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Abstract
Games and simulations frequently model scenarios where obstacles
move, appear, and disappear in an environment. A city environment
changes as new buildings and roads are constructed, and routes can
become partially blocked by small obstacles many times in a typi-
cal day. This paper studies the effect of using local updates to re-
pair only the affected regions of a navigation mesh in response to
a change in the environment. The techniques are inspired by incre-
mental methods for Voronoi diagrams. The main novelty of this pa-
per is that we show how to maintain a 2D or 2.5D navigation mesh in
an environment that contains dynamic polygonal obstacles. Exper-
iments show that local updates are fast enough to permit real-time
updates of the navigation mesh.

Keywords: navigation mesh, dynamic environments, medial axis,
Voronoi diagram, virtual worlds, path planning.

This paper has been published previously in the Computer Animation
and Virtual Worlds journal [32].

1 Introduction

A navigation mesh is a data structure that uses a set of two-
dimensional regions to represent the walkable space in an environ-
ment [29]. These regions are commonly used to plan visually con-
vincing paths through complicated environments [7, 19, 23, 24, 31].

Current environments are largely static because it is a relatively
expensive operation to recompute the entire navigation mesh each
time the environment changes. The goal of this paper is to show that
a navigation mesh that is based on a medial axis can be updated very
quickly. We locally repair only the affected regions of the navigation
mesh each time the environment changes. Our experiments show
that local operations can be performed quickly enough to support
dynamic environments where many obstacles are frequently moved,
added, and removed.

The navigation mesh that we choose to locally repair is the Ex-
plicit Corridor Map (ECM) [7, 31]. The ECM was chosen because
it can quickly produce smooth and short paths with any feasible
amount of clearance to the obstacles. This navigation mesh can be
used to plan paths for characters that may have a variety of widths
and clearance preferences. The ECM has a small memory footprint
and has previously been used to plan visually convincing paths for
thousands of virtual characters in real-time [33].

To the best of our knowledge, this paper is the first to describe
how to perform dynamic updates in an exact 2.5D navigation mesh.
As illustrated in Fig. 1, such a mesh describes the walkable areas for
a connected set of 2D floors. Such a multi-layered structure can be
used to model buildings with multiple floors.

Fig. 1. The Layers environment. The obstacle can be locally inserted onto the top floor
of a 2.5D multi-layered environment in 1.1ms. Ten new vertices were added to the
navigation mesh when the obstacle was inserted.

1.1 Related Work on Static Environments

Most path planners assume that the obstacles in an environment
are fixed. This means that the environment is static. Graph-based
techniques such as probabilistic roadmaps [17], rapidly-exploring
random trees [18], waypoint graphs [26], and reactive deforma-
tion roadmaps [6] represent the walkable environment (or a high-
dimensional configuration space) using a set of one-dimensional
edges. By contrast, a navigation mesh partitions the walkable envi-
ronment into a set of two-dimensional walkable areas. These walka-
ble areas permit virtual characters to control their movements inside
each two-dimensional region so that they can more easily avoid other
moving characters [1, 12, 16].

There are many techniques to construct navigation meshes. Pettré
et al. [24] use a set of overlapping disks to describe the walkable
space. Mononen’s [19] open-source Recast Navigation project dis-
cretizes the environment into cubic voxels, extracts the walkable sur-
faces, and connects all adjacent cells. Hale et al. [4] seed the envi-
ronment with a series of quads, and each quad grows until it is as
large as possible. These techniques approximate the walkable space,
so small geometric details might be lost.

Several exact approaches exist to construct navigation meshes.
Kallmann [13] uses a special triangulation to construct walkable ar-
eas in O(n logn) time. The amount of clearance along a path in this
triangulation is based on the radius of the largest empty disk along
the path. Such a triangulation has linear complexity and encodes
clearance information for many points in the environment. This
technique currently supports triangulations in 2D environments, but



it could be easily extended to support multi-layered environments.
Wein et al. [34] combine visibility graph and Voronoi diagram tech-
niques with an O(n2 logn) time approach. This powerful technique
encodes clearance information for all points in the environment and
produces global shortest paths. It is relatively expensive to compute
and is intended for static 2D environments.

The medial axis is the set of all points in the environment that
are equidistant from at least two distinct closest obstacle points in
the environment [25]. Geraerts [7] uses an augmented medial axis
called the Explicit Corridor Map to partition a two-dimensional en-
vironment into a set of walkable areas in O(n logn) time. This work
was extended to deal with multi-layered environments [31]. An ad-
vantage of this structure is that it naturally encodes clearance infor-
mation for all points in the environment. It also allows efficient local
updates. A major goal of this paper is to describe how the augmented
medial axis of [7] and [31] can be quickly updated each time an ob-
stacle is inserted, deleted, or moved.

1.2 Related Work on Dynamic Environments

Some data structures can handle obstacles that change over time.
The adaptive roadmaps of Sud et al. [30] contain elastic edges that
can change along with the environment. Roos and Noltemeier [27]
have augmented a structure with time information to enable contin-
uous updates in an environment with moving points. Kallmann and
Matarić [15] describe dynamic roadmaps that keep track of the ob-
stacles in the environment and constantly update a graph.

Green and Sibson [9] show how to locally update a two-
dimensional Voronoi diagram each time a point obstacle is inserted.
Devillers [3], Mostafavi et al. [20], and Gowda et al. [8] all con-
sider how to delete point obstacles from a Voronoi diagram. Held
and Huber [10] show how to insert polygons and circular arcs into
a Voronoi diagram. Kallmann et al. [14] describe how to insert or
remove obstacles from a triangular mesh. Concurrently with our
work, de Pinto Moura and Dal Sasso Freitas [21] have implemented
insertions and deletions for Voronoi diagrams of complex sites. Our
results are similar, but more application-oriented.

Since there has not been much previous work on maintaining a
multi-layered navigation mesh in a dynamic setting, the focus of this
paper is to describe how to locally repair an augmented medial axis
each time an obstacle is inserted, deleted, or moved. Our experi-
ments show that these local operations take only a few milliseconds
to perform in practice. Hence, dynamic obstacles can be used in
real-time applications.

1.3 Overview

This paper is organized as follows. Section 2 reviews fundamental
data structures such as the medial axis. The medial axis is useful
because it can easily be annotated with nearest obstacle information.
Such an augmented medial axis defines a navigation mesh called the
Explicit Corridor Map [7]. Section 3 shows how to locally insert a
point, line segment, or polygonal obstacle into a 2D augmented me-
dial axis. Section 4 describes how to locally delete any polygonal
obstacle from a 2D augmented medial axis. Section 5 shows how
to insert and delete obstacles into a 2.5D multi-layered augmented
medial axis. The experimental results in Section 6 show that an aug-
mented medial axis can be locally repaired in just a few milliseconds
each time an obstacle is inserted, deleted, or moved.

2 Preliminaries

Throughout this paper, we assume that all polygonal obstacles in the
environment have been partitioned into convex parts.

Consider a set of m (convex) polygonal obstacles {p1, ..., pm} in
the plane. Let n be the total number of vertices defined by these
obstacles. The Voronoi diagram of these obstacles is a partition of
the plane into a set of two-dimensional cells {C1, ..., Cm}. The cells
are constructed such that each point in the cell Ci is nearer to the
obstacle pi than to any other obstacle pj 6=i. The boundary of a cell
Ci is denoted by ∂Ci. As shown in Fig. 2a, a cell in the Voronoi
diagram can have disconnected components.
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Fig. 2. (a) The Voronoi diagram partitions the environment into a collection of two-
dimensional cells C1, ..., C7. All points in Ci are closer to the polygonal obstacle pi

than to any other obstacle pj 6=i. Obstacles are shown in gray. (b) The medial axis of
a two-dimensional environment is shown in blue. The dashed line segments are closest
point edges that make it easy to determine the nearest obstacle.

Each edge in the Voronoi diagram is a bisector that is equidistant
from at least two closest obstacles. In a polygonal environment, such
a bisector is composed of one or more line segments and parabolic
arcs [2, 22].

A concept that is closely related to the Voronoi diagram is the
medial axis. The medial axis of a set of (convex) polygonal obstacles
{p1, ..., pm} is the set of all bisectors that are equidistant from at
least two distinct closest obstacle points in the environment [25].
Fig. 2b illustrates the medial axis of a two-dimensional environment
that contains four line segment obstacles p1, ..., p4 and three convex
polygonal obstacles p5, p6, p7. Notice that the edges of the medial
axis are a subset of the edges of the Voronoi diagram.

Since the medial axis partitions the environment into a set of two-
dimensional walkable areas, it is possible to transform the medial
axis into a navigation mesh by adding O(n) closest point edges. A
closest point edge is a line segment that connects the medial axis to
a closest obstacle point. As in Fig. 2, closest point edges are created
at all medial axis vertices that do not intersect an obstacle. These
edges make it easy to determine the nearest obstacle point to any
query point. The resulting augmented medial axis is a navigation
mesh. It is well-suited for computing minimum clearance paths that
stay as far away from obstacles as possible [7].

A variety of exact approaches exist to construct the medial axis.
Green and Sibson [9] build the medial axis for a set of point ob-
stacles in the plane by incrementally adding one obstacle at a time
and updating the data structure at each step. Shamos and Hoey [28]
describe a divide-and-conquer technique that recursively splits the
obstacles into two groups, computes the medial axis for each group,
and merges these two groups together. Fortune’s [5] sweep line al-
gorithm sweeps a line over the plane and maintains the medial axis
behind this sweep line. Hoff et al. [11] show how to approximate the
medial axis by using graphics hardware to project distance functions
onto an orthogonal plane.

Most previous work describes how to maintain a 2D medial axis
in environments with dynamic point obstacles. The main novelty of
this paper is that we show how to maintain a 2D or 2.5D naviga-
tion mesh in an environment that also contains dynamic polygonal
obstacles.



3 Inserting an Obstacle into a 2D Navigation Mesh

This section describes how to efficiently insert a point, line seg-
ment, or convex polygonal obstacle into a two-dimensional naviga-
tion mesh. We first describe how to insert point obstacles into a
navigation mesh that only contains point obstacles. Next, we give
a detailed insertion algorithm for inserting points into a navigation
mesh that contains polygonal obstacles. This algorithm is then re-
fined so that line segments and convex polygonal obstacles can also
be inserted.

These algorithms all work by updating the medial axis of the en-
vironment. Each edge in the medial axis is associated with a nearest
obstacle. Each vertex in the medial axis stores a set of closest point
edges. As shown in Fig. 2, these closest point edges connect each
vertex in the medial axis to all of its nearest obstacle points. Note
that the closest point edges for any vertex can be computed by using
the medial axis edges to determine the nearest line segment obsta-
cles to this vertex. Given these line segment obstacles, we can then
easily determine the closest point on each of these line segments to
the current medial axis vertex.

3.1 Inserting a Point into an Environment with Point
Obstacles

Intuitively, we can insert a point p into a navigation mesh that con-
tains only point obstacles as follows. We construct a cell for this new
point, insert this cell into the underlying medial axis, and update the
closest obstacle information in the navigation mesh. This approach
has previously been used to incrementally construct a Voronoi dia-
gram of points [9, 22]. The following steps describe this approach in
more detail:

(1) Find a cell Cj that intersects the new point p. This cell identi-
fies a nearest obstacle pj to p. Please refer to Fig. 3a.

(2) Calculate the bisector of p and pj . Let i1 and i2 be the two
intersection points of this bisector with the boundary of the cell Cj .

(3) The bisector from i1 to i2 is the first edge of the new cell Cp

for p. At i2, the bisector runs into an adjacent cell, say Ck. This
cell identifies a nearest obstacle pk to the point i2. Calculate the
bisector of p and pk, and let the intersections of this bisector with
the boundary of Ck be i2 and i3 (see Fig. 3b). Repeat this process to
determine points i3, i4, and so on, until a bisector endpoint is found
that returns to i1. The resulting closed loop of bisectors will define
the boundary of the new cell Cp (see Fig. 3c).

(4) Deleting all vertices and edges in Cp will finalize the insertion
of p into the medial axis (see Fig. 3d).

It takes O(x+logn) time to insert a single point. Here, x ∈ O(n)
is the number of edges that are updated during the algorithm, and
n is the total number of obstacle vertices in the environment. The
O(logn) term is required to find a cell that intersects the new point
p in step 1.

3.2 Inserting a Point into a Polygonal Environment

We are now ready to describe a detailed algorithm that updates a
navigation mesh each time an obstacle is inserted into a polygonal
environment. We start by describing how to insert a point obstacle
into a polygonal environment. We then describe how to insert a line
segment obstacle and a polygonal obstacle into a polygonal environ-
ment.

Algorithm 1 describes how to add a point obstacle to a polygo-
nal environment. To compute the new cell for the point that is be-
ing inserted, we will iteratively construct a sequence of bisectors
around the newly added point. Algorithm 2 contains a subroutine
named GETBISECTORARC that calculates the next bisector arc that
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Fig. 3. A new point obstacle p is inserted by computing a sequence of bisectors that form
a closed loop. (a) The bisector of p and pj intersects the boundary of Cj at two points
i1 and i2. (b) The bisector of p and pk intersects the boundary of Ck at two points i2
and i3. (c) Eventually, the bisectors form a closed loop around the new obstacle p. (d)
The new cell Cp is the region inside this closed loop.

is needed. Algorithm 3 contains a subroutine named TRACEBISEC-
TOR that calculates the first intersection of a directed sequence of
bisectors with the boundary of an existing cell.

These algorithms assume that a point location function named
CLOSESTOBSTACLE is available. Given any point in the environ-
ment, CLOSESTOBSTACLE returns the closest convex polygonal ob-
stacle, the closest line segment on this obstacle, and the closest point
on this line segment. Note that when the bisector crosses an edge
of the medial axis, new closest-obstacle information can be derived
from the data structure in constant time. Hence, only the first call to
CLOSESTOBSTACLE takes O(logn) time. For further information
on the basic concept of point location, we refer the interested reader
to a popular book [2].
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Fig. 4. A red bisector is computed for a point p and an obstacle ob. Edges of the medial
axis – before inserting p – are shown in blue. (a) If the point icell precedes inormal on
the directed bisector, then we have a bisector vertex at icell. This follows because there
are at least three obstacles (including p) that are equidistant to icell. (b) If the point
inormal precedes icell on the bisector, then we have a bisector vertex at inormal.
This follows because a new vertex or line segment of ob can begin inducing the bisector
at some point in the interior of Cob.

The subroutine TRACEBISECTOR iteratively computes the di-
rected sequence of arcs for the bisector Bp,ob in one direction until
the bisector intersects the cell boundary ∂Cob. Note that the bisector
Bp,ob of a point p and a convex polygonal obstacle ob is a sequence
of line segments and parabolic arcs. As shown in Fig. 4a, a bisec-
tor vertex can appear on Bp,ob at a point icell where the bisector



Algorithm 1 ADDPOINT(p)
Input: A new point obstacle p that should be inserted into a polygonal environment.
Output: The updated navigation mesh after inserting p.

{The bisector Bp,ob of a point p and a convex polygonal obstacle ob is a sequence
of line segments and parabolic arcs. We first compute the intersection of the cell
boundary ∂Cob with this bisector.}

(ob, obSeg, obPt)← CLOSESTOBSTACLE(p)
b← GETBISECTORARC(p, ob, obSeg, obPt)
(i1, i2)← the two intersection points in b ∩ ∂Cob

m← the midpoint of the bisector arc from i1 to i2
arcsR←TRACEBISECTOR(p,ob,obSeg,obPt,b,m,i1)
arcsL←TRACEBISECTOR(p,ob,obSeg,obPt,b,m,i2)
Reverse the sequence of bisector arcs in arcsR.
e← the sequence of bisector arcs in arcsR and arcsL
(i1, i2)← the endpoints of e

{The bisector Bp,ob enters a new cell at i2. We now repeatedly compute the inter-
section of the current cell with the current bisector.}

iprev ← i1; icurr ← i2; inext ← NIL
while inext 6= i1 do

(ob, obSeg, obPt)← CLOSESTOBSTACLE(icurr)
b← GETBISECTORARC(p, ob, obSeg,obPt)
inext ← the endpoint of b ∩ ∂Cob that is not icurr

arcsL← TRACEBISECTOR(p,ob,obSeg,obPt,b,iprev ,inext)
e← the sequence of bisector arcs in arcsL
inext ← the endpoint of e that does not equal icurr

iprev ← icurr ; icurr ← inext

{The boundary of the new cell for p is now complete.}
Remove the mesh edges that lie inside this new cell.

Update closest point information for all modified cells.

Algorithm 2 GETBISECTORARC(p, ob, obSeg,obPt)
Input: A new point p that should be inserted into a polygonal environment, plus the
closest convex obstacle ob to p, the closest line segment obstacle obSeg to p, and the
closest point obstacle obPt on ob to p.
Output: Returns the directed bisector arc for p and the current closest obstacle.

if ob is a point then
return the line segment bisector of p and obPt

else
if obPt is an endpoint of obSeg then

return the line segment bisector of p and obPt
else

return the parabolic bisector of p and obSeg

intersects the boundary of Cob. Note that the point icell is a bisector
vertex because icell has at least three closest obstacles (including the
new obstacle p).

As shown in Fig. 4b, a bisector vertex can also appear at a point
inormal because a new vertex or line segment of the polygon ob
starts inducing the bisector Bp,ob at some point in the interior of
Cob. The position of inormal is simply the first intersection of the
current directed bisector arc with the surface normals through the
endpoints of the closest line segment of ob, i.e. obSeg.

To determine the next bisector vertex, TRACEBISECTOR repeat-
edly determines the positions of both icell and inormal. The inter-
section that occurs first along the directed bisector arc becomes the
endpoint of the current arc, until an instance of icell is chosen and
the bisector is completed. Algorithms 1–3 are used to insert a point
obstacle into a polygonal environment.

3.3 Inserting a Line Segment or Polygon into a Polygonal
Environment

The primary difference between adding a point to an environment
and adding a line segment to an environment is that the normals
through the endpoints of the line segment that is being inserted
can generate bisector vertices. This means that the TRACEBISEC-
TOR subroutine should consider three candidate bisector endpoints
at each step. As before, a bisector vertex can occur when a bisector

Algorithm 3 TRACEBISECTOR (p, ob, obSeg, obPt, b,

istart, icell)

Input: A new point obstacle p, closest obstacle information for p, the directed bisector

arc b to trace, the start point istart of the bisector arc, and the first intersection point

icell of the directed bisector b with ∂Cob.

Output: A sequence of bisector arcs from istart to ∂Cob.

result← empty list that will store bisector arcs
finished← false
while finished = false do

Ensure that the first endpoint of b is istart and the second endpoint of b is icell.
if b intersects the normals through the endpoints of obSeg then

inormal ← the first intersection of b with the normals through the endpoints
of obSeg

else
inormal ←NIL

if icell precedes inormal along b then
{The bisector intersects the boundary of the cell.}
result.add(icell)
finished← true

else {The current arc has an endpoint inside the cell.}
result.add(inormal)
(obSeg, obPt)← CLOSESTOBSTACLE(inormal , ob)
istart ← inormal

b← GETBISECTORARC(p, ob, obSeg, obPt)
icell ← the first intersection of b with ∂Cob

return result

arc intersects the boundary of a cell or when a bisector arc intersects
a surface normal through an endpoint of the current closest obstacle.
The new scenario is that a bisector vertex can now also occur when
a bisector arc intersects a surface normal through a vertex of the line
segment that is being inserted. Please refer to Fig. 5a.

The GETBISECTORARC subroutine should consider the ‘active
part’ of the line segment that is being inserted. For example, when
drawing the portion of the bisector in between the surface normals
through the new segment’s endpoints, we need to return the bisector
of a line segment and the closest obstacle. By contrast, when drawing
the remainder of the bisector, we need to return the bisector between
an endpoint and the closest obstacle.

Note that a line segment that passes through existing obstacles
can be added by partitioning the line segment into pieces that do not
intersect any obstacle. Each of these pieces can easily be added to
the environment.

A convex polygon can be added by sequentially inserting each
of its line segments into the environment (and removing the medial
axis inside this polygon). The ‘active part’ of the new polygon that
is currently generating the bisector changes whenever a bisector arc
crosses one of the surface normals that passes through a vertex of the
polygon. See Fig. 5b.

(a) (b)

Fig. 5. A line segment obstacle or a polygonal obstacle can be inserted into the medial
axis. The gray dashed-lines are the normals that pass through the vertices of the obstacle
that is being inserted.



4 Deletions in a 2D Mesh

To delete an obstacle p from a two-dimensional navigation mesh, we
only need to update the mesh inside the cell Cp that contains p. This
follows because (a) medial axis edges are defined exclusively by bi-
sectors between pairs of obstacles and (b) only bisectors induced by
p are affected by the deletion operation.

Cp
p

(a)

Np

p

(b) (c)

Fig. 6. (a) To delete an obstacle p, identify the cell Cp that contains p, and determine
the setNp of (blue) neighbor obstacles whose cells are adjacent to Cp. (b) Compute the
medial axis of the neighbor obstacles in Np, and keep just the thickened edges inside
the old cell Cp. (c) Add these thickened edges to the medial axis, and delete the edges
that bound the old cell Cp.

As depicted in Fig. 6, let Np be the set of all neighbor obsta-
cles whose cells are adjacent to Cp. The obstacle p can be deleted
by computing the medial axis of the neighbor obstacles in Np and
intersecting this augmented medial axis with the old cell Cp. The
edges in this intersection (including their associated closest obstacle
information) should be added to the medial axis, and the old bound-
ary edges of Cp should be removed from the medial axis.

Notice the strictly local nature of this approach. If the number of
total vertices defined by the neighbor obstacles in Np is x ∈ O(n),
then a deletion takes O(x log x) time when using an exact construc-
tion algorithm.

5 Dynamic Multi-Layered Mesh

This section describes how to insert and delete obstacles in a multi-
layered environment. Such an environment consists of a set of layers
(2D environments) plus a set of connections between the layers. An
algorithm has been previously developed that builds the medial axis
and a navigation mesh of such an environment [31]. Fig. 1 illustrates
the result of inserting a polygonal obstacle into a multi-layered nav-
igation mesh.

To insert an obstacle into a multi-layered environment, we need to
create a new cell for this obstacle. The main difference from the 2D
setting is that the new cell can now exist in multiple layers. Conse-
quently, the insertion algorithm must detect when the current bisec-
tor arc crosses a connection.

To delete a polygonal obstacle p from a multi-layered environ-
ment, we identify the cell Cp that contains p and compute the set Np

of all neighbor obstacles whose cells are adjacent to Cp. Although
the neighbor obstacles may lie in different layers, a 2D algorithm
can be used to approximate the medial axis of the neighbor obsta-
cles. As in [31], we project all neighbor obstacles onto a plane that
contains p and compute the medial axis (including the closest point
edges) of these projected neighbor obstacles. We then project the
(multi-layered) cell Cp onto this same plane and keep only the edges
that lie inside the projected cell Cp. These edges are added to the
multi-layered medial axis. The boundary of the old cell Cp is then
pruned from the medial axis.

(a) Empty (b) Military

(c) Zelda (d) City

Fig. 7. Each environment has a physical size in meters, a rendering resolution of
1000x1000 pixels, and a number of convex primitives (after partitioning all non-convex
objects into convex components). The blue medial axis and the black closest point edges
together define a navigation mesh for each environment.

6 Experimental Results

Five environments are used in our experiments. As illustrated in Fig.
7, and Table 1, the Empty environment represents the simplest type
of scene because it is simply a bounding box that contains no addi-
tional obstacles. The Military environment represents the McKenna
military training site at Fort Benning, Georgia, USA. The Zelda en-
vironment is from a popular video game, and the City environment
represents a large and complicated scene with many obstacles. The
Layers environment in Fig. 1 depicts part of a multi-storey building
that contains two layers connected by two staircases modelled as two
more layers. Our experiments measure the effect of inserting, delet-
ing, and moving polygonal obstacles in these environments.

Table 1. Five Experimental Environments

Environment Navigation Mesh

Name Size(m) vertices vertices Edges Time(ms)

Empty 100x100 8 5 4 10

Military 200x200 104 56 70 23

Zelda 100x100 560 287 342 35

City 500x500 2638 1447 1639 78

Layers 100x100 213 43 51 15

The experiments were performed in Visual C++ on an NVIDIA
GT 240 graphics card and an Intel Core2 Duo CPU (3.0 GHz) with
4 GB memory. Only one core was used.

6.1 Inserting Points into the Empty Scene

We iteratively insert 150 random point obstacles into the Empty
scene. Each time a point is inserted, we update the navigation mesh
by either using our ADDPOINT method to locally repair the mesh,
or by rebuilding the navigation mesh from scratch using the graphics
processor [11]. Fig. 8 illustrates the results of locally repairing the



navigation mesh each time a point obstacle is inserted. All insertion
times have been averaged over ten separate runs of the experiment.
Note that each experiment used different randomly generated points.
The horizontal axis of this diagram denotes the i-th point that is be-
ing inserted. Notice that the average time to locally insert a single
point obstacle using ADDPOINT varies between 0.2ms and 0.6ms.

Fig. 8 also shows the average time to reconstruct the entire scene
using the graphics card each time a point is added. For a resolution
of 1000x1000 pixels, complete reconstruction times vary between
9ms and 22ms. This means that locally repairing the navigation
mesh using the CPU is much cheaper than completely reconstructing
the mesh using the graphics card.
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Fig. 8. We incrementally insert 150 random points into the Empty scene. The insertion
times have been averaged over ten separate runs of the experiment. (a) If we locally up-
date the navigation mesh after each insertion, then each insertion takes between 0.2ms
and 0.6ms. (b) By contrast, if the graphics card is used to rebuild the entire scene from
scratch each time a point is inserted, then each insertion takes between 9ms and 22ms.

6.2 Inserting Polygons into the Military and City Scenes

We will now use our local algorithm to iteratively insert convex poly-
gons into the Military and City scenes. As illustrated in Fig. 9, we
choose 15 different polygons to insert into the Military scene. Each
time an obstacle is inserted, it defines a new cell in the navigation
mesh. In our experiments, the complexity of each new obstacle’s cell
varies between 9 and 40 bisector vertices, and the time to perform
each insertion varies between 1.3ms and 2.2ms. In the City scene,
we also choose 15 different polygons to insert. The complexity of
each new obstacle’s cell varies between 15 and 47 bisector vertices,
and the time to perform each insertion varies between 1.5ms and
2.4ms. This means that polygons can be inserted quickly enough to
be useful in real-time applications.

6.3 Deleting Polygons from a Scene

We will now use our local algorithm to iteratively delete each of the
red polygons shown in Fig. 9. As shown in Fig. 10, the complexity
of each obstacle’s cell in the Military scene varies between 9 and
40 bisector vertices, and the time to perform each deletion varies
between 1.2ms and 2.3ms. In the City scene, the complexity of
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(d)

Fig. 9. A set of polygons is inserted into the Military scene (a) or the City scene (b).
Obstacles in the original scene are shown in light gray, and their medial axis is shown
in blue. Each red inserted polygon was inserted 10 times, and the average insertion time
is displayed in the vertical axis of the graphs for Military (c) and City (d). To insert an
obstacle, we build the new cell for this obstacle by computing a sequence of bisectors.
The number of vertices defining this new cell is shown on the horizontal axis.

each obstacle’s cell varies between 15 and 47 bisector vertices, and
the time to perform each deletion varies between 4.3ms and 5.4ms.
Hence, deletions take significantly longer than insertions. This fol-
lows because an insertion simply needs to build the new cell for the
inserted obstacle. By comparison, a deletion must construct the me-
dial axis of all neighbouring obstacles of the obstacle that is being
deleted.

6.4 Moving a Convex Polygon in a Scene

We move a polygonal obstacle with 6 vertices through the environ-
ments. Since deletions are more expensive than insertions, we move
an obstacle by first storing the navigation mesh without the moving
obstacle. Each frame, we can then insert the obstacle into a static
scene.

In each scene, we moved the polygon until 1000 distinct inser-
tions of the polygon had been performed. The average insertion
times were 0.29ms in Empty, 0.78ms in Military, 0.65ms in Zelda,
1.09ms in City, and 0.55ms in Layers. The speed of these opera-
tions means that the navigation mesh can be maintained in real-time
as multiple obstacles are moved.
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Fig. 10. The red polygons from Fig. 9 are iteratively deleted from the Military scene (a)
or the City scene (b). Each polygon was deleted 10 times, and the average deletion time
is displayed in the graph.

7 Conclusion

Gaming and simulation applications typically contain events that
lead to small changes in the environment. We have described al-
gorithms that locally update a navigation mesh each time a point,
line segment, or polygon is added to or removed from either a 2D
environment or a 2.5D multi-layered environment. Our experiments
show that local routines are much faster than completely reconstruct-
ing the navigation mesh. The quickness of the local routines makes
a dynamic navigation mesh suitable for real-time settings. A movie
highlighting the effectiveness and robustness of these techniques can
be found online1. In the future, we will augment the navigation mesh
with terrain slopes and types.
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