Computing High-Quality Paths in Weighted Regions

Norman Jaklin, Mark Tibboel, Roland Geraerts
Motion in Games 2014

November 7, 2014

Weighted Region Problem

Introduced by Mitchell and Papadimitriou [6] in 1991

Weighted Region Problem

Introduced by Mitchell and Papadimitriou [6] in 1991

Weighted Region Problem

Introduced by Mitchell and Papadimitriou [6] in 1991

Weighted Region Problem

Introduced by Mitchell and Papadimitriou [6] in 1991

Proven to be unsolvable in $A C M \mathbb{Q}$ by Carufel et al. [2] in 2012

ϵ-approximation methods that work on the exact geometry exist e.g. by Aleksandrov et al. [1] or Sun and Reif [8]

Our Contributions

Path-cost analysis proof: 8 -neighbor grid paths in weighted regions

Path planning method: Vertex-based pruning (VBP)

								R_{4}	π_{4}^{*}		

Context: 5-Level Hierarchy for Path Planning

Context: 5-Level Hierarchy for Path Planning

Figure: Taken from [5]

Contribution 1

Path-cost analysis of 8-neighbor grid paths in weighted regions

- Extensively studied for classical path planning without regions
- See e.g. Alex Nash, Any-Angle Path Planning, 2012 [7]
- Known upper bounds on path-costs for triangular grids, square grids, hexagonal grids, and cubic grids in 3D

Figure: Taken from [7]

Arbitrary scene with arbitrary grid resolution

Goal

\Rightarrow Grid path can be arbitrarily expensive

All regions aligned with the grid

We prove:
 Costs(grid path) $\leq(4+\sqrt{4-2 \sqrt{2}}) \cdot \operatorname{Costs}($ optimal path)

All regions aligned with the grid

We prove:
 Costs(grid path) $\leq(4+\sqrt{4-2 \sqrt{2}}) \cdot \operatorname{Costs}($ optimal path)

All regions aligned with the grid

We prove:
 Costs(grid path) $\leq(4+\sqrt{4-2 \sqrt{2}}) \cdot \operatorname{Costs}($ optimal path)

All regions aligned with the grid

We prove:
$\operatorname{Costs(grid~path)} \leq\left(\begin{array}{c}4+\sqrt{4-2 \sqrt{2}}) \cdot \text { path) }\end{array}\right.$

All regions aligned with the grid

We prove:
$\operatorname{Costs}($ grid path $) \leq(\underset{\text { path })}{4+\sqrt{4-2 \sqrt{2}})}) \cdot$ Costs(optimal

Contribution 2

Path planning method: Vertex-based pruning (VBP)

Idea of VBP:

- Compute a grid-optimal path π on a weighted square grid using A^{*} [3]
- Prune the search space: Only consider triangle vertices close to bending points of π
- Use an existing ϵ-approximation method on the pruned graph
- Here: Steiner Point Method by Aleksandrov et al. [1]

Idea of VBP:

- Compute a grid-optimal path π on a weighted square grid using A^{*} [3]
- Prune the search space: Only consider triangle vertices close to bending points of π
- Use an existing ϵ-approximation method on the pruned graph
- Here: Steiner Point Method by Aleksandrov et al. [1]

Experimental Results (Excerpt)

Scene	ϵ	Method	Constr.time (ms)	Query time (ms)	Nodes explored	Path costs
Forest	0.1	Steiner point	163325.0	1141.1	47969	2461.2
		VBP	16857.2	224.6	15413	2461.2
	0.2	Steiner point	9638.0	127.8	17710	2461.4
		VBP	1049.6	26.8	5700	2461.4
	0.3	Steiner point	1794.7	34.3	9370	2461.9
		VBP	351.9	7.8	3031	2461.9
	0.4	Steiner point	600.6	13.4	5744	2462.5
		VBP	245.0	3.1	1863	2462.5
	0.5	Steiner point	300.4	6.4	3826	2464.2
		VBP	225.4	1.4	1243	2464.2

Example: Region-based path following using our MIRAN method [4]

L. Aleksandrov, M. Lanthier, A. Maheshwari, and J.-R. Sack.

An epsilon-approximation for weighted shortest paths on polyhedral surfaces.
In Proceedings of the 6th Scandinavian Workshop on Algorithm Theory, SWAT '98, pages 11-22. Springer-Verlag, 1998.
J.-L. D. Carufel, C. Grimm, A. Maheshwari, M. Owen, and M. Smid.

Unsolvability of the weighted region shortest path problem.
In European Workshop on Computational Geometry (EuroCG), pages 65-68, 2012.
P. Hart, N. Nilsson, and B. Raphael.

A Formal Basis for the Heuristic Determination of Minimum Cost Paths.
IEEE Transactions on Systems Science and Cybernetics, 4(2):100-107, 1968.

N. Jaklin, A. Cook IV, and R. Geraerts.

Real-time path planning in heterogeneous environments.
Computer Animation and Virtual Worlds, 24:285-295, 2013.
N. Jaklin, W. van Toll, and R. Geraerts.

Way to go - a framework for multi-level planning in games.
Proceedings of the 3rd International Planning in Games Workshop, ICAPS, 2013.
J. S. B. Mitchell and C. H. Papadimitriou.

The weighted region problem: finding shortest paths through a weighted planar subdivision. Journal of the ACM, 38(1):18-73, 1991.
A. Nash.

Any-Angle Path Planning.
PhD thesis, University of Southern California, 2012.
Z. Sun and J. Reif.

Bushwhack: An approximation algorithm for minimal paths through pseudo-euclidean spaces.
In In Proceedings of the 12th Annual International Symposium on Algorithms and Computation, pages 160-171. Springer, 2001.

