
Dynamically Pruned A* for Re-planning in Navigation Meshes

Wouter van Toll and Roland Geraerts
Utrecht University, Department of Information and Computing Sciences

Princetonplein 5, 3584 CC Utrecht

E-mail: W.G.vanToll@uu.nl, R.J.Geraerts@uu.nl

Keywords: path planning, dynamic environments, navi-
gation meshes, crowd simulation, intelligent agents.

1 Introduction

In modern simulations and games, crowds of virtual char-
acters (or agents) must plan and traverse paths through
complex environments in real-time. A navigation mesh
represents the areas in which the agents can move. Its
dual graph contains a vertex for each mesh region and
an edge for each pair of adjacent regions. Agents use A*
search [1] on this graph to find global routes, which they
traverse while locally avoiding other agents.

In dynamic environments, obstacles are inserted,
deleted, or moved during the simulation. We focus on
insertions and deletions; moving obstacles can be repre-
sented by sequential deletions and insertions. These dy-
namic events can have large effects on the walkable space:
imagine a bridge collapsing or a vehicle blocking an al-
ley. Local collision avoidance may not be sufficient to
guide agents to their goals. Instead, the navigation mesh
should be updated and agents should re-plan their global
paths. Existing re-planning algorithms require too much
memory for crowds (because agents need to remember
the previous search), or they are difficult to implement
for graphs that structurally change [2, 3].

We present Dynamically Pruned A* (DPA*), an exten-
sion of A* that efficiently re-plans an optimal global path
when an obstacle has been inserted or deleted. DPA*
prunes the search based only on the agent’s old path
and its relation to the event. The algorithm is tailored
for applications with limited memory per agent. We show
that DPA* outperforms standard A* in large graphs, es-
pecially when the dynamic event is visible to the agent.
DPA* can be used for the real-time simulation of large
crowds in dynamic environments.

The full version of this paper was published in IROS
2015 [4]. We refer the reader to the original publication
for more details, including a supplementary video.

2 Difference to A* and Adaptive A*

The A* algorithm [1] finds a path through a graph from
a vertex S to a vertex G. Starting at S, this algorithm
iteratively expands the vertex V for which g(V ) + h(V )
is lowest. Here, g(V ) is the cost of the best discovered
path from S to V so far, and h(V ) is a heuristic that
estimates the cost of the optimal path from V to G. Costs
and heuristics are often distance-based. The vertices to
explore are stored in an open list, sorted by their values
of g+h. If h is admissible (i.e. it never overestimates the
optimal path cost), then A* computes an optimal path.

For re-planning after a dynamic event, adaptive A*
makes h more informed by using the previous query [2].
Under certain conditions, the algorithm can stop when a
vertex of the old path is expanded. By contrast, DPA*
prunes the standard A* search without changing any
costs or heuristics, and without requiring any memory
of the previous search besides the old path itself. It uses
the ‘distance’ to the dynamic event to find out if vertices
can be skipped. Furthermore, DPA* uses a distinction
between four scenarios to optimize the search; each sce-
nario has its own pruning rules.

3 Problem Description: Scenarios

A dynamic event affects the navigation mesh: regions can
be added, removed, split, or merged. Let the affected re-
gion R be the the set of vertices and edges in the dual
graph that have (dis)appeared. Intuitively, when an ob-
stacle has been inserted, R has become becomes more
costly to traverse; when an obstacle has been removed,
R has become easier to traverse. This does not refer to
individual edge costs, but to the overall cost of passing
through R. Note that R is already computed during the
mesh update, and that it can have an arbitrary shape.

Initially, the agent has used A* to find an optimal path
from S to G, which we call [SG]−. Assume that an event
occurs later in the simulation, and the agent decides to
re-plan when it has traversed the path up to a vertex
T , e.g. because it can now see the event. The agent
should re-evaluate its path from T to G, i.e. [TG]−. If
[TG]− does not run through R (Figure 1a), the path is
still valid, but it may not be optimal anymore. If [TG]−

does run through R (Figure 1b), let A and B be the
first and last vertex in R that occur in [TG]−. We split
the path into an invalid subsection [AB]− and two valid
subsections [TA]− and [BG]−, which may be empty.

S

G

T

R

[TG]−

(a) Unaffected path

S

G
A

B

[TA]− [BG]−

T

R

(b) Affected path

Figure 1: Re-planning scenarios after a dynamic event.

Furthermore, the event can be either an insertion or
a deletion of an obstacle. This leads to four possible
scenarios. The goal of DPA* is to compute a new optimal
path [TG]+ in a given scenario.



(a) Military (b) City (c) Zelda (d) Zelda2x2 (e) Zelda4x4

Figure 2: The environments used in our experiments. Dynamic obstacles are shown in black.

4 Dynamically Pruned A*

A naive way to compute the new path [TG]+ is to per-
form A* from scratch. DPA* adds pruning rules to this
search by reusing information from the old path. We will
now summarize these rules for each re-planning scenario.

Scenario 1. If an obstacle has been inserted and
[TG]− does not run through R, then it can be shown
that [TG]− is still optimal. Hence, the agent does not
need to re-plan, and DPA* will simply return [TG]−.

Scenario 2. If an obstacle has been inserted and
[TG]− does run through R, then the agent may need to
take a detour around R, but the information in [TG]−

can be reused. If we arrive at a vertex C ∈ [BG]−, we
know that [CG]− is still optimal. DPA* only adds the
successor of C in [CG]− to the open list. It skips all
other neighboring vertices of C because we already know
that they cannot yield better paths. Similarly, for each
vertex D ∈ [TA]−, we know that [TD]− is still optimal.
DPA* only adds D to the open list when coming from
the predecessor of D in [TD]−.

Scenario 3. If an obstacle has been deleted and [TG]−

does not run through R, then [TG]− may contain a de-
tour around an area that has now become more attrac-
tive. If there is a better path than [TG]−, then this path
must pass through R at least once. Thus, when expand-
ing any vertex V , we estimate the path cost from V to G
via R, using a second heuristic function that estimates
the path cost to R. If it turns out that the cost of [TG]−

cannot be improved, then there are cases in which some
or all neighbors of V can be skipped.

Scenario 4. If an obstacle has been deleted and [TG]−

does run through R, then [TG]− passes through affected
mesh regions. The geometric path is still obstacle-free,
but it can possibly be improved. As in Scenario 3, the
new path should pass through R and it cannot have a
higher cost than [TG]−. The difference is that only the
subpath [BG]− still exists and may be re-used.

5 Experiments and Results

We have implemented DPA* for the Explicit Corridor
Map (ECM) navigation mesh [6], which supports real-
time dynamic updates [7]. We use Euclidean distance-
based costs and heuristics.

We compared the performance of DPA* and A* as
follows. In each of the environments shown in Figure 2,
we defined a number of dynamic obstacles (squares of
2 × 2 m). For each such obstacle O, we first planned
paths between 500 random start and goal pairs. We then

inserted O and re-planned all paths using both DPA*
and A*. Finally, we deleted O and re-planned again.
The results showed that A* is faster in small graphs, but
that DPA* outperforms A* in larger graphs because they
allow for more pruning. DPA* was particularly efficient
in the ‘deletion + path unaffected’ scenario.

Next, we altered this experiment such that all start
positions lie in the visibility polygon of the dynamic ob-
stacle’s center, to simulate that agents re-plan when they
see an event. This greatly improved the results for some
scenarios, in particular ‘insertion + path affected’. Thus,
DPA* is also useful for responding to a dynamic insertion
when it is within the agent’s visibility range.

Finally, we have integrated DPA* in an ECM-based
crowd simulation framework [5]. The software can simu-
late over 10,000 agents in real-time using 6 CPU cores in
parallel. Obstacles can be added and removed interac-
tively; the crowd responds by re-planning. When using
visibility as a trigger, re-planning actions are automati-
cally divided over time, allowing real-time performance.

In conclusion, DPA* is an extension of A* for efficient
re-planning in dynamic environments, suitable for real-
time crowd simulation.

References

[1] P. Hart, N. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost paths.
IEEE Transactions on Systems Science and Cybernetics,
4(2):100–107, 1968.

[2] C. Hernández, T. Uras, S. Koenig, J.A. Baier, X. Sun,
and P. Meseguer. Reusing cost-minimal paths for goal-
directed navigation in partially known terrains. Au-
tonomous Agents and Multi-Agent Systems, pages 1–46,
2014.

[3] S. Koenig and M. Likhachev. D* Lite. In Proc. AAAI
Conf. of Artificial Intelligence, pages 476–483, 2002.

[4] W. van Toll and R. Geraerts. Dynamically Pruned A*
for re-planning in navigation meshes. In Proc. IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, pages 2051–
2057, 2015.

[5] W. van Toll, N. Jaklin, and R. Geraerts. Towards believ-
able crowds: A generic multi-level framework for agent
navigation. In ASCI.OPEN, 2015.

[6] W.G. van Toll, A.F. Cook IV, and R. Geraerts. Naviga-
tion meshes for realistic multi-layered environments. In
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
pages 3526–3532, 2011.

[7] W.G. van Toll, A.F. Cook IV, and R. Geraerts. A nav-
igation mesh for dynamic environments. Computer Ani-
mation and Virtual Worlds, 23(6):535–546, 2012.


	Introduction
	Difference to A* and Adaptive A*
	Problem Description: Scenarios
	Dynamically Pruned A*
	Experiments and Results

