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ABSTRACT

Games and simulations frequently model scenarios where obstacles move, appear, and disappear in an environment. A
city environment changes as new buildings and roads are constructed, and routes can become partially blocked by small
obstacles many times in a typical day. This paper studies the effect of using local updates to repair only the affected regions
of a navigation mesh in response to a change in the environment. The techniques are inspired by incremental methods for
Voronoi diagrams. The main novelty of this paper is that we show how to maintain a 2D or 2.5D navigation mesh in an
environment that contains dynamic polygonal obstacles. Experiments show that local updates are fast enough to permit

real-time updates of the navigation mesh. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A navigation mesh is a data structure that uses a set of
two-dimensional (2D) regions to represent the walkable
space in an environment [1]. These regions are commonly
used to plan visually convincing paths through complicated
environments [2-6].

Current environments are largely static because it is a
relatively expensive operation to recompute the entire nav-
igation mesh each time the environment changes. The goal
of this paper is to show that a navigation mesh that is based
on a medial axis can be updated very quickly. We locally
repair only the affected regions of the navigation mesh
each time the environment changes. Our experiments show
that local operations can be performed quickly enough to
support dynamic environments where many obstacles are
frequently moved, added, and removed.

The navigation mesh that we choose to locally repair
is the Explicit Corridor Map (ECM) [2,6]. The ECM was
chosen because it can quickly produce smooth and short
paths with any feasible amount of clearance to the obsta-
cles. This navigation mesh can be used to plan paths for
characters that may have a variety of widths and clearance
preferences. The ECM has a small memory footprint and
has previously been used to plan visually convincing paths
for thousands of virtual characters in real time [7].

TSupporting information may be found in the online version of this
paper.

Copyright © 2012 John Wiley & Sons, Ltd.

To the best of our knowledge, this paper is the first to
describe how to perform dynamic updates in an exact 2.5D
navigation mesh. As illustrated in Figure 1, such a mesh
describes the walkable areas for a connected set of 2D
floors. Such a multilayered structure can be used to model
buildings with multiple floors.

1.1. Static Environments

Most path planners assume that the obstacles in an environ-
ment are fixed. This means that the environment is static.
Graph-based techniques such as probabilistic roadmaps
[8], rapidly exploring random trees [9], waypoint graphs
[10], and reactive deformation roadmaps [11] represent
the walkable environment (or a high-dimensional config-
uration space) using a set of one-dimensional edges. By
contrast, a navigation mesh partitions the walkable envi-
ronment into a set of 2D walkable areas. These walkable
areas permit virtual characters to control their movements
inside each 2D region so that they can more easily avoid
other moving characters [12,13].

There are many techniques to construct navigation
meshes. Pettré et al. [5] use a set of overlapping disks to
describe the walkable space. Mononen’s [3] open-source
Recast Navigation project discretizes the environment into
cubic voxels, extracts the walkable surfaces, and connects
all adjacent cells. Hale et al. [14] seed the environment with
a series of quads, and each quad grows until it is as large
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Figure 1. The Layers environment. The obstacle can be locally inserted onto the top floor of a 2.5D multilayered environment in
1.1 ms. Ten new vertices were added to the navigation mesh when the obstacle was inserted.

as possible. These techniques approximate the walkable
space, so small geometric details might be lost.

Several exact approaches exist to construct navigation
meshes. Kallmann [15] uses a special triangulation to con-
struct walkable areas in O(nlogn) time. The amount of
clearance along a path in this triangulation is based on
the radius of the largest empty disk along the path. Such
a triangulation has linear complexity and encodes clear-
ance information for many points in the environment. This
technique currently supports triangulations in 2D environ-
ments, but it could be easily extended to support multi-
layered environments. Wein et al. [16] combine visibility
graph and Voronoi diagram techniques with an O (n2 log n)
time approach. This powerful technique encodes clearance
information for all points in the environment and produces
global shortest paths. It is relatively expensive to compute
and is intended for static 2D environments.

The medial axis is the set of all points in the environ-
ment that are equidistant from at least two distinct closest
obstacle points in the environment [17]. Geraerts [2] uses
an augmented medial axis called the ECM to partition a
2D environment into a set of walkable areas in O (n logn)
time. This work was extended to deal with multilayered
environments [6]. An advantage of this structure is that it
naturally encodes clearance information for all points in
the environment. It also allows efficient local updates. A
major goal of this paper is to describe how the augmented
medial axis of [2] and [6] can be quickly updated each time
an obstacle is inserted, deleted, or moved.

1.2. Dynamic Environments

Some data structures can handle obstacles that change over
time. The adaptive roadmaps of Sud et al. [18] contain
elastic edges that can change along with the environment.
Roos and Noltemeier [19] have augmented a structure with
time information to enable continuous updates in an envi-
ronment with moving points. Kallmann and Matari¢ [20]
describe dynamic roadmaps that keep track of the obstacles
in the environment and constantly update a graph.

Green and Sibson [21] show how to locally update a
2D Voronoi diagram each time a point obstacle is inserted.
Devillers [22], Mostafavi et al. [23], and Gowda et al. [24]
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all consider how to delete point obstacles from a Voronoi
diagram. Held and Huber [25] show how to insert poly-
gons and circular arcs into a Voronoi diagram. Kallmann
et al. [26] describe how to insert or remove obstacles from
a triangular mesh. Concurrently with our work, de Pinto
Moura and Dal Sasso Freitas [27] have implemented inser-
tions and deletions for Voronoi diagrams of complex sites.
Our results are similar but more application-oriented.

Because there has not been much previous work on
maintaining a multilayered navigation mesh in a dynamic
setting, the focus of this paper is to describe how to locally
repair an augmented medial axis each time an obstacle is
inserted, deleted, or moved. Our experiments show that
these local operations take only a few milliseconds to per-
form in practice. Hence, dynamic obstacles can be used in
real-time applications.

1.3. Overview

This paper is organized as follows. Section 2 reviews fun-
damental data structures such as the medial axis. The
medial axis is useful because it can easily be annotated
with nearest obstacle information. Such an augmented
medial axis defines a navigation mesh called the ECM [2].
Section 3 shows how to locally insert a point, line seg-
ment, or polygonal obstacle into a 2D augmented medial
axis. Section 4 describes how to locally delete any polyg-
onal obstacle from a 2D augmented medial axis. Section 5
shows how to insert and delete obstacles into a 2.5D mul-
tilayered augmented medial axis. The experimental results
in Section 6 show that an augmented medial axis can be
locally repaired in just a few milliseconds each time an
obstacle is inserted, deleted, or moved.

2. PRELIMINARIES

Throughout this paper, we assume that all polygonal
obstacles in the environment have been partitioned into
convex parts.

Consider a set of m (convex) polygonal obstacles
{p1,..., pm} in the plane. Let n be the total number of
vertices defined by these obstacles. The Voronoi diagram
of these obstacles is a partition of the plane into a set of
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Figure 2. (a) The Voronoi diagram partitions the environment

into a collection of two-dimensional cells Cy,..., C;. All points

in C; are closer to the polygonal obstacle p; than to any other

obstacle pj;. Obstacles are shown in gray. (b) The medial axis

of a two-dimensional environment is shown in blue. The dashed

line segments are closest point edges that make it easy to
determine the nearest obstacle.

2D cells {Cy,...,Cuy}. The cells are constructed such that
each point in the cell C; is nearer to the obstacle p; than
to any other obstacle p;;. The boundary of a cell C;
is denoted by dC;. As shown in Figure 2a, a cell in the
Voronoi diagram can have disconnected components.

Each edge in the Voronoi diagram is a bisector that is
equidistant from at least two closest obstacles. In a polyg-
onal environment, such a bisector is composed of one or
more line segments and parabolic arcs [28,29].

A concept that is closely related to the Voronoi diagram
is the medial axis. The medial axis of a set of (convex)
polygonal obstacles {p1,..., pm} is the set of all bisec-
tors that are equidistant from at least two distinct closest
obstacle points in the environment [17]. Figure 2b illus-
trates the medial axis of a 2D environment that contains
four line segment obstacles pj,..., ps and three convex
polygonal obstacles ps, pe, and p7. Notice that the edges
of the medial axis are a subset of the edges of the
Voronoi diagram.

Because the medial axis partitions the environment into
a set of 2D walkable areas, it is possible to transform the
medial axis into a navigation mesh by adding O (n) clos-
est point edges. A closest point edge is a line segment that
connects the medial axis to a closest obstacle point. As in
Figure 2, closest point edges are created at all medial axis
vertices that do not intersect an obstacle. These edges make
it easy to determine the nearest obstacle point to any query
point. The resulting augmented medial axis is a navigation
mesh. It is well suited for computing minimum clearance
paths that stay as far away from obstacles as possible [2].

A variety of exact approaches exist to construct the
medial axis. Green and Sibson [21] build the medial axis
for a set of point obstacles in the plane by incremen-
tally adding one obstacle at a time and updating the data
structure at each step. Shamos and Hoey [30] describe
a divide-and-conquer technique that recursively splits the
obstacles into two groups, computes the medial axis for
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each group, and merges these two groups together. For-
tune’s [31] sweep line algorithm sweeps a line over the
plane and maintains the medial axis behind this sweep line.
Hoff et al. [32] show how to approximate the medial axis
by using graphics hardware to project distance functions
onto an orthogonal plane.

Most previous work describes how to maintain a 2D
medial axis in environments with dynamic point obstacles.
The main novelty of this paper is that we show how to
maintain a 2D or 2.5D navigation mesh in an environment
that also contains dynamic polygonal obstacles.

3. INSERTING AN OBSTACLE INTO
A 2D NAVIGATION MESH

This section describes how to efficiently insert a point,
line segment, or convex polygonal obstacle into a 2D
navigation mesh. We first describe how to insert point
obstacles into a navigation mesh that only contains point
obstacles. Next, we give a detailed insertion algorithm
for inserting points into a navigation mesh that contains
polygonal obstacles. This algorithm is then refined so that
line segments and convex polygonal obstacles can also
be inserted.

These algorithms all work by updating the medial axis
of the environment. Each edge in the medial axis is associ-
ated with a nearest obstacle. Each vertex in the medial axis
stores a set of closest point edges. As shown in Figure 2,
these closest point edges connect each vertex in the medial
axis to all of its nearest obstacle points. Note that the clos-
est point edges for any vertex can be computed by using
the medial axis edges to determine the nearest line segment
obstacles to this vertex. Given these line segment obstacles,
we can then easily determine the closest point on each of
these line segments to the current medial axis vertex.

3.1. Inserting a Point into an Environment
with Point Obstacles

Intuitively, we can insert a point p into a navigation mesh
that contains only point obstacles as follows. We construct
a cell for this new point, insert this cell into the underly-
ing medial axis, and update the closest obstacle informa-
tion in the navigation mesh. This approach has previously
been used to incrementally construct a Voronoi diagram of
points [21,29]. The following steps describe this approach
in more detail:

(1) Find a cell C; that intersects the new point p. This
cell identifies a nearest obstacle p; to p. Please
refer to Figure 3a.

(2) Calculate the bisector of p and p ;. Leti; and iz be
the two intersection points of this bisector with the
boundary of the cell C;.

(3) The bisector from iy to iy is the first edge of the
new cell Cp for p. At i, the bisector runs into an
adjacent cell, say Cy. This cell identifies a nearest
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(d)

Figure 3. A new point obstacle p is inserted by computing a

sequence of bisectors that form a closed loop. (a) The bisector

of pand p; intersects the boundary of C; at two points /s and k.

(b) The bisector of p and px intersects the boundary of Cy at two

points i, and /3. (c) Eventually, the bisectors form a closed loop

around the new obstacle p. (d) The new cell C, is the region
inside this closed loop.

obstacle py to the point i. Calculate the bisector of
p and py, and let the intersections of this bisector
with the boundary of Cj be i and i3 (Figure 3b).
Repeat this process to determine points i3, i4, and so
on until a bisector endpoint is found that returns to
i1. The resulting closed loop of bisectors will define
the boundary of the new cell Cp, (Figure 3c).

(4) Deleting all vertices and edges in Cp will finalize
the insertion of p into the medial axis (Figure 3d).

It takes O (x + logn) time to insert a single point. Here,
x € O(n) is the number of edges that are updated during
the algorithm, and # is the total number of obstacle vertices
in the environment. The O (logn) term is required to find a
cell that intersects the new point p in step 1.

3.2. Inserting a Point into a Polygonal
Environment

We are now ready to describe a detailed algorithm that
updates a navigation mesh each time an obstacle is inserted
into a polygonal environment. We start by describing how
to insert a point obstacle into a polygonal environment. We
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then describe how to insert a line segment obstacle and a
polygonal obstacle into a polygonal environment.

Algorithm 1 describes how to add a point obstacle
to a polygonal environment. To compute the new cell
for the point that is being inserted, we will iteratively
construct a sequence of bisectors around the newly
added point. Algorithm 2 contains a subroutine named
GETBISECTORARC that calculates the next bisector arc
that is needed. Algorithm 3 contains a subroutine named
TRACEBISECTOR that calculates the first intersection of
a directed sequence of bisectors with the boundary of an
existing cell.

These algorithms assume that a point location function
named CLOSESTOBSTACLE is available. Given any point
in the environment, CLOSESTOBSTACLE returns the clos-
est convex polygonal obstacle, the closest line segment on
this obstacle, and the closest point on this line segment.
Note that when the bisector crosses an edge of the medial
axis, new closest obstacle information can be derived from
the data structure in constant time. Hence, only the first
call to CLOSESTOBSTACLE takes O(logn) time. For fur-
ther information on the basic concept of point location, we
refer the interested reader to a popular book [28].

The subroutine TRACEBISECTOR iteratively computes
the directed sequence of arcs for the bisector B, ,p in
one direction until the bisector intersects the cell boundary
dC,p- Note that the bisector B, , of a point p and a con-
vex polygonal obstacle ob is a sequence of line segments
and parabolic arcs. As shown in Figure 4a, a bisector ver-
fex can appear on B, ,p, at a point i¢.;; where the bisector
intersects the boundary of C,p. Note that the point i.;;
is a bisector vertex because i.,;; has at least three closest
obstacles (including the new obstacle p).

As shown in Figure 4b, a bisector vertex can also appear
at a point i, ,,mq because a new vertex or line segment of
the polygon ob starts inducing the bisector B, ,, at some
point in the interior of C,p. The position of i, mal 18
simply the first intersection of the current directed bisector
arc with the surface normals through the endpoints of the
closest line segment of ob, that is, 0bSeg.

To determine the next bisector vertex, TRACEBISECTOR
repeatedly determines the positions of both i..;; and
inormal- The intersection that occurs first along the
directed bisector arc becomes the endpoint of the current
arc, until an instance of i..;; is chosen and the bisector
is completed. Algorithms 1-3 are used to insert a point
obstacle into a polygonal environment.

3.3. Inserting a Line Segment or Polygon
into a Polygonal Environment

The primary difference between adding a point to an envi-
ronment and adding a line segment to an environment is
that the normals through the endpoints of the line segment
that is being inserted can generate bisector vertices. This
means that the TRACEBISECTOR subroutine should con-
sider three candidate bisector endpoints at each step. As
before, a bisector vertex can occur when a bisector arc

Comp. Anim. Virtual Worlds 2012; 23:535-546 © 2012 John Wiley & Sons, Ltd.
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Algorithm 1 ADDPOINT(p)

Input: A new point obstacle p that should be inserted into a polygonal environment.
Output: The updated navigation mesh after inserting p.

{The bisector B,, ,, of a point p and a convex

polygonal obstacle ob is a sequence of line

segments and parabolic arcs. We first compute the intersection of the cell boundary 9C,,

with this bisector. }

(ob, 0bSeg, obPt) < CLOSESTOBSTACLE(p)

b <~ GETBISECTORARC(p, ob, 0bSeg, obPt)

(i1, i) < the two intersection points in b N IC,,

m < the midpoint of the bisector arc from i,
arcsR <+~ TRACEBISECTOR(p,0b,0bS5¢eg,0b Pt

to ig
9bam‘a7:1)

arcsL <~TRACEBISECTOR(p,0b,0bS5¢eg,00Pt,b,m.is)
Reverse the sequence of bisector arcs in arcsR.
e <+ the sequence of bisector arcs in arcsR and arcsL

(41, i) < the endpoints of e

{The bisector B, ,;, enters a new cell at i,. We now repeatedly compute the intersection

of the current cell with the current bisector. }

icurv" — Z2a inemt < NIL
while 7,,.,; # i1 do

(ob, 0bSeg, obPt) <~ CLOSESTOBSTACLE(¢yr)
b < GETBISECTORARC(p, ob, obSeg,0bPt)
inext < the endpoint of b N IC,, that is NOt iy
arcsL < TraceBisEcTor(p,0b,005€g,0b Pt,b,icyry yineat)
e < the sequence of bisector arcs in arcsL

inext < the endpoint of e that does not equal 7.y,

Leurr € Uneat

{The boundary of the new cell for p is now complete.}
Remove the mesh edges that lie inside this new cell.
Update closest point information for all modified cells.

Algorithm 2 GETBISECTORARC(p, ob, 0bSeg,0bPt)

Input: A new point p that should be inserted into a polygonal environment, plus the closest
convex obstacle ob to p, the closest line segment obstacle 0obSeg to p, and the closest point

obstacle ob Pt on ob to p.

Output: Returns the directed bisector arc for p and the current closest obstacle.

if ob is a point then

return the line segment bisector of p and 0b Pt

else
if obPt is an endpoint of 0bSeg then

return the line segment bisector of p and 0bPt

else

return the parabolic bisector of p and 0bSeg

intersects the boundary of a cell or when a bisector arc
intersects a surface normals through an endpoint of the cur-
rent closest obstacle. The new scenario is that a bisector
vertex can now also occur when a bisector arc intersects a
surface normal through a vertex of the line segment that is
being inserted. Please refer to Figure 5a.

Comp. Anim. Virtual Worlds 2012; 23:535-546 © 2012 John Wiley & Sons, Ltd.
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The GETBISECTORARC subroutine should consider the
“active part” of the line segment that is being inserted.
For example, when drawing the portion of the bisector in
between the surface normals through the new segment’s
endpoints, we need to return the bisector of a line segment
and the closest obstacle. By contrast, when drawing the
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Algorithm 3 TRACEBISECTOR (p, ob, 0bSeg, obPt, b, isiart, icenr)
Input: A new point obstacle p, closest obstacle information for p, the directed bisector arc
b to trace, the start point i,,, of the bisector arc, and the first intersection point i..; of the

directed bisector b with 9C.;,.

Output: A sequence of bisector arcs from iz, to OC,y.

result <— empty list that will store bisector arcs

finished < false
while finished = false do

Ensure that the first endpoint of b is 74, and the second endpoint of b is ;.
if b intersects the normals through the endpoints of 0bSeg then
Inormal <— the first intersection of b with the normals through the endpoints of 0bSeg

else
inormal <—NIL
if 7. precedes 4,0rma @along b then

{The bisector intersects the boundary of the cell.}

result.add (i)
finished < true

else {The current arc has an endpoint inside the cell.}

result.add(ipormar)

(obSeg, obPt) <— CLOSESTOBSTACLE(Zp0rmal» 0b)

iSt(lT‘t — Z.nnrmal

b <— GETBISECTORARC(p, ob, 0bSeg, obPt)
icen < the first intersection of b with 9C,

return result

(b)

Figure 4. A red bisector is computed for a point p and an obstacle ob. Edges of the medial axis—before inserting p—-are shown in

blue. (a) If the point jcey precedes inoma ON the directed bisector, then we have a bisector vertex at iq. This follows because there

are at least three obstacles (including p) that are equidistant to igey. (b) If the point inomar Precedes icey on the bisector, then, we have

a bisector vertex at ihormar- This follows because a new vertex or line segment of ob can begin inducing the bisector at some point in
the interior of Cop.

remainder of the bisector, we need to return the bisector
between an endpoint and the closest obstacle.

Note that a line segment that passes through existing
obstacles can be added by partitioning the line segment
into pieces that do not intersect any obstacle. Each of these
pieces can easily be added to the environment.

A convex polygon can be added by sequentially insert-
ing each of its line segments into the environment (and
removing the medial axis inside this polygon). The “active
part” of the new polygon that is currently generating the
bisector changes whenever a bisector arc crosses one of the
surface normals that passes through a vertex of the polygon
(Figure 5b).
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4. DELETIONS IN A
TWO-DIMENSIONAL MESH

To delete an obstacle p from a 2D navigation mesh, we
only need to update the mesh inside the cell C}, that con-
tains p. This follows because (i) medial axis edges are
defined exclusively by bisectors between pairs of obstacles
and (ii) only bisectors induced by p are affected by the
deletion operation.

As depicted in Figure 6, let AV}, be the set of all neigh-
bor obstacles whose cells are adjacent to Cp. The obsta-
cle p can be deleted by computing the medial axis of the
neighbor obstacles in N\, and intersecting this augmented

Comp. Anim. Virtual Worlds 2012; 23:535-546 © 2012 John Wiley & Sons, Ltd.
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e

Figure 5. A line segment obstacle (a) or a polygonal obstacle (b) can be inserted into the medial axis. The gray dashed lines are the
normals that pass through the vertices of the obstacle that is being inserted.

Figure 6. (a) To delete an obstacle p, identify the cell C, that contains p, and determine the set N\, of (blue) neighbor obstacles
whose cells are adjacent to C,. (b) Compute the medial axis of the neighbor obstacles in N, and keep just the thickened edges
inside the old cell C,. (c) Add these thickened edges to the medial axis and delete the edges that bound the old cell C,.

medial axis with the old cell Cp. The edges in this inter-
section (including their associated closest obstacle infor-
mation) should be added to the medial axis, and the
old boundary edges of Cp should be removed from the
medial axis.

Notice the strictly local nature of this approach. If the
number of total vertices defined by the neighbor obstacles
in NV, is x € O(n), then a deletion takes O (x log x) time
when using an exact construction algorithm.

5. DYNAMIC MULTILAYERED MESH

This section describes how to insert and delete obstacles in
a multilayered environment. Such an environment consists
of a set of layers (2D environments) plus a set of connec-
tions between the layers. An algorithm has been previously
developed that builds the medial axis and a navigation
mesh of such an environment [6]. Figure 1 illustrates the
result of inserting a polygonal obstacle into a multilayered
navigation mesh.

Comp. Anim. Virtual Worlds 2012; 23:535-546 © 2012 John Wiley & Sons, Ltd.
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To insert an obstacle into a multilayered environment,
we need to create a new cell for this obstacle. The main
difference from the 2D setting is that the new cell can now
exist in multiple layers. Consequently, the insertion algo-
rithm must detect when the current bisector arc crosses
a connection.

To delete a polygonal obstacle p from a multilayered
environment, we identify the cell Cp, that contains p and
compute the set AV, of all neighbor obstacles whose cells
are adjacent to Cp. Although the neighbor obstacles may
lie in different layers, a 2D algorithm can be used to
approximate the medial axis of the neighbor obstacles. As
in [6], we project all neighbor obstacles onto a plane that
contains p and compute the medial axis (including the
closest point edges) of these projected neighbor obstacles.
We then project the (multilayered) cell Cp, onto this same
plane and keep only the edges that lie inside the projected
cell Cp. These edges are added to the multilayered medial
axis. The boundary of the old cell Cj, is then pruned from
the medial axis.
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6. EXPERIMENTAL RESULTS

Five environments are used in our experiments. As illus-
trated in Figure 7 and Table I, the Empty environment
represents the simplest type of scene because it is sim-
ply a bounding box that contains no additional obstacles.
The Military environment represents the McKenna mil-
itary training site at Fort Benning, Georgia, USA. The
Zelda environment is from a popular video game, and
the City environment represents a large and complicated

W. G. v. Toll, A. FE Cook IV and R. Geraerts

scene with many obstacles. The Layers environment in
Figure 1 depicts part of a multistorey building that contains
two layers connected by two staircases modeled as two
more layers. Our experiments measure the effect of insert-
ing, deleting, and moving polygonal obstacles in these
environments.

The experiments were performed in Visual C++ on
an NVIDIA GT 240 graphics card and an Intel Core2
Duo CPU (3.0 GHz) with 4 GB memory. Only one core

was used.

(a) Empty

(b) Military

(C) Zelda

(d) city

Figure 7. Each environment has a physical size in meters, a rendering resolution of 1000 x 1000 pixels, and a number of convex
primitives (after partitioning all nonconvex objects into convex components). The blue medial axis and the black closest point edges

542

together define a navigation mesh for each environment. (a) Empty, (b) Military, (c) Zelda, and (d) City.

Table I.

Five experimental environments.

Environment

Navigation mesh

Name Size (m) Vertices Vertices Edges Time (ms)
Empty 100 x 100 8 5 4 10
Military 200 x 200 104 56 70 23
Zelda 100 x 100 560 287 342 35
City 500 x 500 2638 1447 1639 78
Layers 100 x 100 213 43 51 15

Comp. Anim. Virtual Worlds 2012; 23:535-546 © 2012 John Wiley & Sons, Ltd.
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6.1. Inserting Points into the Empty Scene

We iteratively insert 150 random point obstacles into the
Empty scene. Each time a point is inserted, we update the
navigation mesh by either using our ADDPOINT method
to locally repair the mesh or by rebuilding the navigation

Inserting random points: local algorithm

0.8

Y e R e e

oo gl

0.2

avg. insertion time (ms)

00 20 40 60 80 100 120 140

i-th point that is inserted into the scene

(a)

A navigation mesh for dynamic environments

mesh from scratch using the graphics processor [32].
Figure 8 illustrates the results of locally repairing the nav-
igation mesh each time a point obstacle is inserted. All
insertion times have been averaged over 10 separate runs
of the experiment. Note that each experiment used differ-
ent randomly generated points. The horizontal axis of this

Inserting random points: total rebuild

25

avg. insertion time (ms)

0 20 40 60 80 100 120 140
i-th point that is inserted into the scene

(b)

Figure 8. We incrementally insert 150 random points into the Empty scene. The insertion times have been averaged over 10 separate

runs of the experiment. (a) If we locally update the navigation mesh after each insertion, then each insertion takes between 0.2 and

0.6 ms. (b) By contrast, if the graphics card is used to rebuild the entire scene from scratch each time a point is inserted, then each
insertion takes between 9 and 22 ms.
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Figure 9. A set of polygons is inserted into the (a) Military scene or the (b) City scene. Obstacles in the original scene are shown in

light gray, and their medial axis is shown in blue. Each red inserted polygon was inserted 10 times, and the average insertion time is

displayed in the vertical axis of the graphs for (c) Military and (d) City. To insert an obstacle, we build the new cell for this obstacle by
computing a sequence of bisectors. The number of vertices defining this new cell is shown on the horizontal axis.
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Deleting Polygons (City)
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Figure 10. The red polygons from Figure 9 are iteratively deleted from the (a) Military scene or the (b) City scene. Each polygon was
deleted 10 times, and the average deletion time is displayed in the graph.

diagram denotes the i -th point that is being inserted. Notice
that the average time to locally insert a single point obstacle
using ADDPOINT varies between 0.2 ms and 0.6 ms.

Figure 8 also shows the average time to reconstruct the
entire scene using the graphics card each time a point is
added. For a resolution of 1000 x 1000 pixels, complete
reconstruction times vary between 9 and 22 ms. This means
that locally repairing the navigation mesh using the CPU
is much cheaper than completely reconstructing the mesh
using the graphics card.

6.2. Inserting Polygons into the Military
and City Scenes

We will now use our local algorithm to iteratively insert
convex polygons into the Military and City scenes. As illus-
trated in Figure 9, we choose 15 different polygons to insert
into the Military scene. Each time an obstacle is inserted,
it defines a new cell in the navigation mesh. In our exper-
iments, the complexity of each new obstacle’s cell varies
between 9 and 40 bisector vertices, and the time to per-
form each insertion varies between 1.3 and 2.2 ms. In the
City scene, we also choose 15 different polygons to insert.
The complexity of each new obstacle’s cell varies between
15 and 47 bisector vertices, and the time to perform each
insertion varies between 1.5 and 2.4 ms. This means that
polygons can be inserted quickly enough to be useful in
real-time applications.

6.3. Deleting Polygons from a Scene

We will now use our local algorithm to iteratively delete
each of the red polygons shown in Figure 9. As shown
in Figure 10, the complexity of each obstacle’s cell in
the Military scene varies between 9 and 40 bisector ver-
tices, and the time to perform each deletion varies between
1.2 and 2.3 ms. In the City scene, the complexity of each
obstacle’s cell varies between 15 and 47 bisector ver-
tices, and the time to perform each deletion varies between
4.3 and 5.4 ms. Hence, deletions take significantly longer
than insertions. This follows because an insertion simply
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needs to build the new cell for the inserted obstacle.
By comparison, a deletion must construct the medial
axis of all neighboring obstacles of the obstacle that is
being deleted.

6.4. Moving a Convex Polygon in a Scene

‘We move a polygonal obstacle with six vertices through the
environments. Because deletions are more expensive than
insertions, we move an obstacle by first storing the naviga-
tion mesh without the moving obstacle. In each frame, we
can then insert the obstacle into a static scene.

In each scene, we moved the polygon until 1000 distinct
insertions of the polygon had been performed. The average
insertion times were 0.29 ms in Empty, 0.78 ms in Military,
0.65 ms in Zelda, 1.09 ms in City, and 0.55 ms in Layers.
The speed of these operations means that the navigation
mesh can be maintained in real time as multiple obstacles
are moved.

7. CONCLUSION

Gaming and simulation applications typically contain
events that lead to small changes in the environment. We
have described algorithms that locally update a navigation
mesh each time a point, line segment, or polygon is added
to or removed from either a 2D environment or a 2.5D mul-
tilayered environment. Our experiments show that local
routines are much faster than completely reconstructing the
navigation mesh. The quickness of the local routines makes
a dynamic navigation mesh suitable for real-time settings.
The attached movie highlights the effectiveness and robust-
ness of these techniques in 2D and 2.5D environments.
In the future, we will augment the navigation mesh with
terrain slopes and types.
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