











# A Comparative Study of Navigation Meshes

**Wouter van Toll¹**, Roy Triesscheijn¹, Marcelo Kallmann², Ramon Oliva³, Nuria Pelechano³, Julien Pettré⁴, Roland Geraerts¹

In **simulations and games**, Al-controlled agents need to plan paths through 2D or 3D environments. A **navigation mesh** is a data structure that enables this. Many navigation meshes exist, but there is no standardized way of evaluating them. In this work, we conduct the first **comparative study** of navigation meshes, aiming to steer future research. We introduce generic definitions and quality metrics, and we use them to compare six state-of-the-art navigation meshes in a range of environments.

### **Definitions**



**3D environment (3DE)**: A raw 3D model of a virtual environment, including walls, ceilings, et cetera.

Multi-layered environment (MLE):

A subdivision of a WE into 2D

layers connected by line segments.



Walkable environment (WE): A set of polygons on which agents can stand or walk.



Navigation mesh: A set of <u>regions</u> and a <u>graph</u>, describing the WE for navigation purposes.

There are two ways to construct a navigation mesh:

- **Exact**: given a WE/MLE, compute a geometrically perfect navigation mesh with provable complexity.
- **Voxel-based**: given a 3DE, first approximate the WE/MLE and then compute the navigation mesh.

## **Quality Metrics**

Given a navigation mesh *M* for a particular WE, we present metrics that can objectively **measure the quality** of *M*. Our metrics come in four categories:

#### 1. Coverage



How well do the <u>regions</u> of *M* match the <u>geometry</u> of the WE? How much of *M* is (in)correct?

## 3. Complexity



How efficiently does *M* represent the WE? How large is the graph, and how complex are the regions?

#### 2. Connectivity



How well does the graph of *M* match the connectivity of the WE? Does *M* capture all possible paths?

#### 4. Performance



How efficiently has *M* been computed? How much time and memory did this take?

# **Experiments and Results**

We compare six navigation mesh implementations: two exact methods (LCT <sup>2</sup>, ECM <sup>1</sup>) and four voxel-based ones (CDG <sup>4</sup>, Recast, NEOGEN <sup>3</sup>, and a grid). We compute meshes for **many environments**, including these:





The images below show the navigation meshes for one environment. Regions are shown in different colors. For clarity, the graphs are not shown.









Overall, our results suggest that:

- our **metrics** accurately reflect the quality of a navigation mesh;
- the influence of **parameter settings** can be investigated further;
- voxel-based methods do not scale very well to large environments, which highlights the need for **exact** ways to convert a 3DE to a WE.