
through the prescription (2.26)–(2.27). First one must choose partitions of
[0, 1] in Lebesgue measurable sets{

I
(x[1])n−1

−∞ ··· (x[k])n−1
−∞

a[1]···a[k] : a[i] ∈ A, (x[i])n−1
−∞ ∈ An−1

−∞ , i = 1, . . . , k
}
, (2.40)

such that

length
(
I

(x[1])n−1
−∞ ··· (x[k])n−1

−∞
a[1]···a[k]

)
= P̃n

(
a[1], . . . , a[k]

∣∣∣ (x[1])n−1
−∞ , . . . , (x

[k])n−1
−∞

)
.

(2.41)
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The coupling algorithm is then defined by

f̃n

(
u, (x[1])n−1

−∞ , · · · , (x[k])n−1
−∞

)
= (a[1], · · · , a[k])

iff u ∈ I(x[1])n−1
−∞ ··· (x[k])n−1

−∞
a[1]···a[k] . (2.42)

A possible strategy to construct a coupling algorithm would, in principle,
involve two steps:

Step 1: Construct a coupled transition (P̃n) starting from the individual
transition probabilities (P [i]) (or, equivalently, from the individual sim-
ulation algorithms)

Step 2: Take the algorithm defined in (2.42).

We shall adopt, however, a more economical graphical procedure which
yield directly the partitions (2.40), hence the coupling algorithm, bypassing
the definition of coupling transitions [which, of course, can be obtained from
the coupling algorithm by (2.24)]. Furthermore, the coupling algorithms “fac-

tor” in the sense that each component (f
[i]
n ) is itself a simulation algorithm

of (X
[i]
n ). That is, relation (2.37) is satisfied in the particular form

X [i]
n = f [i]

n

(
Un, X

[i]
)
. (2.43)

This can be achieved in the following fashion.

First: First, for each j = 1, . . . , k and each (x[1])n−1
−∞ , . . . , (x

[k])n−1
−∞ ∈ An−1

−∞ ,
find partitions {

I
(x[j])n−1

−∞ | (x[1])n−1
−∞ ··· (x[k])n−1

−∞
a : a ∈ A

}
, (2.44)

formed by unions of intervals such that

length
(
I

(x[j])n−1
−∞ | (x[1])n−1

−∞ ··· (x[k])n−1
−∞

a

)
= P [j]

n

(
a
∣∣∣ (x[j])n−1

−∞

)
(2.45)

whatever the choice of (x[i])n−1
−∞ for i 6= j.
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Second: Take the algorithm defined, by (2.42), by the sets

I
(x[1])n−1

−∞ ··· (x[k])n−1
−∞

a[1]···a[k] =
k⋂
j=1

I
(x[j])n−1

−∞ | (x[1])n−1
−∞ ··· (x[k])n−1

−∞
a[j] . (2.46)

Notice that condition (2.45) implies (2.43).

The sets of the partitions (2.44) can be visualized as obtained by “cutting

and pasting” parts of intervals of length P
[j]
n (a|(x[j])n−1

−∞ ) in a manner that
depends on the other transitions. We observe that the coupling of transi-
tion probabilities obtained from the intersections (2.46) by the prescription
(2.24) is in general different from the mere product of the individual tran-
sitions. In particular it gives probability zero to states a[1] · · · a[k] for which
the intersections (2.46) are empty.

Definition 2.47 Partitions defined by (2.44)–(2.46) are called a graphical
procedure to construct a coupling algorithm among processes consistent with
transition probabilities (P

[1]
n ), · · · , (P [k]

n ).

As commented above, the graphical procedure does not, in general, settle
the issue of finding an actual coupling among the target processes. We must
actually construct a process defined by the coupling algorithm. Furthermore,
we may have to choose properly if there are several such processes. This
choice is actually unnecessary if each of the transitions (P

[i]
n ) admits a unique

consistent process. This will be the situation for all the processes studied in
these notes.

It is apparent that there is considerable freedom in the choice of the
partitions defining a simulation algorithms. This freedom can be exploited to
design partitions adapted to particular mathematical or numerical purposes.

The above technique can be applied, without modification, to countable
families of processes (X

[i]
n ) (and countable alphabets).
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2.5 Exercises

Exercise 2.48 Verify that, if (fn)n∈Z is a simulation algorithm, prescription
(2.30) indeed defines a system of transition probabilities.

Exercise 2.49 Define a time-homogeneous system of transition probabili-
ties. Establish the relation with property (2.5) and explain why it is enough
to consider the objects P (a|x−1

−∞) defined in (2.33).

Exercise 2.50 Consider a time-homogeneous system of transition probabil-
ities. Show that (2.16) is equivalent to the existence of measures πn on An−∞
such that ∫

An
−∞

πn(dxn−∞)Pn+1( · |xn−∞) = πn+1( · ) . (2.51)

Exercise 2.52 (a) Check that the fixed-past transitions (2.22) verify con-
ditions (i) and (ii) of Definition 2.12.

(b) Show that they define a unique consistent process.



Chapter 3

Types of chains of infinite
order. Examples

Before passing to examples, let us spell out the different types of hypothe-
ses we will be demanding for the processes studied in these notes. These
hypotheses are best expressed in terms of transition probabilities and they
refer to (i) continuity with respect to histories, and (ii) strict positivity. In
turns, suitable combinations of these hypotheses give rise to three standard
notions of chains of infinite order.

3.1 Continuity hypotheses

Definition 3.1 A system of transition probabilities is continuous if the
functions Pn(xn| · ) are continuous for each n ∈ Z and each xn ∈ A or,
equivalently, if

βs := sup
n∈Z

sup
x,y

∣∣∣Pn(xn|xn−1
−∞ )− Pn(xn|xn−1

n−s y
n−s−1
−∞ )

∣∣∣
−→
s→∞

0 . (3.2)

The sequence (βs)s∈N is called the continuity rate.

27
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The existence problem is not a problem for continuous transitions:

Proposition 3.3 A system of continuous transition probabilities has at least
one stochastic process consistent with it.

Proof. To be written (uses compactness).

The following stronger notion of continuity has also been introduced:

Definition 3.4 A system of transition probabilities is log-continuous if

γs := sup
n∈Z

sup
x,y

∣∣∣∣ Pn(xn|xn−1
−∞ )

Pn(xn|xn−1
n−s y

n−s−1
−∞ )

− 1

∣∣∣∣
−→
s→∞

0 . (3.5)

The sequence (γs)s∈N is called the log-continuity rate.

The strongest notion of continuity refers to the `-move transitions (2.17):

Definition 3.6 A system of transition probabilities is multiple-move log-
continuous if

αs := sup
n∈Z,`∈N

sup
x,y

∣∣∣∣ P[n,n+`](x
n+`
n |xn−1

−∞ )

P[n,n+`](xn+`
n |xn−1

n−s y
n−s−1
−∞ )

− 1

∣∣∣∣
−→
s→∞

0 . (3.7)

The sequence (αs)s∈N is called the multiple-move log-continuity rate.

3.2 Non-nullness hypotheses and types of chains

Two kinds of non-nullness hypotheses are used.

Definition 3.8 A system of transition probabilities is weakly non-null if

inf
n∈Z

∑
yn∈A

inf
x
Pn(yn|xn−1

−∞ ) > 0 . (3.9)
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Definition 3.10 A system of transition probabilities is strongly non-null
if

inf
n∈Z

inf
x
Pn(yn|xn−1

−∞ ) > 0 . (3.11)

We are finally ready to define the different types of chains to be discussed
in the sequel.

Definition 3.12 A stochastic process is a chain of infinite order

(i) of type A if it is consistent with a system of transition probabilities
that is continuous and weakly non-null.

(ii) of type B if it is consistent with a system of transition probabilities
that is log-continuous and strongly non-null.

(iii) of type C if it is consistent with a system of transition probabilities
that is multiple-move log-continuous and strongly non-null.

Types A and B were already considered by Doeblin and Fortet (1937).
Type C was introduced, as far as we know, by Lalley (1986).

3.3 Examples

The following two examples are more than just illustrations. In fact, a central
aspect of these lectures is to show that large families of chains can be written
in any of these forms.

Countable mixtures of Markov chains (CMMC) These are chains
whose transition probabilities are countable convex combinations of Markov
transitions of increasing order. That is, they are of the form

P (a|x) = λ0 P
(0)(a) +

∞∑
k=1

λk P
(k)(a|x−1

−k) (3.13)
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where λk ≥ 0,
∑∞

k=0 λk = 1, and each P (k)(a|x−1
−k) is a Markov transition

of order k for k ≥ 1, while P (0) is a probability measure. The transitions
(3.13) can be thought as resulting of two independent random steps. First,
an integer k ≥ 0 is chosen with probability λk, and, second, a symbol is
chosen with the order-k transition probability P (k). Thus, each transition
actually depends on a finite, but random, number of preceding states. To
our knowledge, an expression like (3.13) —but with k ranging over finitely
many values and P (k)(a|x−1

−k) = g(k)(a, x−k)— was first studied by Raftery
(1985a, 1985b) under the name of mixture transition distribution (MTD)
model (see also Raftery and Tavaré, 1994)).

As we shall see in Chapter 7 that, under suitable hypotheses on the family
(λk), a chain consistent with transitions of the form (3.13) has the renewal
property : There exists a sequence of random times (ti)i∈Z, with independent
increments ti+1− ti, such that for each i ∈ Z the distribution of the variables
{Xn : n ≥ ti} is independent of the variables {Xn : n < ti}. This is an
example of a regeneration scheme. At the same Chapter 7 we shall show
that any chain of infinite order with not-too-slow continuity rates [see (3.2)]
is actually a CMMC.

Variable-length Markov chains (VLMC) The transition probabilities
of these chains also depend on a finite number of preceding states, but this
number is determined by the past history. More precisely, there exists a lag
function

` : A −→ {0,−1,−2, · · · ,∞} (3.14)

such that

P (a|x) = P (a|x−1
`(x)) (3.15)

with the convention that when `(x) = 0, the transition probability is actually
independent of the past.

This type of processes was introduced by Bühlman and Wyner (1999),
albeit for bounded functions `. In Chapter 7 we shall show that chains
of infinite order with not-too-slow continuity rates can be embedded into a
VLMC.
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The following example illustrates the differences between the different
types of chains introduced above.

Sparse VLMC This is an infinite-order version of example (M5) of Bühlman
and Wyner (1999). It has a two-symbol alphabet, for instance A = {0, 1},
and a lag function

`(x) = ` if x−1 = 0 = · · · = x−`, x−`−1 = 1 . (3.16)

The transition probabilities are defined by

P (1|x) = q`(x) (3.17)

with 0 < qk < 1. We leave to the reader (Exercise 3.24 the verification of the
following facts:

(a) If limk qk does not exists or it is different from q∞, the system is not
continuous.

(b) If limk qk = q∞ and there exist constants 0 < c ≤ d < 1 such that
qk ∈ [c, d] for all k, then the system is log-continuous and strictly non-
null.

(c) If limk qk = q∞ = 0 then the system is continuous but not log-continuous.
Furthermore, it is weakly but not strongly non-null.

Sparse VLMC are closely related to renewal processes on Z. In fact, let
us define (Tk)k∈Z the succesive times in which the sparse VLMC (Xn) takes
the value 1, i.e.

...
T0 = sup{n ≤ 0 : Xn = 1}
T1 = inf{n > 0 : Xn = 1}
T2 = inf{n > T1 : Xn = 1}

...

(3.18)

Then, the point process (Tk)k∈Z is a renewal process, that is,
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(i) the random increments (Tk − Tk−1)k∈Z are independent, and

(ii) the random increments (Tk − Tk−1)k 6=0 are identically distributed.

We conclude with some well known families of processes that fit in our
framework.

Hidden Markov models (HMM) These models refer to a process (Xn),
with values on an alphabet A, which is defined in terms of a Markov process
(Sn) with values in a finite set of states S —the hidden process. This models
situations in which there is a simple but inaccesible process containing all
the information about the problem, and the observer has access only to an
impoverished ersatz of it.

Examples of processes (Xn) of this type were introduced by Shannon
(1948) under the name Markov sources. These processes are defined by the
coordinate-by-coordinate transformation Xn = f(Sn) of an order-1 Markov
chain (Sn). We leave to the reader the verification that such a process may
not be a Markov chain (Exercise 3.25).

The processes were reintroduced, with a different flavor, by Baum and
Petrie (1966) and were later intensively used in the theory of speech recog-
nition (see, for instance Jelinek, 1999). In this formulation, there is a family
of probability measures {µs : s ∈ S} on A establishing the relation between
the processes (Xn) and (Sn) through the relations

P(Xn
m = xnm|Snm = snm) =

n∏
i=m

µsi
(xi) (3.19)

valid for each choice of xnm ∈ Anm and snm ∈ Snm, for each m,n ∈ Z, m ≤ n.
Therefore the observable process (Xn) is a coordinate-by-coordinate random
transformation of the hidden Markov chain (Sn).

In fact, Markov sources and hidden Markov models are equivalent notions.
The proof of this fact is left as an exercise to the reader (Exercise 3.26
below). The fact that hidden Markov models are chains of infinite order with
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continuous transition probabilities is also left as an exercise (Exercise 7.22).
The proof uses a regeneration property of Markov chains. This property
follows from exercise 6.40 or as a particular isntance of the much more general
theory developed in Chapters 6–4 for chains of infinite orders.

Binary autoregressions Let G be the two-points set, for instance G =
{−1,+1}, θ0 a real number and (θk; k ≥ 1) a summable real sequence. Let
q : R 7→]0, 1[ be strictly increasing and continuously differentiable. Define

P ( · |w) is the Bernoulli law on {−1,+1} with parameter q
(
θ0+

∑
k≥1

θkw−k

)
,

(3.20)
i.e., P (+1|w) = q(θ0 +

∑
k≥1 θkw−k) = 1 − P (−1|w). Such a process is the

binary version of autoregressive (long memory) processes used in statistics
and econometrics. It describes binary responses when covariates are historical
values of the process (see McGullagh and Nelder, 1989, Sect. 4.3). A popular
choice for q is the logistic function

q(x) =
expx

2 coshx
=

1

2(1 + exp−2x)
. (3.21)

Random systems with complete connections These are processes
formed by pairs of chains evolving in an inter-related manner, used to model
a number of practical problems. Applications include urn models, the theory
of continuous functions, learning models, etc. We refer the reader to Iosifescu
and Grigorescu (1990) for a survey. Of the two chains, one is Markov, but
in a complicated “alphabet”, or with complicated transition functions, while
the other is of infinite order in a simpler alphabet. The latter chain is, in
practice, used to infer properties of the complicated Markov chain. As an
example, let us present the Markov chains defined by D-ary expansions

These are process having the unit interval as “alphabet”, I = [0, 1], and
defined through another, auxiliary, process with a finite alphabet. Formally,
a family of maps is established between sequences of a finite alphabet G =
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{0, 1, · · · , D−1} and real numbers in I via D-ary expansions: For each n ∈ Z
Xn : GZ −→ I

(η(i) : i ∈ Z) 7→ xn =
∑∞

j=1 η(n− j)/Dj .
(3.22)

This map induces a natural map from probability kernels P : G × G−N∗ 7→
[0, 1] to probability kernels F : I × I−N∗ 7→ [0, 1]: For each x ∈ I, given an
w ∈ G−N∗ with x = X0(w)

F
(
X1 =

g + x

D

∣∣∣ X0 = x
)

= P (g|w) . (3.23)

Interest focuses on the existence and properties of measures on the Borelians
of IZ compatible with such a probability kernel F .

Maps (3.22)–(3.23) have been already introduced by Borel in 1909 for
i.i.d. η(i). The general case in which the η(i) form a chain with long memory
is the object of Harris (1955) seminal paper.

3.4 Exercises

Exercise 3.24 Verify facts (a), (b) and (c) for the sparce VLMC defined by
(3.16)–(3.17).

Exercise 3.25 Consider a Markov source, that is a process (Xn) defined
by the coordinate-by-coordinate transformation Xn = f(Sn) of an order-1
Markov chain (Sn) taking values in a finite set of states S. Show that, in
general, such a process is not a Markov chain.

Exercise 3.26 Observe that every Markov source is trivially a HMM. Con-
versely, prove that every HMM can be written as a Markov source. Hint:
Consider the process Zn = (Sn, Xn).

Exercise 3.27 Prove that for a sparse VLMC (Xn), the times (Tk) defined
in (3.18) form a renewal process. Hint:

P(Tk − Tk−1 = `) = q`

`−1∏
i=1

(1− qi) . (3.28)
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A regeneration scheme for
CMMC

4.1 Random orders and regeneration times

Let us recall that a CMMC is defined by a system of transition probabilities
which can be decomposed as

P (a|x) = λ0 P
(0)(a) +

∞∑
k=1

λk P
(k)(a|x−1

−k) (4.1)

where each P (k)(a|x−1
−k) is a Markov transition of order k for k ≥ 1, P (0)

is a probability measure, and the λk are non-negative real numbers with∑∞
k=0 λk = 1.

We shall use a simulation algorithm for these transitions constructed on
the basis of a double sequence of uniform random variables (U

(1)
n , U

(2)
n ) which

we simply denote(Ui, Vi)i∈Z.

Definition 4.2 A CMMC simulation algorithm is an algorithm of the
form

Xn =
∞∑
k=0

1{αk−1 ≤ Un ≤ αk} f (k)(Vn, X
n−1
n−k) . (4.3)

35
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where the f (k) are simulation algorithms of order-k Markov chains and (αk) is
an increasing non-negative sequence with αk ↗ 1. (By convention α−1 = 0.)

We leave the reader the task of verifying that (4.4) is a simulation algo-
rithm for a process (Xn) consistent with (4.1) if

(i) f (k) are the simulation algorithms of the Markov chains with transitions
P (k) [defined, for instance, as in (2.26)–(2.27)], and

(ii)

αk =
k∑
i=0

λi . (4.4)

(Exercise 4.49).

In this section we shall study properties of processes defined by this sim-
ulation algorithm. In Section 4.2 we discuss the existence problem and the
(non-trivial) issue of whether such processes are in fact consistent with (4.1).

In fact, the variables (Un) define in (4.3) an auxiliary process which plays
a key role in the sequel.

Definition 4.5 Let us call random orders, or random-order process to
the independent random variables (Ln)n∈Z, defined as

Ln =
∞∑
k=0

k 1{αk−1 ≤ Un ≤ αk} . (4.6)

It is crucial to observe that the random orders are constructed with total
independence of the rest of the procedure. The variable Ln indicates how
many instants in the past are actually used to determine Xn: substituting
the definition of Ln in (4.3), the simulation algorithm reads

Xn =
∞∑
k=0

1{Ln = k} f (k)(Vn, X
n−1
n−k) . (4.7)
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In other words,

Ln = k implies Xn = f (k)(Vn, X
n−1
n−k) (4.8)

if k ≥ 1, while for k = 0

Ln = 0 implies Xn = f (0)(Vn) (4.9)

which is independent of the past. The variables Ln can be visualized as
arrows pointing from the instant n to the instant n−Ln. Each realization of
random orders determines the “genealogy” of the state at each instant. The
state at time n is determined by the configuration on the interval [n−Ln, n];
each i ∈ [n − Ln, n] is in turns determined by the states at the interval
[i − Li, i] and so on. This back-referencing procedure can lead us to one of
two situations:

(i) the procedure continues forever and take us to −∞,

(ii) the procedure actually stops at a time τ [n] such that no arrow starting
from n or its “ancestors” crosses it. In particular, the configuration at
τ [n] must be independent of the past, that is Lτ [n] = 0.

In the second case, the values assumed by the process before τ [n] are irrele-
vant for the determination of Xn. This time τ [n] is a regeneration time for
the instant n.

More generally, we can consider windows (Xl, . . . , Xm), for two integers
l < m and analyze the possibility of constructing it knowing only a finite
part of the past history of the process. In other words, we want to find the
closest past time τ [l,m] such that the window (Xl, . . . , Xm) is independent of
the variables {Xi : i < τ [l,m]}. This random time can be bounded through
the random-order process (Ln).

Definition 4.10 The regeneration time for the window (Xl, . . . , Xm)
is

τ [l,m] := max
{
t ≤ l : t ≤ n− Ln, for all n ∈ [t,m]

}
(4.11)

with the convention τ [l,m] = −∞ if the set in the right-hand side is empty.
In case l = m we write τ [l] := τ [l, l].
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Notice that, by the definition (4.6) of the variables Ln,

τ [l,m] = max
{
t ≤ l : Un ≤ αn−t, for all n ∈ [t,m]

}
. (4.12)

To be sure, definition (4.11) refers to the worst-case scenario, where each
order-k Markov transition probability depends on all the k preceding times.
For less drastic dependences, the actual regeneration times can be closer to
the window than the one defined by (4.11). An extreme example is when
the different Markov transitions depend on only one site in the past —
P (k)(a|x−1

−k) = g(k)(a, x−k). In this case, the state at each time depends
of exactly one ancestor and regeneration can take place at times much closer
than (4.11).

For fixed l, the sequence of regeneration times τ [l,m] for m ≥ l is de-
creasing. In particular, a regeneration time for a given interval [l,m] is not,
in general, a regeneration time for a larger interval [l,m′] with m′ > m.

The monotonicity of the sequence (τ [l,m])m implies the existence of the
limit

τ [l,+∞[ := lim
m→∞

τ [l,m] . (4.13)

Definition 4.14 If τ [l,+∞[<∞ we call it a renewal time for the CMMC
algorithm.

We remark that
τ [l,m] = min

l≤i≤m
τ [i] (4.15)

and
τ [l,+∞[ = inf

l≤i
τ [i] . (4.16)

The considerations of this section clearly indicate the strategy to follow
for the study of CMMC:

(1) Determine the distribution of regeneration times. This depends only
on the random-order process, that is on the parameters (λk)k≥0 in (4.1).
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(2) Study the properties of the process in terms of this distribution.

We stress, however, that the decomposition (4.1) of a CMMC is not
unique. See the discussion in Section 4.3 below and Exercise 7.24.

We develop this strategy in Chapter 6. We emphasize that this approach
is based on the simulation algorithm (4.3). We still have to relate process
defined by these algorithms with process consistent with CMMC decompo-
sitions (4.1). This is done in next section.

4.2 Existence, uniqueness and loss of mem-

ory of CMMC

4.2.1 Main results

This section is devoted to the proof of the following theorems.

Theorem 4.17 (Existence and uniqueness) Consider a CMMC system
of transition probabilities as in (4.1), and the related CMMC simulation al-
gorithm (4.3). If

P(τ [0] > −∞) = 1 (4.18)

then

(i) There exists exactly one stochastic process (Xn)n∈Z defined by the algo-
rithm. The process can be defined almost surely in the following way.
To define Xn, start from τ [n] and determine first

Xτ [n] = f (0)(Vτ [n]) (4.19)

and then, inductively,

Xi = f (Li)(Vi, X
i−1
Li

) (4.20)

for i ∈ [τ [n] + 1, n]. [The functions f (i) are the simulation algorithms
of the Markov components of the CMMC used in the algorithm (4.3).]
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(ii) For any z−p−∞ ∈ A
−p
−∞

lim
p→∞

Xn[z−p−∞] = Xn (4.21)

P-almost surely for all n ∈ Z. [The left-hand side is the process with
fixed past defined in (2.11).]

(iii) This process (Xn) is the only process consistent with the CMMC tran-
sition probabilities.

We remark that by (4.15) and translation invariance

P(τ [0] > −∞) = 1 ⇐⇒ P(τ [l,m] > −∞) = 1 ∀ l ≤ m ∈ Z . (4.22)

Theorem 4.23 (Loss of memory) (i) If (Xn) is consistent with a CMMC
system of transition probabilities,∣∣∣P(Xj

0 = aj0

)
− P

(
Xj

0 [z−p−∞] = aj0

)∣∣∣ ≤ P
(
τ [0, j] ≤ −p

)
(4.24)

for each j, k ∈ N and each past z−p−∞ ∈ A
−p
−∞.

(ii) If (X̃n) and (X̂n) are two processes consistent with a CMMC system of
transition probabilities,∣∣∣P̃(X̃j

0 = aj0

)
− P̂

(
X̂j

0 = aj0

)∣∣∣ ≤ P
(
τ [0, j] > −∞

)
(4.25)

for each j, k ∈ N.

Inequality (4.24) bounds the speed at which the process is “lossing mem-
ory” from the original history z−k−∞. This bound will be exploited in Chap-
ter 6. Inequality (4.25) could be useful for CMMC exhibiting phase coexis-
tence, i.e. with more than one consistent process.

The proof of these theorems is presented in the next sections.
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4.2.2 Existence

Proof of part (i) of Theorem 4.17 The process is defined through (4.19)
and (4.20).

Proof of part (ii) of Theorem 4.17 (convergence of fixed-past pro-
cesses) The process (Xn[z−p−∞]) is defined by the fixed-past version of the
algorithm (4.3):

Xn[z−p−∞] =

n+p−1∑
k=0

1{αk−1 ≤ Un ≤ αk} f (k)
(
Vn , X

n−1
n−k [z−p−∞]

)
+

∞∑
k=n+p

1{αk−1 ≤ Un ≤ αk} f (k)
(
Vn , X

n−1
−p+1[z

−p
−∞] zpn−k

)
.

(4.26)

If τ [n] > −p, the last sum dissapears and we recover the same recursive
equations (??), which are, in fact, equivalent to (4.19)–(4.20). We conclude
that

Xn[z−p−∞] 1{τ [n] > −p} = Xn 1{τ [n] > −p} (4.27)

with Xn defined by (4.19)–(4.20). Furthermore, via (4.15) this identity gen-
eralizes to

Xm
l [z−p−∞] 1{τ [l,m] > −p} = Xm

l 1{τ [l,m] > −p} . (4.28)

In particular identity (4.27) proves part (ii).

Proof of consistency in part (iii) of Theorem 4.17 We show now that
the process of part (i) is consistent with the transition probabilities

P (a|xn−1
−∞ ) := P{F (Un, Vn, x

n−1
−∞ ) = a} (4.29)

where F is the function in the right-hand side of (4.3). For this we must
verify (2.31) for fn = F for any cylindrical g. Let us consider g = g(Xn

l ).
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Our starting point is the consistency of the fixed-past processes. Indeed, by
the remark following (2.31), we have that

E
[
g(Xn

l [z−p−∞])
]

= E
[
g
(
F (Un, Vn, X

n−1
−∞ [z−p−∞]) , Xn−1

−l [z−p−∞]
)]

(4.30)

for any past z−p−∞ ∈ A
−p
−∞. We shall take the limit p→∞ of this expression.

By part (ii) of the theorem and dominated convergence

E
[
g(Xn

l [z−p−∞])
]

−→
p→∞

E
[
g(Xn

l )
]
. (4.31)

We now insert inside the expectation in the right-hand side of (4.30)

1 = 1{τ [l, n] > −p}+ 1{τ [l, n] ≤ −p} . (4.32)

By (4.28)

g
(
F (Un, Vn, X

n−1
−∞ [z−p−∞]) , Xn−1

−l [z−p−∞]
)

1{τ [l, n] > −p}

= g
(
F (Un, Vn, X

n−1
−∞ ) , Xn−1

−l

)
1{τ [l, n] > −p}

−→
p→∞

g
(
F (Un, Vn, X

n−1
−∞ ) , Xn−1

−l

)
P-a.s. (4.33)

The last convergence is due to hypothesis (4.18) (plus translation invariance).
The same hypothesis implies that

E
[
g
(
F (Un, Vn, X

n−1
−∞ [z−p−∞]) , Xn−1

−l [z−p−∞]
)

1{τ [l, n] ≤ −p}
]

−→
p→∞

0 .

(4.34)

From (4.30)–(4.34) we conclude that

E
[
g(Xn

l )
]

= E
[
g
(
F (Un, Vn, X

n−1
−∞ ) , Xn−1

−l

)]
. (4.35)

This proves consistency. The uniqueness statement in part (iii) is a particular
case of part (ii) of Theorem 4.23. This theorem is proved below.
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4.2.3 Loss of memory and uniqueness

Let us consider any process (X̂n) consistent with the transition probabilities

(4.1). Let’s denote (Ω̂, F̂ , P̂) the corresponding probability space. Consis-

tency means the validity of (2.19) for the corresponding expectation Ê and
the CMMC transition probabilities (Pn). Applied to g(Xj

−∞) = I[Xj
0 = aj0],

the consistency condition implies that

P̂
(
X̂j

0 = aj0

)
= Ê

[
P (aj0|X̂−1

−∞)
]

(4.36)

for each j ∈ N. To prove uniqueness we must condition further the left-hand
side with respect to a remote past z−p−∞ ∈ A

−p
−∞, p ∈ N. That is, we write

P̂
(
X̂j

0 = aj0

)
=

∫
µ̂(dz) Ê

[
P
(
aj0

∣∣∣ X̂−1
−p+1[z

−p
−∞]
)]

, (4.37)

where µ̂ is the law of the process X̂, that is, µ is the measure defined by∫
µ̂(dz)f(z) = Êf(X̂) for cylinder functions f : A∞−∞ → R. For each past

z−p−∞, however, there is only one process consistent with the fixed-past version
of the CMMC, and it is the process defined by the corresponding CMMC
algorithm (Remark 2.29). We can therefore remove the innermost “hats”
and write

P̂
(
X̂j

0 = aj0

)
=

∫
µ̂(dz) E

[
P
(
aj0

∣∣∣ X−1
−p+1[z

−p
−∞]
)]

, (4.38)

where now E is our usual expectation on the variables (Un, Vn) and (Xn[z−p−∞])
the fixed-past process defined by (4.26). We can now use the results of our
previous sections. In particular, by (4.28)

∣∣∣P(aj0 ∣∣∣ X−1
−p+1[z

−p
−∞]
)
− P

(
aj0

∣∣∣ X−1
−p+1[w

−p
−∞]
)∣∣∣ ≤ 1{τ [0, j] ≤ −p} , (4.39)

uniformly in the pasts z−p−∞, w
−p
−∞. All the uniqueness results follow from this

formula and (4.38):
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(i) To obtain (4.24) we just need to write

P
(
Xj

0 = aj0

)
− P

(
Xj

0 [z−p−∞] = aj0

)
=

∫
µ(dz) E

[
P
(
aj0

∣∣∣ X−1
−p+1[w

−p
−∞]
)
− P

(
aj0

∣∣∣ X−1
−p+1[z

−p
−∞]
)]

(4.40)

and use (4.39). Here µ is the law of the process X.

(ii) To obtain (4.25) we write

P̃
(
X̃j

0 = aj0

)
− P̂

(
X̂j

0 = aj0

)
=

∫ ∫
µ̃(dz)µ̂(dw) E

[
P
(
aj0

∣∣∣ X−1
−p+1[z

−p
−∞]
)
− P

(
aj0

∣∣∣ X−1
−p+1[w

−p
−∞]
)]

,

(4.41)

use (4.39) and take the limit p→∞. Here µ̂ is the law of the process X̂.

4.3 Finiteness of regeneration times

To finish this chapter let us state sufficient conditions for the regeneration
and renewal times to be finite.

Theorem 4.42 If ∑
m≥0

m∏
k=0

αk = ∞ (4.43)

then for each finite interval [l,m],

P(τ [l,m] > −∞) = 1 . (4.44)

Furthermore, if

lim
m→∞

m∏
k=0

αk > 0 (4.45)
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then for each l ∈ Z,
P(τ [l,∞[> −∞) = 1 . (4.46)

Conditions (4.45) and (4.43) impose lower bounds on the speed of the
convergence αk ↗ 1. In particular both conditions require λ0 > 0 [see (4.1)–
(4.4)]. In Exercise 4.50 the reader is asked to show that as a result a CMMC
with λj decreasing at least as 1/j2+δ has finite renewal times if δ > 0. In
constrast, if λj ∼ 1/j2 Theorem 4.42 guarantees only the finiteness of the
regeneration times for finite windows.

It is clear that CMMC transition probabilities admit infinitely many de-
compositions of the type (4.1). For instance, if the parameters (λk)k∈N define
such a decomposition with Markovian transitions P (k), then the parameters
λ0/2, (λk +λ0/2

k+1)k∈N∗ define another decomposition with Markovian tran-
sitions [λ0P

(0)/2k+1 + λkP
(k)]/(λ0/2

k+1 + λk). A more drastic manifestation
of this fact is shown in Exercise 7.24. It is natural to wonder as to whether
there is an “optimal” such decomposition, at least from the point of view
of Theorem 4.42. It is clear that this sense of optimality is related to the
fastest possible convergence αk ↗ 1. In turns, this corresponds to choosing
distributions (λk) that put as much weight as possible in the lowest values
of k. A quick look to the combination (4.1) reveals that λ0 can not exceed

λ0 ≤
∑
a∈A

inf
x
P (a|x) . (4.47)

Furthermore, proceeding inductively,

λ0 + · · ·+ λk ≤ inf
x−1
−k

∑
a∈A

inf
y−k−1
−∞

P (a|x−1
−k y

−k−1
−∞ ) . (4.48)

In Chapter 6 we shall explicitely determine, for large families of chains of
infinite orders, CMMC decompositions that saturate these inequalities.

The proof of Theorem 4.42, and of other consequences of the regeneration
scheme, will be given in Chapter 6. It uses a very simple instance of coupling
technique and it relies on an auxiliary Markov chain called the house-of-cards
process. The relevant properties of this chain are derived in an “intermezzo”
chapter, Chapter 5.
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4.4 Exercises

Exercise 4.49 Show that the prescription Xn = F (Un, Vn, Xn−1) given in
(4.3) is indeed a simulation algorithm for the CMMC with transition proba-
bilities (4.1). That is, show that

P (a|xn−1
−∞ ) = P{F (Un, Vn, x

n−1
−∞ ) = a}

where the left-hand side is given by (4.1) and the function F is defined by
the right-hand side of (4.3) for the choices discussed after Definition 4.2.

Exercise 4.50 Let αk ∈ [0, 1] form a sequence such that αk ↗ 1. Write
αk =: 1− εk.

(a) Show that

lim
m→∞

m∏
k=0

αk > 0 ⇐⇒
∞∑
k=0

εk < ∞ . (4.51)

(b) Show that

exp
{
−
∞∑
k=0

εk −
∞∑
k=0

ε2
k/2
}
≤

m∏
k=0

αk ≤ exp
{
−
∞∑
k=0

εk

}
. (4.52)

(c) Applying (a) and (b) to the case

εk =
∞∑

j=k+1

λj , (4.53)

conclude that a CMMC with λj decreasing at least as 1/j2+δ has finite
renewal times if δ > 0, and finite finite-window regeneration times if
δ = 0.

Exercise 4.54 Prove the bounds (4.47)–(4.48). Any idea about the Marko-
vian transitions P (k) that lead to a saturation of these bounds?

Exercise 4.55 Prove that (2.16) implies (4.36).



Chapter 5

Intermezzo: the house-of-cards
process

5.1 Recurrence and transience

Given a set of parameters α0, α1, . . . ∈ [0, 1], we define the associated house-
of-cards system of transition probabilities as the order-1 Markovian system
on A = N such that

P (x+ 1|x) = αx

P (0|x) = 1− αx
(5.1)

and P (x|x−1) = 0 otherwise. Thus processes consistent with these transitions
climb in a staircase-like fashion and at some instants fall abruptly to the
ground. Let us now consider a chain (Wn)n≥0 starting from 0 and evolving
with (5.1). A simulation algorithm for such a chain is:

Wn =

{
0 n ≤ 0

(Wn−1 + 1) 1{Un < α−Wn−1} n ≥ 1 .
(5.2)

The property of interest for our purposes is the lack of recurrence of the visits
to the origin.

Lemma 5.3 The chain (Wn : n ≥ 0) is

47
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(a) null-recurrent if, and only if,
∑

n≥0

∏n
k=0 αk =∞, and

(b) transient if, and only if,
∏∞

k=0 αk > 0.

Proof. Antonio/Pablo

5.2 Return times

As we shall see, [see formula (6.3) below], the distribution of the regeneration
times of a CMMC is related to the return-time probabilities of the house-of-
cards process

ρn := P(Wn = 0) (5.4)

for all s ∈ Z. The following proposition collects a number of useful properties
of these quantities.

Proposition 5.5 Let (αk)k∈N be an increasing non-negative sequence with
αk ↗ 1, and consider the associated house-of-cards process (Wn) defined by
(5.2). Let (ρn)n∈N be the return-time probabilities (5.4). Then

(i)
∑

n≥0

∏n
k=0 αk =∞ if, and only if, ρn → 0.

(ii)
∏∞

k=0 αk > 0 if, and only if,
∑

n≥0 ρn <∞.

(iii) If (1− αn) decreases exponentially, so does ρn.

(iv) If
∏∞

k=0 αk > 0 and

lim sup
k→∞

sup
i

(
1− αi
1− αki

)1/k

≤ 1 , (5.6)

then ρn ≤ const (1 − αn). Condition (5.6) holds, for instance, when
αn ∼ 1− (log n)bn−γ for γ > 1.

In fact, we shall proof a statement slightly stronger than (iv) (Lemma
5.18 below)
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Proof of (i)–(iii). Statement (i) is just part (a) of Lemma 5.3. To prove
parts (ii) and (iii) we introduce the first-return time

τ = inf {n > 0;Wn = 0} . (5.7)

We see that

P(τ = 1) = 1− α0 , (5.8)

P(τ = n) = (1− αn−1)
n−2∏
k=0

αk for n ≥ 2, (5.9)

P(τ = +∞) =
+∞∏
k=0

αk . (5.10)

As the house-of-card process is Markovian,

ρn =
n∑
k=1

P(τ = k) ρn−k . (5.11)

Let us now consider the generating functions

F (s) =
+∞∑
n=1

P(τ = n) sn (5.12)

and

G(s) =
+∞∑
n=0

ρn s
n . (5.13)

Formula (5.11) implies that these series are related in the form

G(s) =
1

1− F (s)
, (5.14)

for all s ≥ 0 such that F (s) < 1.

It is clear that the radius of convergence of F is at least 1. In fact,

F (1) = P(τ < +∞) . (5.15)
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Moreover, if
∏

k≥1 αk > 0, the radius of convergence of F is

lim
n→∞

[1− αn]−1/n . (5.16)

This follows from the fact that P(τ = n)/(1− αn−1)→ P(τ = +∞) > 0, by
(5.9)–(5.10).

Statement (ii) follows from the chain of equivalences:

∞∏
k=0

αk > 0 ⇐⇒ P(τ < +∞) < 1 ⇐⇒ G(1) <∞ ⇐⇒
∑
n≥0

ρn <∞ .

(5.17)
The first equivalence is part (b) of Lemma 5.3, the second one follows from
(5.14) and (5.15), and the last one from the definition (5.13) of G.

To prove statement (iii) let us assume that 1 − αm ≤ Cγm for some
constants C < +∞ and 0 < γ < 1. In particular this implies that

∏∞
k=0 αk >

0 [Exercise 4.50 (a)] and, hence, by (5.16), that the radius of convergence
of F is at least γ−1 > 1. Moreover, by (5.15) and the first equivalence in
(5.17) we conclude that F (1) < 1. By continuity it follows that there exists
s0 > 1 such that F (s0) = 1 and, hence, by (5.14), G(s) < +∞ for all s < s0.
By definition of G, this implies that ρn decreases faster than ζn for any
ζ ∈ (s−1

0 , 1).

The proof of (iv) is a consequence of the following lemma.

Lemma 5.18 If
∏∞

k=0 αk > 0 and

lim sup
k→∞

sup
i

(
P(τ = 1)

P(τ = ki)

)1/k

<
1

P(τ < +∞)
, (5.19)

then ρn ≤ C P(τ = n) for some constant C.

To see how (iv) follows from this lemma, observe that hypotesis (5.6)
implies that the left-hand side of (5.19) does not exceed 1 [see (5.9)–(5.10)].
This guarantees the validity of (5.19) because of the first equivalence in (5.17).
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Proof of the lemma. We start with the following explicit relation between
the coefficients of F and G.

ρn =
n∑
k=1

∑
i1, . . . , ik ≥ 1

i1 + · · ·+ ik = n

k∏
m=1

P(τ = im) , (5.20)

for n ≥ 1. This relation can be obtained directly from (5.14) or, alternatively,
by decomposing each return time as a sum of k times of first return and
using Markovianness. Multiplying and dividing each factor in the rightmost
product by P(τ < +∞), this formula can be rewritten as

ρn =
n∑
k=1

P(τ < +∞)k
∑

i1, . . . , ik ≥ 1
i1 + · · ·+ ik = n

k∏
m=1

P(τ = im | τ < +∞). (5.21)

At this point we observe the following. If i1 + · · · + ik = n, then
max1≤m≤k im ≥ n/k and thus, for g increasing

g(n) ≤ g (k imax) ,

where imax = max1≤m≤k im. If we apply this to g(n) = 1/P (τ = n), which is
increasing by (5.9), we obtain

1 ≤ P(τ = n)

P(τ = k imax)
. (5.22)

This inequality, inserted in (5.21), yields the inequality

ρn ≤ P(τ = n)
n∑
k=1

P(τ < +∞)k

×
∑

i1, . . . , ik ≥ 1
i1 + · · ·+ ik = n

∏k
m=1 P(τ = im | τ < +∞)

P(τ = k imax)
, (5.23)
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We now single out a factor P(τ = imax|τ < +∞) = P(τ = imax)/P(τ < +∞)
from the rightmost product of (5.23). If there are several ij = imax we choose
the smaller j. We then use (5.19) plus (5.9)–(5.10) to obtain a bound of the
form

P(τ = imax)

P(τ = k imax)
≤ δk , (5.24)

valid for k sufficiently large, where

δ <
1

P(τ < +∞)
. (5.25)

Expressions (5.23)–(5.25) imply the inequality

ρn ≤ C P(τ = n)
n∑
k=1

δk P(τ < +∞)k−1 Sk , (5.26)

for some constant C > 0, where

Sk :=
k∑

M=1

∑
iM ≥ 1, `1 ≥ 0, `2 ≥ 0
iM + `1 + `2 = n

∑
1 ≤ i1, . . . , iM−1 < iM
i1 + · · ·+ iM−1 = `1

∏
1≤m≤M−1

P(τ = im | τ < +∞)

×
∑

1 ≤ iM+1, . . . , ik ≤ iM
iM+1 + · · ·+ ik = `2

∏
M+1≤m≤k

P(τ = im | τ < +∞) . (5.27)

[M is the smallest j for which ij = imax in each summand of (5.23).]

To bound this sum we introduce a sequence of independent random vari-
ables (τ (i))i∈N with common distribution

P(τ (i) = j) = P(τ = j | τ < +∞) . (5.28)

With this probabilistic interpretation we see that

Sk ≤
k∑

iM=1

n−k+1∑
j=1

P
( ∑

1≤s≤k−1
s 6=M

τ (s) = n− j
)
≤ k . (5.29)
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Hence, (5.26) implies

ρn ≤ C δ
[ ∞∑
k=1

k [δ P(τ < +∞)]k−1
]

P(τ = n)

≤ const P(τ = n) . (5.30)
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Chapter 6

Mixing properties and perfect
simulations for CMMC

6.1 Houses of cards and regeneration

In this chapter we shall use the results of the previous chapter to prove a
number of properties of CMMC, including the promised Theorem 4.42. The
analysis is based on the following graphical procedure. Consider a fixed
window corresponding to the interval [l,m]. We first check whether the left
endpoint l is a regeneration time for this window. This would be the case if,
first of all, Ll = 0 (the state at l is independent of the past) and, furthermore,
Li < i − l for i ∈]l,m] (the states at times in ]l,m] depend only on times
not earlier than l). Equivalently, l is a regeneration time for the window
Xl, · · · , Xm if, and only if, a house-of-cards process starting at the origin at
time l does not return to the origin in the interval ]l,m]. If this house-of-
cards process does visit the origin inside the interval, then we rule out l as
a regeneration time and perform a similar test to a house-of-cards process
starting at l− 1. We continue this way until we find the first s ≤ l such that
the house-of-cards process starting there manages to pass over the whole
interval [s,m] without visiting the origin.

To formalize this argument, let us consider a coupled family of house-of-
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cards processes ((W s
n : n ≥ s) : s ∈ Z), all defined by (5.1) with the same

sequence αk ↗ 1 but started at the origin at different times s ∈ Z. We couple
them by running them with the same common uniform variables (Un), that
is, through a coupling algorithm (Definition 2.36)

W s
n =

{
0 n ≤ s

(W s
n−1 + 1) 1{Un < α−W s

n−1
} n ≥ s+ 1 .

(6.1)

The process (5.2) is (Wn) = (W 0
n). Given a CMMC, we shall call the associ-

ated house of cards, the family of processes (6.1) constructed with the (αk)
given in (4.4).

We start with our key identity.

Lemma 6.2 The following identity holds between the random-order process
of a CMMC and its associated house of cards:{

τ [l,m] < s
}

=
⋃

i∈[l,m]

{
W s−1
i = 0

}
(6.3)

for s ≤ l.

Proof. The asumed monotonicity of the αk’s implies that

W s
n ≥ W t

n for all s < t ≤ n . (6.4)

Hence, W s
n = 0 implies that W t

n = 0 for s < t ≤ n and, therefore, all these
chains coalesce at time n:

W s
n = 0 =⇒ W s

k = W t
k, s ≤ t k ≥ n . (6.5)

Expression (4.12) tells us that, if s ≤ l,

τ [l,m] < s ⇐⇒ ∀j ∈ [s, l],∃n ∈ [j,m] : W j−1
n = 0 . (6.6)

By the coalescing property (6.5), the statement on the right-hand-side is
true if, and only if, the same statement is true but with n ∈ [l,m]. By the
monotonicity property (6.4) we then conclude

τ [l,m] < s ⇐⇒ max
{
m < s : ∀n ∈ [s, t],Wm

n > 0
}
< j − 1

⇐⇒ ∃n ∈ [s, t] : W j−1
n = 0 . (6.7)
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As an immediate corollary of the key identity (6.3), plus time homogeinity,
we obtain the following bound on the distribution of regeneration times.

Corollary 6.8 For a CMMC

P(τ [l,m] < s) ≤
m∑
i=l

ρi−s+1 (6.9)

for s ≤ l ≤ m, where ρj are the return times (5.4) of the associated house-
of-card process started at time 0 [defined in (5.2)). Estimations for ρj are
given in Proposition 5.5.

6.2 Finiteness of renewal and regeneration times

As a first application of the key identity we show now how it yields a proof
of Theorem 4.42. In view of Lemma 5.3, the following lemma yields such a
proof.

Lemma 6.10 The chain (Wn : n ≥ m) [thus, by translation invariance, all
the chains (W s

n : n ≥ s)] is

(a) null-recurrent if, and only if, P(τ [l,m] > −∞) = 1 for each finite
interval [l,m], and

(b) transient if, and only if, P(τ [l,∞[> −∞) = 1 for each l ∈ Z.

Proof. By translation invariance, the probability of the right-hand side of
(6.3) coincides with

P
( ⋃
i∈[l,m]

{W−s+i+1 = 0}
)
. (6.11)

Therefore, by the monotonicity property (6.4) we have that

P(τ [l,m] < s) ∈
[
P(Wm−s+1 = 0) ,

m−l+1∑
i=1

P(Wl−s+i = 0)
]
. (6.12)
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As s → −∞ this interval remains bounded away from 0 in the positive-
recurrent case, but shrinks to 0 otherwise. Part (a) of the lemma follows
from the fact that

P(τ [l,m] = −∞) = lim
s→−∞

P(τ [l,m] < s) . (6.13)

The proof of part (b) is analogous but simpler. By translation invariance
and (6.3) we have that

P(τ [l,∞] < s) = P
( ⋃
i∈[l−s+1,∞]

{Wi = 0}
)

(6.14)

which goes to zero as s→ −∞ if, and only if, (Wn) is transient.

6.3 Mixing properties

Another immediate application of the key identity (6.3) is to obtain relax-
ation properties, also known as mixing properties, of CMMC. The procedure
used in Section 4.2 to construct a CMMC can be thought as a simulation
prescription: An initial history is chosen and subsequent states are generated
through transition probabilities (through appropriate simulation algorithms.
Theorem 4.42 gives conditions guaranteeing that asymptotically this proce-
dure yields the process we are after. Two questions arise naturally at this
point:

(1) Can we estimate how far we are from the equilibrium? That is, how
long we have to wait to see the influence of the original history become
smaller than some acceptable level?

(2) Can we design an alternative procedure with faster relaxation times?

Both questions will be studied in these notes. Here we shall use expression
(4.24) to give estimates related with the first question. In Section 6.5 below
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we shall show that it is possible to give the best conceivable answer to ques-
tion (2): The regeneration scheme off CMMC provides a way to simulate
these chains without relaxation errors.

Let us now state the estimations that follow from our previous work.

Proposition 6.15 For CMMC a (Xn),∣∣∣P(Xm+`
` = am0

)
− P

(
Xm+`
` [z] = am0

)∣∣∣ ≤ m∑
i=0

ρi+` , (6.16)

where ρj is the return-time probability (5.4) of the associated house-of-card
process started at time 0. Estimations for ρj are given in Proposition 5.5.

This proposition follows immediately from the loss-of-memory inequality
(4.24) and the bound (6.9) on the distribution of regeneration times.

6.4 Regeneration scheme

As a consequence of Theorem 4.42 and part (b) of Lemma 6.10 we see that
if
∏∞

k=0 αk > 0, almost all realizations of the CMMC exhibit a strictly in-
creasing sequence (si) of renewal times. In this case, the process may be
visualized as a sequence of independent blocks, of random length si+1 − si.
This defines a regeneration scheme. The formal statement of this property
is as follows.

Let N ∈ {0, 1}Z be the random Boolean variables defined by

N(j) := 1{τ [j,∞] = j} . (6.17)

Let (T` : ` ∈ Z) be the ordered time events of N defined by N(i) = 1 if and
only if i = T` for some `, T` < T`+1 and T0 ≤ 0 < T1.

Corollary 6.18 Let us consider a CMMC. If
∏∞

k=0 αk > 0, then the process
N defined in (6.17) is a stationary renewal process with renewal distribution

P(T`+1 − T` ≥ m) = ρm (6.19)
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for m > 0 and ` 6= 0, where ρm is the return time defined in (5.4). Further-
more, the random vectors ξ` ∈ ∪n≥1An, ` ∈ Z, defined by ξ` = (XT`

, · · ·XT`+1−1)
are mutually independent and identically distributed with conditional distri-
bution

P
(
ξ` = (aT`

, . . . , aT`+1−1)
∣∣∣ (Un)

)
= P 0(aT`

) · · · P (LT`+1
−1)(aT`+1−1|aT`+1−2

T`
) .

(6.20)

Schemes of this nature have been obtained by Berbee (1987), in the con-
text of chains of Type B (see Definition 3.12), and by Lalley (1986, 2000)
for chains of Type C. The present construction, valid for the more general
Type A chaines, was was done by Ferrari et al (2000).

Proof. The stationarity of N follows immediately from the construction.
Let

f(j) := P
(
N(−j) = 1 |N(0) = 1

)
(6.21)

for j ∈ N∗. To see that N is a renewal process it is sufficient to show that

P
(
N(s`) = 1 ; ` = 1, . . . , n

)
= β

n−1∏
`=1

f(s`+1 − s`) (6.22)

for arbitrary integers s1 < · · · < sk. [From Poincaré’s inclusion-exclusion
formula, a measure on {0, 1}Z is characterized by its value on cylinder sets
of the form {ζ ∈ {0, 1}Z : ζ(s) = 1, s ∈ S} for all finite S ⊂ Z. For S =
{s1, . . . , sk}, a renewal process must satisfy (6.22).] For j ∈ Z, j′ ∈ Z∪{∞},
define

H[j, j′] :=

 {Uj+` < α`, ` = 0, . . . , j′ − j}, if j ≤ j′

“full event”, if j > j′
(6.23)

With this notation,
N(j) = 1{H[j,∞]}, j ∈ Z. (6.24)

and
P
(
N(s`) = 1 ; ` = 1, . . . , n

)
= P

{⋂
`=1

H[s`,∞]
}

(6.25)
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From monotonicity we have for j < j′ < j′′ ≤ ∞,

H[j, j′′] ∩H[j′, j′′] = H[j, j′ − 1] ∩H[j′, j′′], (6.26)

and then, with sn+1 =∞ we see that (6.25) equals

n∏
i=1

P
{
H[s`, s`+1 − 1]

}
, (6.27)

which equals the right hand side of (6.22). Hence N is a renewal process.

On the other hand, by stationarity,

P(T`+1 − T` ≥ m) = P
(
τ [−1,∞] < −m+ 1

∣∣∣ τ [0,∞] = 0
)

(6.28)

and, hence, by the key identity (6.3)

P(T`+1 − T` ≥ m) = P(W−m+1
−1 = 0) = ρm , (6.29)

proving (6.19).

The independence of the random vectors ξ` follows from the definition
of T`.

6.5 Perfect simulation

To explain what is a perfect-simulation algorithm we start with the important
definition of stopping time.

Definition 6.30 (Stopping time) Let (Un) be a sequence of random vari-
ables on some set U. We say that T is a stopping time for (Un : n ≥ 0) if
the event {T ≤ j} depends only on the values of U1, . . . , Uj. That is, if there
exist events Aj ⊂ Uj such that

{T ≤ j} = {(U1, . . . , Uj) ∈ Aj} (6.31)
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Example 6.32 Let c ∈ (0, 1), U = [0, 1], (Un) be a sequence of random
variables uniformly distributed in U and T := first time a Un is less than c:

T := min{n ≥ 1 : Un < c} (6.33)

Then T is a stopping time, the sets Aj are defined by

Aj = {U1 > c, . . . , Uj−1 > c, Uj < c} (6.34)

and the law of T is geometric with parameter c:

P(T > n) = (1− c)n (6.35)

In contrast, variables whose definition involves the last time in which a
certain condition is satisfied are not stopping times.

Definition 6.36 A perfect simulation for a process (Xn) is a family
{(T[l,m], F[l,m]) : l ≤ m ∈ Z}, where for each l ≤ m ∈ Z

(i) T[l,m] is a stopping time on the variables (Um−n)n≥0,

(ii) P(T[l,m] <∞) = 1, and

(iii) F[l,m] : (Ul−T[l,m]
, . . . , Um)→ Aml is such that

P
(
Xm
l = aml

)
= P

(
(F[l,m])

m
l = aml

)
(6.37)

for each aml ∈ Aml .

Perfect simulations, therefore, allow to obtain, in a finite time, samples
of windows distributed exactly as the process, without relaxation errors.
The regeneration scheme provides a natural perfect-simulation algorithm for
CMMC.
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Proposition 6.38 For CMMC with
∑

m≥0

∏m
k=0 αk = ∞ there exist a

perfect simulation. The stopping times are T[l,m] = m− τ [l,m] and

(F[l,m])τ [l,m] = f (0)(Uτ [l,m])
...

(F[l,m])m = f (Lm)(Um, (F[l,m])
m−1
m−Lm

)

(6.39)

The order-variables (Ln) are defined in (4.6), and the f (k) are the simulation
algorithms (4.3).

6.6 Exercises

Exercise 6.40 Consider a CMMC defined by

P (a|x) = λ0 P
(0)(a) + λ1 P

(1)(a|x−1) (6.41)

with λ0 + λ1 = 1.

(a) Show that for any l ∈ Z, τ [l] has a geometric distribution and determine
its parameters. Hint: show that

τ [l] = max{n ≤ l : Ln = 0} . (6.42)

(b) Conclude that for all n ≥ l, (Xn+τ [l])n≥0 and (Xτ [l]−n)n≥0 are indepen-
dent.

Exercise 6.43 Consider now a CMMC

P (a|x) = λ0 P
(0)(a) +

k∑
i=1

λi P
(i)(a|x−1

−i ) (6.44)

with λ0 + ·+ λk = 1 and 2 ≤ k <∞.

(a) Show that formula 6.42 is no longer valid.

(b) Show that

P(τ [l] ≥ l − s) ≥ λ0(λ0 + λ1) · · · (λ0 + · · ·+ λmin{k−1,s}) . (6.45)
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Chapter 7

Every chain of infinite order is
a CMMC and a VLMC

7.1 Chains as CMMC

The overall goal of this section is summarized in the following theorem. [For
the definition of continuity and other hypotheses of chains of infinite order
see Definition 3.1. For the defintion of CMMC and related notation see
Section 4.]

Theorem 7.1 Every chain of infinite order with a continuous system of
transition probabilities is a CMMC.

The method of proof is of interest in itself. It is based on a rather general
prescription to decompose conditional probabilities as convex combinations
of Markovian processes. This prescription, in fact, is very flexible and leaves
room for user-defined choices. Our presentation is organized so to clerly
exhibit this flexibility, with the hope that readers will put it to good use in
specific applications.

Definition 7.2 A CMMC partition is a pair ({Px : x ∈ A}, {Bk : k ∈
N}) where:

65
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(i) Each Px is a partition of the interval [0, 1] of the form

[0, 1] =
⋃
a∈A
n∈N

Ix
n
1

a , (7.3)

with sets I
xn
1

a formed by unions of intervals. These sets may be different
for different x, except those for n = 0 for which we use the abusive

notation I
x0
1

a .

(ii) The sets Bk form a partition of [0, 1]

(iii) The partitions {Px} and (Bk) are such that( ⋃
a∈A

0≤k≤n

Ix
k
1

a

)
⊃

n⋃
k=0

Bk (7.4)

for each n ∈ N and x ∈ A.

Proposition 7.5 A CMMC decomposition defines an algorithm for a CMMC.

Proof. We have to define λk and f (k) in (4.3). For the former we take
λk = length(Bk). We then consider, for each x ∈ A and n ∈ N, the sets

Jx
n
1

a :=
( ⋃

0≤k≤n

Ix
k
1

a

)
∩Bn . (7.6)

Condition (7.4) implies that the sets {Jx
n
1

a : a ∈ A} form a partition of
[αn−1, αn]. Finally we define

f (k)(Vn, x
n−1
n−k) = a if λkVk ∈ J

xn−1
n−k

a . (7.7)

Theorem (7.1) follows from the previous and the following propositions.

Proposition 7.8 Every chain of infinite order with continuous transition
probabilities defines a CMMC partition.
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Proof. For each x ∈ A, the partition Px is defined as follows. We first
determine numbers

r0(a) := inf
z∈A

P (a|z)

...

rk(a|x−k−1) = inf
z∈A

P (a|x−1
−k z) , k ≥ 1 , (7.9)

defined for each k ∈ N, g ∈ A and x−k−1 ∈ A−1
−k. [These functions are denoted

g(i0|i−1, . . . , i−k) by Berbee (1987)]. Then we take the differences

∆0(a) := r0(g)

∆k(a|x−1
−k) := rk(a|x−1

−k)− rk−1(a|x−1
−k+1) , for k ≥ 1 (7.10)

for a ∈ A. We take now a partition of [0, 1] formed by sets I
x−1
−n

a such that:

(i) For a ∈ A, k ≥ 0,

length
(
I
x−1
−k

a

)
= ∆k(a|x−1

−k) . (7.11)

(ii) These intervals are disposed in increasing lexicographic order with re-
spect to a and k in such a way that the left extreme of one interval
coincides with the right extreme of the precedent.

That is, the intervals are disposed, along the interval [0, 1] in the form

I0
a1
, I0
a2
, . . . , I0

a|A|
, Ix−1
a1

, Ix−1
a2

, . . . , Ix−1
a|A|

, I
x−1
−2

a1 , . . .

(|A| is the cardinality of the alphabet). To complete the algorithm, we
consider the numbers

αk := min
x−1
−k∈A

k
−1

∑
a∈A

rk(a|x−1
−k) , (7.12)
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k ∈ N. By the continuity of the chain, αk ↗ 1. Finally, we take the sets

Bk = [αk−1, αk] (7.13)

for k ≥ 1 and a−1 = 0.

We observe that the decomposition just obtained saturates the inequali-
ties (4.47)–(4.48).

7.2 Chains with a regeneration scheme as VLMC

It is almost obvious that a chain (Xn) with a regeneration scheme can be em-
bedded in a VLMC. Indeed, let for instance Nn be the random Boolean vari-
ables defined in equation (6.17). We introduce the process (Zn) = (Xn,Nn)
taking values in A× {0, 1}. We then have

P
(
Z0 = (a, κ)

∣∣∣ (X,N) = (x,n)
)

= P
(
Z0 = (a, κ)

∣∣∣ X−1
`(N) = x−1

`(n)

)
(7.14)

with lag function defined by

`(n) = sup{s ≤ 0 : ns = 1} (7.15)

with the convention that when `(x) = 0, the transition probability is actually
independent of the past.

The observation that a chain with regeneration can be thought as a VLMC
is, however, of little practical value. The extra “flag” variables Nn needed for
the embedding can not be deduced from the values taken by the variables Xn.
They are part of the simulation machinery, exactly as the uniform random
variables (Un).

Let us conclude with an example showing how tricky the relation between
VLMC and CMMC can be. Let us consider the sparse VLMC introduced in
Section 3.3. This is in fact one of the simplest non-trivial possible VLMC.
We recall the reader that this VLMC takes values in A = {0, 1}, and its
lag function is `(x) = ` if x−1 = 0 = · · · = x−`, x−`−1 = 1. Its transition
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probabilities are defined by P (1|x) = q`(x) with 0 < qk < 1. Let assume in
addition that

1 > qn ↘ q∞ > 0 . (7.16)

We construct the associated CMMC using the prescription given in the
proof of Proposition 7.8. The results (whose verification is left to the reader)
are the following. The parameters of the convex combination are

λk =

{
1− q1 + q∞ k = 0
qk − qk+1 k ≥ 1 .

(7.17)

The Markovian transition probabilities for k = 0 are defined by

p(0)(1) = q∞/λ0 , (7.18)

while for k ≥ 1

p(k)(1|x−1
−k−1) =

{
0 if x−1

−k−1 = 0−1
−k−1

1 otherwise .
(7.19)

In particular, we notice that the decomposition of the transition probabilities
p(1|0−1

−n 1x−n−2
−∞ ) involve all Markovian orders, despite the fact that they do

not depend on x−n−2
−∞ .

7.3 Exercises

Exercise 7.20 Prove that every CMMC is a chain with complete connec-
tions with continuous transition probabilities.

Exercise 7.21 Prove that every hidden Markov model is a chain of infinite
order with continuous transition probabilities. More specifically, let (Xn)
be the observable chain and (Sn) the hidden Markov chain. Denote τS0 the
regeneration time for S0. Then prove that

sup
x,y

∣∣∣P (a|x)− P (a|x−1
s ys−1

−∞)
∣∣∣ ≤ P(τS0 < s) (7.22)

for every a ∈ Å and s ≤ 0. This issue was already discussed in Exercise 6.40.
What else is needed to make the HMM a chain of type A?
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Exercise 7.23 Verify that for the sparse VLMC satisfying (7.16), the par-
tition on the proof of Proposition 7.8 yields (7.17)–(7.19).

Exercise 7.24 Consider a CMMC defined on A = {0, 1} by

P (1|x) =
∞∑
k=1

ηkg(a, x−k) , (7.25)

with 0 ≤ ηk ≤ 1,
∑

k ηk = 1 and

g(a, x) = (1− ε) 1{x = 1}+ ε1{x = 0} . (7.26)

(i) Write the decomposition given in Proposition 7.5.

(ii) Calling λk the coefficients or the decomposition obtained in (i), show
that λ0 ≥ ε. Observe that this is true even if there exists an ` ∈ N such
that ηk = 0 for 0 ≤ k ≤ `.



Chapter 8

Markov approximations for
chains of infinite order

8.1 Introduction

This chapter addresses the following question: How well can we approximate
an infinite-order chain by Markov chains? This leads to a second, techni-
cal, question: Which distance should we use to measure the quality of an
approximation? We adopt here Ornstein’s d-distance.

The main result of this chapter is an estimation of the speed of conver-
gence —in the d-distance— of the canonical Markov approximation of chains
of infinite order. If the continuity rates of the chain are summable, we show
that the speed of convergence is at worst proportional to these rates. Our
result applies to Type A chains with summable continuity rates. This is a
slight improvement of the result in Bressaud, Fernández and Galves (1999a),
which holds for chains of type B with summable log-continuity rates.

It is known that type B chains with summable log-continuity rates are
weak Bernoulli (Ledrappier 1974). This implies, by Ornstein theorem (Orn-
stein 1974), that the process is the d-limit of its canonical k-step Markov
approximations. Curiously, this indirect argument appears to be the only
published proof of such d-convergence. In contrast, our construction below
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yields an explicit and direct proof. Ornstein and Weiss (1990) have con-
structed a remarkable “guessing scheme” for d-limits of aperiodic Markov
processes, based on observed data. Nevertheless, these approaches do not
shed light on how well the chains can be appoximated by Markov processes.

In this chapter we analyze precisely this issue for the chains with com-
plete connections and the less sophisticated of the approximation schemes:
the canonical k-step Markov. Our results show that the continuity rates of
the chain directly determine —in the summable case— the speed of conver-
gence of the approximation. Our method is constructive and straightforward.
We exhibit explicit couplings between the original chain and each of its k-
step approximations. The couplings are such that: (i) if the two component
processes have been equal for a certain number of steps, there is a large prob-
ability that they will remain so in the next step [formula (8.40)], and (ii) if the
components fail to be equal at some step there is a nonzero probability that
they will become equal at the next one [formula (8.41)]. As a consequence,
the coupled processes tend to coicide most of the time, and separations do
not last too long [formula (8.48)]. This yields a small d-distance between the
original process and its k-step approximations.

8.2 Definitions and main result

The first definition follows Ornstein (1974).

Definition 8.1 The canonical Markov approximation of order k ∈ N of a
process (Xn)n∈Z is the stationary Markov chain of order k having as transition
probabilities,

P [k](b | a1, . . . , ak) := P(Xk+1 = b|Xj = aj, 1 ≤ j ≤ k) (8.2)

for all integer k ≥ 1 and a1, . . . , ak, b ∈ A.

Definition 8.3 The distance d between two stationary processes X and Y
is defined as

d(X, Y ) = inf
{

P(X̃0 6= Ỹ0) : (X̃, Ỹ ) stationary coupling of X and Y
}
.
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We now state our main result.

Theorem 8.4 Let X = (Xn)n∈Z be a chain of infinite order of type A with
summable continuity rate (βs)s≥1. Then there is a constant K > 0 such that,
for all k ≥ 1,

d̄(X,X [k]) ≤ K βk ,

where X [k] = (X
[k]
n )n∈Z is the canonical Markov approximation of order k of

the process X.

8.3 Construction of the coupling

Consider two time-homogeneours systems of transition probabilities P ( · | · )
and Q( · | · ). We want to construct a coupling algorithm for them, with the
following properties:

(a) it loads the diagonal as much as possible, and

(b) each step of the coupling depends only on the past.

This will be done through a graphical procedure (cf. Definition 2.47).

Given two pasts x, y and an element a of the alphabet A, let us define

ta(x, y) := P (a |x) ∧Q(a | y)

ra(x, y) := (P (a |x)−Q(a | y)) ∨ 0 (8.5)

sa(x, y) := (Q(a | y)− P (a |x)) ∨ 0 .

Notice that
either ra(x, y) = 0 and sa(x, y) > 0

or ra(x, y) > 0 and sa(x, y) = 0
(8.6)

and that

ta(x, y) + ra(x, y) = P (a|x) (8.7)

ta(x, y) + sa(x, y) = Q(a|y) . (8.8)
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0 Q(a|y)

0 P (a|x)

ta(x, y)� - sa(x, y)� -

(a)

0 Q(a|y)

0 P (a|x)

ta(x, y)� - ra(x, y)� -

(b)

Figure 8.1: Graphic representation of Definition (8.5). (a) Case with
ra(x, y) = 0. (b) Case with sa(x, y) = 0
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Figure 8.1 gives a graphic representation of these identities.

As a consequence,∑
a∈A

ta(x, y) +
∑
a∈A

ra(x, y) = 1 (8.9)∑
a∈A

ta(x, y) +
∑
a∈A

sa(x, y) = 1 . (8.10)

Identities (8.9)/(8.10) enable us to define two partitions of [0, 1], each one
formed by the non-empty sets of the following 2|A| intervals:

{T x,y1 , . . . , T
x,y

|A| , R
x,y

1 , . . . , R
x,y

|A|} and {T x,y1 , . . . , T
x,y

|A| , S
x,y

1 , . . . , S
x,y

|A|} (8.11)

These are intervals of lengths

|T x,ya | = ta(x, y) , |Rx,y
a | = ra(x, y) and |Sx,ya | = sa(x, y) ,

for all a ∈ A
We define the transition probabilities P̃ ((a, b) | (x, y)) as

P̃ ((a, b) | (x, y)) :=

{
|T x,ya | if a = b,

|Rx,y
a ∩ S

x,y

b | if a 6= b
(8.12)

(see figure 8.2). The corresponding simulation algorithm is

f(u, x, y) = (a, a) if u ∈ T x,ya , (8.13)

f(u, x, y) = (a, b) if u ∈ Rx,y
a ∩ S

x,y

b , (8.14)

with a 6= b in the second line.

The properties of this coupling are summarized in the following theorem

Theorem 8.15 If the chains with transition probabilities P and Q are both
of type A, so is the coupling defined through (8.12)–(8.14). More explicitly,

β̃s ≤ const (βPs ∨ βQs ) , (8.16)
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T
x,y

1 T
x,y

2 T
x,y

3 T
x,y

4 T
x,y

5∑5
i=1 ti(x, y)� -

-�
P̃ ((1, 1) | (x, y))

-�
P̃ ((2, 2) | (x, y))

-�
P̃ ((3, 3) | (x, y))

-�
P̃ ((4, 4) | (x, y))

-�
P̃ ((5, 5) | (x, y))

R
x,y

1 R
x,y

2 R
x,y

5

S
x,y

3 S
x,y

4

-�̃
P ((1, 3) | (x, y))

-�
P̃ ((2, 3) | (x, y))

-�
P̃ ((2, 4) | (x, y))

-�̃
P ((5, 4) | (x, y))

Figure 8.2: Case |A| = 5, P (a|x) > Q(a|y) for a = 1, 2, 5 and P (a|x) <
Q(a|y) for a = 3, 4

and ∑
a,b∈A

inf
x,y
P̃
(

(a, b)
∣∣∣ (x, y)

)
≥

≥
[∑
a∈A

inf
x
P (a|x)

]
∧
[∑
a∈A

inf
x
Q(a|x)

]
. (8.17)

We remark that, even if the transitions P and Q are chains of type B,
this coupling is not in general a chain of type B, because all pairs (a, b) with

inf
x,y
P̃
(

(a, b)
∣∣∣ (x, y)

)
= 0 .

This happens whenever R
x,y
a ∩ S

x,y

b = ∅.
Proof.

Non-nullness∑
a,b∈A

inf
x,y
P̃
(

(a, b)
∣∣∣ (x, y)

)
≥
∑
a∈A

inf
x,y
P̃
(

(a, a)
∣∣∣ (x, y)

)
(8.18)
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But the right-hand side is∑
a∈A

inf
x,y

[
P (a|x) ∧ Q(a|y)

]
(8.19)

≥
[∑
a∈A

inf
x
P (a|x)

]
∧
[∑
a∈A

inf
x
Q(a|x)

]
. (8.20)

Continuity Let us denote

∆m(a, b) =

sup
x,y,u,w

∣∣∣P̃((a, b)
∣∣∣ (x, y)

)
− P̃

(
(a, b)

∣∣∣ (x−1
−mu

−m−1
−∞ , y−1

−mw
−m−1
−∞ )

)∣∣∣ .
(8.21)

Case a = b:

∆m(a, a) = sup
x,y,u,w

∣∣∣ta(x, y)− ta(x−1
−mu

−m−1
−∞ , y−1

−mw
−m−1
−∞ )

∣∣∣ (8.22)

Using |α ∧ β − α′ ∧ β′| ≤ |α− α′| ∨ |β − β′| we get

∆m(a, a) ≤

sup
x,y,u,w

[
|P (a|x)− P (a|x−1

−mu
−m−1
−∞ )| ∨ |Q(a|y)−Q(a|y−1

−mw
−m−1
−∞ )|

]
.

(8.23)

Hence,
∆m(a, a) ≤ βPm ∨ βQm . (8.24)

Case a 6= b: Computations are similar but longer.

8.4 Proof of the theorem

We are ready to prove Theorem (8.4).
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8.4.1 Bound among transition probabilities

Let P [k] be the transition probability defined by (8.2). We shall abbreviate
our notation and write P [k](a | y) instead of P [k](a | y−k, . . . , y−1). We also

denote x
k
= y to indicate that x−1

−k = y−1
−k. In particular

x
k
= y =⇒ P [k](a | y) = P [k](a |x) ∀ a ∈ A . (8.25)

The following proposition contains the only property of the canonical
approximation needed for the result.

Proposition 8.26

inf
u : u

k
=y

P (a |u) ≤ P [k](a | y) ≤ sup
u : u

k
=y

P (a |u). (8.27)

Remark 8.28 In fact, (8.27) is the only property of the Markov transitions
used in the sequel. Thus, our results apply to any Markov approximation
scheme, not necessarily the canonical one, satisfying (8.27).

8.4.2 The proof

Positive probability of coincidence

By the definition of the coupling,

P
(
X̃0 = X̃

[k]
0

∣∣∣ (x, y)
)

=
∑
a

ta(x, y) . (8.29)

By (8.17) ∑
a

ta(x, y) ≥
∑
a∈A

inf
x
P (a|x) =: λ0 (8.30)

which is positive because the chain (Xn) is weak non-null.
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Probability of remaining coincident

Let us introduce the following notation

Dm,n :=
n⋂

p=m

{X̃j = Ỹj} . (8.31)

As a consequence of (8.27)

sup
a,x,y

∣∣P (a |x)− P [k](a |x−1
−my

−m−1
−∞ )

∣∣ ≤ βm∧k (8.32)

Lemma 8.33 If x
m
= y then

P
(
X̃0 6= X̃

[k]
0

∣∣∣ (x, y)
)
≤ |A| βk∧m . (8.34)

Proof. By definition of the coupling

P
(
X̃0 6= X̃

[k]
0

∣∣∣ (x, y)
)

=
∑
a

ra(x, y) (8.35)

But the right-hand side is∑
a∈A

∣∣P (a |x)− P [k](a | y)
∣∣ ≤ |A| βk∧m (8.36)

by (8.32).

Let us denote {
β∗0 = 1− λ0

β∗n = min (β∗0 , |A| βn) ,
(8.37)

The previous lemma yields, by straightforward manipulations, the follow-
ing bounds:

Lemma 8.38 (i) For all integers m,n ≥ 0 and (x, y) with x
m
= y,

P(D0,n | (x, y)) ≥
n∏
p=0

(
1− β∗k∧(m+p)

)
. (8.39)
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(ii) For all integers k ≥ 1,

P(D0,k−1 | D−k,−1) ≥
(

1− β∗k
)k

. (8.40)

(iii) For all integers k ≥ 1,

P(D0,k−1 | Dc
−k,−1) ≥

+∞∏
p=0

(
1− β∗p

)
. (8.41)

Lemma 8.42

P
(
X̃0 6= X̃

[k]
0

)
≤

P(Dc
0,k−1)∑k−1

j=1

∏k−1
m=0(1− β∗m)

(8.43)

Proof.

P(Dc
0,k−1) = P

(
X̃k−1 6= X̃

[k]
k−1

)
+

k−2∑
`=0

P
(
D`+1,k−1

∣∣∣ X̃` 6= X̃
[k]
`

)
P
(
X̃` 6= X̃

[k]
`

)
. (8.44)

By translation invariance:

P
(
X̃0 6= X̃

[k]
0

)
=

P(Dc
0,k−1)

1 +
∑k−1

j=1 P
(
D1,j

∣∣∣ X̃0 6= X̃
[k]
0

) . (8.45)

Now the conclusion is straightforward, and there is room for fantasy. In-
equality (8.43) follows by bounding

P
(
D1,j

∣∣∣ X̃0 6= X̃
[k]
0

)
≥

j−1∏
m=1

(1− β∗m) . (8.46)

To conclude, we observe that

P(Dc
0,k−1) = P(Dc

0,k−1|D−k,−1) P(D−k,−1)

+ P(Dc
0,k−1|Dc

−k,−1) P(Dc
−k,−1)

≤ [1− (1− β∗k)k] +
[
1−

+∞∏
p=0

(1− β∗p)
]
P(Dc

0,k−1) . (8.47)
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Hence

P(Dc
0,k−1) ≤

1− (1− β∗k)k∏+∞
p=0(1− β∗p)

. (8.48)

Plugging (8.48) into (8.43) we finally get

P
(
X̃0 6= X̃

[k]
0

)
≤ 1− (1− β∗k)k∏+∞

p=0(1− β∗p)
∑k−1

j=1

∏k−1
m=0(1− β∗m)

. (8.49)
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