
536

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 25

DOI: 10.4018/978-1-4666-9629-7.ch025

Navigating Through
Virtual Worlds:

From Single Characters to Large Crowds

ABSTRACT

With the rise and success of digital games over the past few decades, path planning algorithms have
become an important aspect in modern game development for all types of genres. Indirectly-controlled
playable characters as well as non-player characters have to find their way through the game’s environ-
ment to reach their goal destinations. Modern gaming hardware and new algorithms enable the simula-
tion of large crowds with thousands of individual characters. Still, the task of generating feasible and
believable paths in a time- and storage-efficient way is a big challenge in this emerging and exciting
research field. In this chapter, the authors describe classical algorithms and data structures, as well as
recent approaches that enable the simulation of new and immersive features related to path planning
and crowd simulation in modern games. The authors discuss the pros and cons of such algorithms, give
an overview of current research questions and show why graph-based methods will soon be replaced by
novel approaches that work on a surface-based representation of the environment.

INTRODUCTION

Over the past decade, educational games have
received increasing attention. By now, a large body
of research has been carried out to determine how
the principles behind engaging digital games can
be utilized to improve learning. In general, this
is an open research question with new methods

still being developed, e.g. (Jeuring, van Rooij, &
Pronost, 2014). It has been shown for particular
cases that engaging virtual environments can yield
a higher motivation and better learning results for
students (Murray, Bogost, Mateas, & Nitsche,
2006; Ketelhut, Dede, Clarke, Nelson, & Bow-
man, 2007; Ketelhut, 2007; Gee, 2007; Schmitz,
Specht, & Klemke, 2012).

Norman Jaklin
Utrecht University, Netherlands

Roland Geraerts
Utrecht University, Netherlands

537

Navigating Through Virtual Worlds

A key requirement to achieve a high level of
engagement and thus better learning results is the
game being immersive. Immersion can be achieved
in many ways, among which are the technological
aspects of a game. Modern computer hardware and
smarter algorithms have radically changed and
shaped the overall appearance of digital games
in general and educational games in particular.
Technological aspects of games such as graphics,
modeling or physics simulation have received
much attention, and this led to a wide range of
novel techniques to generate visually convincing
and believable pictures, character models, and
animations.

By contrast, the paths traversed by virtual
characters1 are often not visually convincing.
Many educational games do not let their virtual
characters move around autonomously. This is
due to the fact that moving characters might not
be necessary to achieve the learning goals. Fur-
thermore, the computation of realistic and visually
convincing paths is difficult and might even ruin
a user’s immersion when done in a cheap way.
However, many educational games try to simulate
a realistic virtual 3D environment to better match
recent advances in entertainment games. An ex-
ample of such a game is The River City Project
(2002 - 2007). The game has been successfully
used by teachers and students in the U.S., and
results indicate that using virtual environments
in education “might act as a catalyst for change
in student’s self-efficacy and learning processes”
(Ketelhut, 2007). The River City Project simulates
a virtual city from the late 19th century with build-
ings and different terrain, and the residents of the
city are displayed as virtual 3D non-player charac-
ters. These, however, seem stationary and do not
autonomously move around the city in a realistic
way. We believe that state-of-the-art path planning
and crowd simulation methods can improve such
games with respect to the users’ immersion and
overall learning experiences.

Many games that do support moving characters
rely on predetermined or scripted paths. In such

games, a designer can manually create believable
paths that are of high quality. While this does
not ruin a user’s immersion, it also limits the
flexibility and design possibilities of a game. By
contrast, games that are more flexible and allow
unpredictable interactions among characters rely
on algorithms to handle path planning.

In this chapter, we will discuss such algorithms.
We focus on path planning for single virtual char-
acters and large virtual crowds. The latter have
become increasingly important in simulation soft-
ware for mass events and evacuation training, e.g.
(SportEvac, 2014), which could be used in school
education to increase the students’ awareness of
potential dangers during such events.

The overall goal in this research field is to
compute visually convincing and natural paths
for a large number of characters in real-time to
improve the user’s immersion. We will discuss
how this field and the methods used have changed
over the past few decades, and give an overview
of state-of-the-art techniques and open research
problems.

We will start with discussing different ways
to represent traversable space in a virtual envi-
ronment. A classical approach is to use a grid or
waypoint-graph representation. Path planning is
then done using a graph-based search algorithm.
We will explain why a graph representation is not
adequate for many challenging path planning and
crowd simulation problems.

A more recent approach to represent traversable
space is to use a navigation mesh. We will discuss
the advantages of navigation meshes over graph
representations. In a believable and immersive
game world, autonomous virtual characters need
to react adequately to dynamic changes in the
environment. Such dynamic changes might allow
traversing paths that were previously blocked, or
they might block paths that were previously tra-
versable. Examples are parking cars on a sidewalk
or an automatic door that opens and closes. Many
games avoid solving these issues by using work-
around techniques. Characters may be permitted

538

Navigating Through Virtual Worlds

to temporarily walk through obstacles, or the discs
used for collision avoidance are very small. These
workarounds may destroy a player’s experience in
an otherwise immersive world. A navigation mesh
needs to be able to efficiently represent virtual
environments that can dynamically change over
time, and we will discuss cutting-edge research
on this topic.

Some recent path planning methods that use a
navigation mesh are based on a multi-level plan-
ning hierarchy. They compute a first rough path and
then use advanced path following techniques that
modify the input path to generate a smooth curve
with certain desired properties. In this context, we
will discuss the Indicative Route Method, which
uses an augmented navigation mesh called Explicit
Corridor Map. We also discuss its successor, the
Modified Indicative Routes and Navigation meth-
od, which allows path planning in heterogeneous
virtual environments that feature different region
types. We will also give an overview of different
collision-avoidance techniques and discuss their
advantages and drawbacks.

Another topic we will discuss is social group
behavior. While many of the aforementioned path
planning methods solve issues related to single
characters, they lack simulating social aspects
for groups. In real life, people tend to form social
groups and split up again after a while. Members
of such groups try to stay in particular social for-
mations whenever possible. Other people display
different walking behavior when encountering a
social group. For instance, social territories occu-
pied by groups are usually avoided by other people.
An immersive virtual world needs to reflect this.

Handling large virtual crowds requires dif-
ferent approaches. Virtual crowds that consist of
hundreds of individual characters can be rendered
with modern gaming hardware. In an educational
game that features large crowds, however, only a
small portion of the overall CPU power can be
assigned to handle crowd simulation. Thus, co-
ordinating and handling the navigation of crowds

requires advanced strategies on a theoretical and
practical level.

We now start by discussing different ways to
represent traversable space in a virtual environ-
ment. Such representations form a basis on top
of which path planning and crowd simulation can
be performed.

REPRESENTING
TRAVERSABLE SPACE

How should traversable space be represented in a
game? The choice for a certain representation is
strongly connected to the complexity and required
efficiency of the application at hand. In this section,
we discuss several representations of traversable
space and their pros and cons.

Historically, digital games have been developed
for entertainment purposes, while educational
games are a comparably new phenomenon. Thus,
we will consider examples from popular entertain-
ment games when discussing traversable space.
The same observations and conclusions can be
applied to recent and future educational games.

Depending on the type of game, more or less
effort needs to be spent on this matter. As an ex-
treme example in which representing traversable
space is a trivial task, consider the classic 2D
arcade game Space Invaders (Taito Corporation,
1978). Here, the enemies move in a predetermined
and scripted way, which does not involve any path
planning. The player’s traversable space is only
a 1D straight-line segment at the bottom of the
screen for which no complex representation is
necessary. Note that there is no automated path
planning for the directly-controlled player char-
acter either, but the player’s traversable space is
still important for collision avoidance with the
left and right screen limits. A game that is more
complex with respect to path planning is Pac-Man
(Namco, 1980). The enemies follow different
strategies to catch the player. Here, the 2D game
world consists of rectilinear tiles that are either

539

Navigating Through Virtual Worlds

traversable or blocked. Thus, a simple tile-based
grid approach is a sufficient way to represent
all traversable space. By contrast, many modern
games tend to simulate an open world (e.g. Grand
Theft Auto V (Rockstar Games, 2013)), or they
provide a sandbox environment, which allows play-
ers to generate their own content (e.g. Minecraft
(Mojang, 2009)). Both types of games feature
highly dynamic multi-layered 3D environments
with different terrain types. Characters in future
variants of such game genres should not only
plan collision-free paths, but also autonomously
detect and use areas where climbing or jumping
over gaps is possible to access difficult-to-reach
areas in the game world. Such features require a
representation of traversable space that is far from
trivial and still open to future research.

The topology of the game world also influ-
ences the choice of how to represent traversable
space. While the topology of the world in Space
Invaders is a 2D plane, there are games with more
complex topologies. In Pac-Man, characters are
allowed to exit to the left and right screen edges to
appear on the opposite side. This behavior follows
the topology of a cylinder. An example of a game
with the world topology of a torus is Asteroids
(Atari Inc, 1979). The player’s ship as well as
asteroids and flying saucers can exit the screen
to all four edges and appear on the opposite side.
3D Games that allow a character to fly, such as
Descent (Parallax Software, 1994), feature a 3D
space topology. In Super Mario Galaxy, the player
can fully circumnavigate small planets and, hence,
the world topology equals a sphere (Nintendo EAD
Tokyo, 2007). In Super Paper Mario (Nintendo
SPD, 2007), the player has to interactively switch
between 2D and 3D perspectives to solve puzzles.
In Portal (Valve Corporation, 2007), the player can
create traversable connections between arbitrary
points in particular areas of the game world. The
game Monument Valley (Ustwo, 2014) features
dynamic Escher-like worlds that are physically
impossible. Other exotic topological spaces such
as the Möbius Strip (Möbius & Listing (indepen-

dently), 1858) or the Klein Bottle (Klein, 1882)
require different path planning strategies, but may
also enable novel gameplay elements.2

Note that we only discuss games that require
two-dimensional traversable space representa-
tions. Even when the game world is technically
a (multi-layered) 3D environment, a 2D repre-
sentation is sufficient as long as characters need
to traverse 2D surfaces only. For actual 3D path
planning (e.g. for autonomous flying characters),
the problems we discuss in this chapter are more
complex and require even more advanced algo-
rithms beyond the scope of this chapter.

For more information on world topologies and
the concept of traversable space in digital games,
we refer to the discussion Theorizing Navigable
Space in Video Games (Wolf, 2009/2010). Its main
focus is on space the player can traverse from an
abstract level. For path planning purposes, how-
ever, we are interested in representing space for
autonomous characters or player characters that
are controlled in an indirect way (e.g. by assigning
a goal position via a mouse click or a finger press
on a touchpad). Therefore, we will now list several
methods to represent traversable space that have
been used in past and present digital games, and
discuss their advantages and drawbacks.

Grids

Grids can be intuitively described as regular
subdivisions of the plane into cells of a particular
shape and with a particular grid resolution. From
an abstract point of view, grids can be seen as a
special case of lattice structures. This means that
by adding so-called generator vectors to a given
cell point in the grid, any neighboring cell point
can be obtained. For a 2D grid, two generators
representing the up and right directions are suffi-
cient to obtain all grid cell points (LaValle, 2006).

Grids are intuitive and easy to implement,
which makes them a popular representation of
traversable space. The most common types are
rectilinear or square grids. However, other types

540

Navigating Through Virtual Worlds

have been widely used in games, too. Hexagonal
grids are common, as well as grids with isomet-
ric diamond-shaped tiles; see Figure 1. From a
topological point of view, isometric grids and
rectilinear grids are equal. They are commonly
used in 2D games to simulate an isometric view on
pseudo-three-dimensional game worlds in which
correct clipping is easily achieved by rendering
objects on the grid from top to bottom along the
screen. They are also used in many traditional and
modern board games, and have also been widely
used in pen and paper role-playing games to
simulate combat scenarios.

When traversable space is represented using a
grid, the actual path finding is usually performed
on the dual graph of the grid cells. This is because
a wide range of graph-search algorithm exists that
can compute shortest paths efficiently (see Section
“A* and its variants”). Furthermore, game objects
are usually placed in the center of the grid cell.
In the dual graph, each grid cell is represented as
a vertex and adjacent cells are connected by an
edge. While a rectilinear, square or isometric grid
keeps its structure when considering its dual graph
(except for an offset translation), hexagonal grids
become triangular and vice versa, see Figure 2.
Thus, using the center points of hexagonal cells
as possible character positions is technically the
same as performing path-finding on a triangular
graph. In the case of square grids, typical vari-
ants are 4-neighbor and 8-neighbor square grids,

depending on whether diagonal movement from
one cell to another is allowed or not.

Path planning can also be done on the edges
or vertices of the grid itself. The Settlers II,
for instance, uses a hexagonal grid (Blue Byte
Software (today: Ubisoft Blue Byte), 1996). The
player can build roads along the edges and place
flags along the vertices of the grid. Objects are
then distributed and moved along the roads. The
edges and vertices of the grid are also used in
adaptations of abstract board games such as Go
or in many puzzle games.

While grids are easy to implement, a major
problem is that grids may not cover all of the tra-
versable space visually shown to the player. Some
corners of the game world and important passages
between two obstacles might not be traversable
due to a too coarse grid resolution; see Figure 3.

The question of how much a grid path deviates
from a shortest path on the exact geometry has
been mathematically answered via path-length
analysis proofs. Nash (2012) presented a unified
proof structure for upper bounds on the length of
square, triangular, hexagonal and cubic 3D grid
paths. The author showed that a grid path on a
triangular, 4-neighbor square, 8-neighbor square,
or hexagonal grid can be at most 2, 1.41, 1.08, or
1.15 times as long as an optimal (shortest) path,
respectively. In addition, Jaklin, Tibboel, and Ger-
aerts (2014) presented a path-cost analysis proof
for 8-neighbor square grid paths in environments
with multiple region types (e.g. different terrain

Figure 1. Rectilinear, isometric and hexagonal grids

541

Navigating Through Virtual Worlds

types), where the cost for traversing a particular
region is given as a weight .They showed that a
grid path can be at most 5.08 times as long as an
optimal path in this situation, when all regions
are aligned with the grid.

Grids or their dual graphs are also inflexible
because characters’ motions are hard to coordinate
when two or more characters follow the same edge
bi-directionally. In addition, they impose only an
infinitely small subset of all possible trajectories.
Resulting motions may not be visually convincing
because the underlying graph edges are not smooth
and do not cover energy-optimal paths. Smoothing
the paths can be expensive and often requires a
global approach. This is undesired because digital
games require real-time responses. Furthermore,

the dual graph of a grid requires computationally
expensive updates when the obstacles are inserted,
deleted, or moved. Note that these issues also
occur with other graph-based approaches such as
waypoint graphs, which we discuss now.

Waypoint Graphs or Road Maps

Waypoint graphs and road maps are two inter-
changeable terms. The nodes (or waypoints)
resemble locations in the game world in which a
character can be located. An edge between two
nodes in the graph resembles a straight-line path
which characters can traverse without hitting
obstacles; see Figure 4.

Figure 2. Hexagonal grids and triangular grids are dual graphs of each other. Each point is a vertex
in the triangular graph (red), and it corresponds to a hexagonal cell in its dual graph representation.

542

Navigating Through Virtual Worlds

Waypoint graphs can be automatically gener-
ated based on the visibility graph of the environ-
ment or based on some other decomposition of
the traversable space such as the medial axis
of the environment (see Section “Navigation
Meshes” and (de Berg, van Kreveld, Overmars,
& Schwarzkopf, 2000). Other examples from the
robotics community are Probabilistic Road Maps
(Kavraki, Svestka, Latombe, & Overmars, 1996)
and Rapidly-Exploring Random Trees (LaValle,
1998). The latter two are more general because

they can be used to solve higher-dimensional
problems, e.g. finding a path for a robot manipula-
tor arm with six joints that has to grasp an object
and move it through a cluttered 3D environment.

The nodes of a visibility graph are the vertices
of the polygonal obstacles in the environment. An
edge between two nodes is added in the visibility
graph, if the straight-line segment between them
does not intersect any obstacles, or, in other words,
if the two nodes see each other; see Figure 5 (left).
Note that the complexity of the visibility graph

Figure 3. Squared grid overlaid on a polygonal environment: Red (dark) squares count as obstacles
because they are partially covered by polygons. Some passages are not traversable due to the too coarse
grid resolution.

543

Navigating Through Virtual Worlds

can be quadratic in the number n of polygon
vertices. The graph can be computed in O n(²)
worst-case optimal time (Welzl, 1985; Ghosh,
2007).

Laumond (1987) introduced the concept of
the generalized visibility graph, which has been
used for path planning by several authors (Yu,
2006; Masehian & Amin-Naseri, 2004; Wein, van
den Berg, & Halperin, 2007). For a character that
is represented as a disc with a maximum size
r ≥ 0 , the obstacles in the generalized visibility
graph are first inflated by r using Minkowski’s
operations. There are two types of nodes in the

resulting graph. Vertices of the first type are
concave corners of the inflated obstacles. Vertices
of the second type are fictitious vertices that cor-
respond to convex arcs of the inflated obstacles.
In general, a shortest path in a polygonal scene
consists of segments that are tangent to the borders
of the obstacles. Therefore, it can be shown that
all vertices of type one need not be connected by
additional edges because they are never part of a
shortest path. For the set of fictitious vertices, a
generalized notion of visibility is used: Two ficti-
tious vertices see each other, if and only if there
is at least one pair of points on the corresponding

Figure 4. A waypoint graph for an environment with four obstacles

544

Navigating Through Virtual Worlds

two arc segments such that their straight-line
connection is tangent to both arc segments. See
Figure 5 (right) for an example. The generalized
visibility graph is not only smaller in the number
of edges, but it also makes a character automati-
cally keep clearance from obstacles. Since the
search for tangents can be performed in O n(²)
time, the overall time complexity to compute the
generalized visibility graph is the same as for the
visibility graph.

Another common way to build a waypoint
graph is to manually determine waypoints and
edges for a given environment in the level design
phase of game production. Some games such as
real-time strategy games (e.g. Starcraft II (Bliz-
zard Entertainment, 2010)) even allow players to
set waypoints themselves and use this as a tactical
gameplay element.

As mentioned before, waypoint graphs are
generally smaller in the number of nodes and
edges compared to the dual graph of a grid. This

decreases the time to perform a path-finding
algorithm on that structure (see Section “A* and
its Variants”).

However, all graph-based techniques suffer
from a range of problems that are inherent to these
techniques. A graph does not provide informa-
tion about the actual geometry of the scene, and
it does not allow characters to deviate from their
paths induced by the graph edges. This becomes
an even bigger problem for a large crowd and
collision-avoidance among the crowd members.
The resulting paths may neither be natural nor
visually convincing.

Given all these issues, we believe that the
end of graph-based methods for advanced path
planning has come. Recent techniques based on
a surface-representation of the virtual environ-
ment - such as navigation meshes - are a promis-
ing next step into the future of digital games that
feature large crowds or require other advanced
navigational tasks.

Figure 5. Left: A visibility graph for a scene with three obstacles. Dashed edges are pruned in the gen-
eralized visibility graph because their corresponding vertices in the generalized graph do not see each
other. Right: A generalized visibility graph for the same scene with inflated obstacles and corresponding
visibility edges.

545

Navigating Through Virtual Worlds

Navigation Meshes

A navigation mesh is a set of two-dimensional
simple polygons representing the traversable space
in a game world. With this general definition, the
aforementioned grids can also be seen as special
types of navigation meshes. However, navigation
meshes can be built with polygons representing
the exact geometry of the environment, or with
a sufficient approximation of it. Figure 6 shows
an example of a navigation mesh.

Games that come with level editors and support
path planning with navigation meshes either use an
automatic navigation mesh generation algorithm
or let the user define traversable space for the
level geometry within the editor. For example,
in Counter-Strike: Source, automatic navigation
mesh generation for user-generated maps is done
by a flood-filling algorithm (Valve Corporation,
2004). The user defines spawn-points for players
on traversable parts of the game map. From those
points, the algorithm computes all traversable
space that can be reached from the initial posi-
tions. Additionally, the user can explicitly mark
traversable areas in case the algorithm fails to
detect some parts due to steep stairs or ramps.

An open source library to automatically con-
struct navigation meshes out of 3D level geometry
is the project recastnavigation (Mononen, 2009).
Recast generates a voxel mold from the 3D level
geometry and automatically detects and prunes
non-traversable areas. The resulting walkable
space is then divided into simple overlaid 2D re-
gions with one single non-overlapping contour. By
tracing the boundaries of the regions, the algorithm
produces a set of traversable convex polygons as
a final output. The resulting navigation mesh can
be then used for path planning. For example, it
can be fed into Detour, which is a path-finding
toolkit accompanying Recast.

Kallmann (2010a) introduced a navigation
mesh called a Local Clearance Triangulation
(LCT). It can be used to answer path queries
for characters of different size. Locally shortest

paths can be computed in optimal time. If global
optimality is required, an extended search is used
to gradually improve the path. Furthermore, Kall-
mann discussed several algorithms and operations
that are based on generic triangulation-based
navigation meshes and on the LCT in particular
(Kallmann, 2010b). Among these are methods
for automatic agent placement, tracking moving
obstacles, and ray-obstacle intersection queries.
Kallmann’s navigation mesh yields an exact rep-
resentation of the environment and can handle
dynamic updates efficiently. However, (multi-
layered) 3D environments are not discussed.

Pettré et al. (2005) introduced a navigation
mesh based on discs and cylindrical areas. It sup-
ports multi-layered 3D environments and charac-
ters of variable size. However, it does not support
an exact representation of the navigable space and
efficient dynamic updates of the environment.

A navigation mesh that combines the advan-
tages of the aforementioned approaches is the
Explicit Corridor Map (ECM) (Geraerts, 2010).
It is based on the medial axis of the environment,
which is the set of all points that are equidistant
from at least two distinct closest obstacle points;
see Figure 7.

The medial axis can be seen as a special type
of waypoint graph in which all edges run through
the center of the free space between pairs of ob-
stacle polygons. For each vertex of the medial
axis graph, there are either at least three obstacle
polygons that have the same distance from that
vertex, or the vertex is placed in a non-convex
corner of an obstacle. An edge between two ver-
tices of the medial axis consists of a sequences
of straight-line segments and parabolic arcs, de-
pending on the type of corresponding obstacles
to its left and right, see Figure 7 (left). With each
element in this sequence, its left and right closest
obstacle points are stored. This partitions a 2D
environment into a set of walkable areas in
O n n(log) time and O n() space, where n is the
total number of obstacle vertices. Each area cor-

546

Navigating Through Virtual Worlds

responds to one particular obstacle polygon, as
all points in that area are closer to that obstacle
than to all other obstacles.

In the field of Computational Geometry, a
similar structure is known as the Generalized
Voronoi Diagram (GVD), and it has been widely
studied during the last decades. It can be efficiently
computed using graphics hardware (Hoff, Keyser,
Lin, Manocha, & Culver, 1999): First, for each
two-dimensional site (i.e. the obstacle polygons,
lines or points) a three-dimensional distance mesh
is computed and drawn by the graphics hardware,
each mesh in a different color. By projecting the

distance meshes back onto the 2D plane and trac-
ing the boundary lines of the different regions in
the color buffer, a feasible approximation of the
GVD can be obtained. This approach requires
the obstacle polygons to be convex, so concave
polygons are first subdivided into a convex ones.
This yields edges and vertices that are not part of
the GVD for the original scene. For path planning
purposes, these additional edges are desired if they
run into convex corners. Otherwise characters
cannot access such corners. All other additional
edges, however, are redundant. The medial axis

Figure 6. A navigation mesh for the environment shown in Figure 3 and Figure 4

547

Navigating Through Virtual Worlds

is basically the same as the GVD, but with the
redundant edges and vertices pruned.

The main drawback of the ECM is that it is
difficult to implement in a robust way. There are
software libraries available for computing GVDs
(Held, 2011; The Boost C++ Library, 2015), but
they often struggle with imprecision in the data
due to numerical rounding errors, especially when
a high level of detail is needed. Consequently, the
input data (i.e. obstacles) need to be preprocessed.

Still, the ECM has many advantages. All tra-
versable space is represented with respect to the
correct topology of the environment. This resolves
the issues that are inherent to all approximated
representations that we discussed before. Further-
more, the ECM is space-efficient and supports
time-efficient extraction of global paths with any
desired amount of clearance from obstacles. The
ECM works both for 2D and multi-layered 3D
environments; see Figure 7. In addition, the ECM
can be dynamically updated in real-time by only
applying local changes to the mesh whenever an
obstacle is inserted or deleted (van Toll, Cook IV,
& Geraerts, 2012).

For more algorithms on automatic navigation
mesh generation and related path planning top-
ics, we refer the interested reader to the AI Game
Programming Wisdom book series (Rabin, 2008).
This concludes the first part on representing tra-
versable space. We have discussed a wide range
of representations, as well as their advantages and
drawbacks. Now we will show how the correspond-
ing structures can be queried to compute paths.

PATH PLANNING FOR
SINGLE CHARACTERS

In this section, we will elaborate on both classic
and recent path planning strategies. We start with
the popular A* search algorithm on a graph. We
then present the Indicative Route Method (IRM),
and its successor, the Modified Indicative Route
and Navigation (MIRAN) method. Afterwards,
we give a general overview of local collision
avoidance strategies.

Figure 7. Left: Obstacles (shown in red; the center U-shape and the four bounding line segments), medial
axis (solid blue), ECM vertices (large discs) and closest points, subdividing the free space into ECM
cells (dotted gray lines). Right: a multi-layered 3D environment and its medial axis (van Toll, Cook IV,
& Geraerts, 2012).

548

Navigating Through Virtual Worlds

A* and Its Variants

The A* algorithm (Hart, Nilsson, & Raphael,
1968) is one of the best known and probably the
most used path-finding algorithm in the domain
of digital games. This is because it can efficiently
compute shortest paths in a graph and combines
the advantages of Dijkstra’s algorithm (1959)
with a greedy Best-First-Search strategy. With
only small and easy to implement variations, a
wide range of variants (e.g. shorter computation
time to find good paths rather than optimal ones)
can be obtained.3 This makes the A* algorithm a
flexible and powerful tool for many path-finding
applications (Trovato, 1996).

The main idea of A* is to combine actual
traversal costs from a start node with heuristic
values that estimate the distance to a target node.
Given an edge-weighted graph with two desig-
nated nodes s and t , a function assigns to
each node n in the graph the costs of the cur-
rently known shortest path from s to n . Further-
more, a heuristic function h assigns to each node
in the graph the estimated costs of a path from n
to t . A* then starts to search for a path from s
to t by computing f g h= + for each node
under consideration and expanding a node with
minimum f -value in each step. The g -value of
a node n is updated whenever a shorter path than
the current one from s to n is detected. A* man-
ages two lists of nodes, the open list and the closed
list. While the open list stores all nodes that are
currently under consideration, the closed list stores
all nodes that have already been expanded and do
not need to be visited again.

It can be proven, if the heuristic function h
does not overestimate the actual costs for each
node, that A* will always find an optimal (i.e.
shortest) path. On the contrary, if h overestimates
the costs for some or all nodes, the computation
time of the search may be decreased, but the path
may not be optimal.

If h is an exact estimation of the actual costs,
then A* has the nice property to find a shortest
path in optimal time. In this case only the nodes
that are contained in a shortest path as well as
their neighbors are expanded; see Figure 8 (bot-
tom). Even if all paths in the graph are shortest,
A* will expand only one of them depending on
the sorting strategy of the open list. A theoretical
approach to exploit this property could be to
compute all costs of optimal paths for all pairs of
nodes in the graph as a preprocessing step (with-
out storing the paths themselves to save space).
These costs could then be used as an exact heu-
ristic to make A* compute optimal paths in opti-
mal time. However, this is only practical for small
graphs and is usually not a feasible solution in
gaming applications.

If we do not consider the heuristic function h
and let f g= , we get Dijkstra’s algorithm (1959).
If we only consider h and ignore all the g -values
in each node (i.e. f h=), we get a greedy Best-
First-Search strategy. Therefore, A* can be seen
as generalization of both strategies. Figure 8 il-
lustrates the three different strategies on a grid
with uniform costs. It shows that Dijkstra’s algo-
rithm finds an optimal path, but expands a high
number of nodes. The greedy strategy expands
only a few nodes, but the resulting path is far from
optimal. A* combines both strategies, finding an
optimal path while expanding only a few nodes.
Note that in the example, we assume to have an
exact heuristic h , which reduces the number of
expanded nodes to a minimum.

In general, finding a feasible heuristic can be
difficult because the quality of the heuristic de-
pends on the environment. The Euclidean distance
is a popular choice. However, it is not well-suited
for maze-like environments in which the length of
a path between two points may differ a lot from
the Euclidean distance between them.

There are many more variants and modifica-
tions of A*. As the size of the open list strongly
influences the computation time for the final path,

549

Navigating Through Virtual Worlds

many variants aim at keeping the number of nodes
in the open list small. For example, the size of the
open list can be limited by a constant number of
nodes, and nodes with the highest f -values can
be dropped whenever the open list becomes big-
ger than that number (beam search (Lowerre &
Reddy, 1980)).

Instead of generating one large set of opened
and closed nodes, performance can also be im-
proved by searching from s to t and from t to
s simultaneously and stop when the two paths
meet in the same node. However, the result is not
guaranteed to be optimal.

Another concept is to inflate the h -values by
some given weight w ≥1 and to compute the
f -values as f g wh= + . With this weighted A*
variant (Pohl, 1970), additional emphasis is put
on the heuristic. In this way, the expansion of
nodes that appear to be closer to the goal are
preferred, thus yielding a trade-off between com-
putation time and quality of the path. This idea is
further extended to anytime variants of A*, which
start with a high weight for the heuristic values
to compute a first rough solution quickly. This
first solution is then improved over time by adjust-
ing the weights. One of those anytime variants is
ARA* (Likhachev, Gordon, & Thrun, 2004), in

Figure 8. Comparison of different search strategies on a grid with uniform costs. Obstacles are shown
in grey, free space is shown in white. Expanded cells are shown in dark green. Cells that are part of the
final path are shown in bright green (with arrows pointing towards the next node on the final path). Top
Left: Dijkstra’s algorithm expands many nodes, but finds an optimal path. Top Right: Best-First-Search
expands only a few nodes, but finds a non-optimal path. Bottom: A* combines both advantages (an exact
heuristic is chosen to illustrate the strength of A*).

550

Navigating Through Virtual Worlds

which the weight w is based on a linear trajec-
tory and two additional user-controlled parameters.
The user has to set the initial value of w to-
gether with a fixed step size ∆w by which the
weight is decreased between the computation of
solutions. Another anytime variant of A* is called
ANA* (Anytime Non-parametric A*) (van den
Berg, Shah, Huang, & Goldberg, 2011). It uses a
novel criterion for deciding which node to expand
next in each step. Instead of expanding the node
with lowest weighted f -value, it expands the
node that maximizes the term e G g h= −() / ,
with G being the costs of the currently best solu-
tion (which is set to infinity in the first iteration).
The term e can be intuitively understood as the
ratio between the “budget” that is left to improve
the current-best solution and the estimated costs
between the node and the goal. Maximizing e
corresponds to picking the largest weight w such
that f G≤ , and to expanding the node that is
most promising to improve the current-best solu-
tion. ANA* overcomes the user’s problem in
ARA* of finding appropriate parameters, and has
comparable and in some cases better performance
than ARA*.

Despite the fact that A* and its variants are
widely used for path planning in digital games,
it is not the final answer. Many open research
questions cannot be answered by using A* on a
graph. Recent approaches use the aforementioned
navigation meshes and the possibility to store
additional information. Solving advanced path
planning and crowd simulation problems on
2D-surface representations of the environment
rather than on 1D representations such as graphs
require new strategies, which we will discuss in
the following sections.

The Indicative Route Method

The Indicative Route Method (IRM) (Karamouzas,
Geraerts, & Overmars, 2009) is a path planning
strategy based on the Explicit Corridor Map

(ECM); see Section “Navigation Meshes”. The
IRM combines the general concept of global
planning using the ECM together with local
force-based strategies. Given a character with a
start position and a designated goal position, the
method works as follows.

First, an indicative route is created. An in-
dicative route is a route from the start to the goal
position, and it functions as a guiding line and a
rough estimation of the character’s preferred route
through the environment. This route can be either
manually designed or automatically computed by
a global path planning approach (e.g. by an A*
search on a grid; see Sections “Grids” and “A*
and its Variants”). We assume that the indicative
route is given as a straight-line strip between a
set of waypoints; see Figure 9 (left).

Second, the actual path is computed by letting
the character move towards an attraction point in
a number of discrete time steps. In each step, the
character’s current position x is retracted onto
the medial axis. This retraction works as follows:
We trace the line between x and its closest ob-
stacle point in opposite direction until it intersects
the medial axis. This intersection point is the
retraction point of x , and it is denoted by r ; see
Figure 9 (right). Now the radius of the maximum
clearance disc around r is given as the distance
between r and its closest obstacle point. In
other words, the maximum clearance disc is the
disc centered at r that is as large as possible
before it intersects an obstacle. If the goal position
is contained inside the disc, the character will be
attracted to it. Otherwise, the attraction point 𝛂
is defined as the last point on the indicative route
that intersects the boundary of the clearance disc;
see Figure 9 (right). The attraction point 𝛂 , the
character’s current position x and its preferred
speed induce a preferred velocity for the charac-
ter in each step of the simulation. This velocity is
then integrated using Euler’s integration (Butch-
er, 2008) or a similar integration scheme to produce
smooth and natural paths; see Figure 10 for an
example in a 3D city environment.

551

Navigating Through Virtual Worlds

For a modest number of characters, the IRM
runs at framerates suitable for real-time applica-
tions. However, the IRM has its drawbacks. For
large crowds of tens of thousands of individual
characters, the method is computationally ineffi-
cient. Furthermore, the retraction strategy requires
indicative routes to have no self-intersections and
backtracks, thus limiting the flexibility and power
of the method for specific scenarios. Furthermore,
as the definition of the attraction point depends
on the available amount of free space around the
character’s current (retracted) position, the method
causes undesired behavior in large areas of free
space, but also in confined spaces. When there is
a large area of free space around the character, the
maximum clearance disc has a large radius. This
results in attraction points being far ahead of the
character’s current position. The resulting path
smoothes the indicative route to a great extent and
skips parts that might be important. By contrast,
in confined spaces such as a narrow but slightly
winding and long passage, the maximum clearance

is small. The IRM makes the character frequently
change its orientation although a straight move-
ment in the direction of the corridor is expected.

To address these limitations, the Modified
Indicative Routes and Navigation method was
developed. This method can be seen as a succes-
sor of the IRM, and we will describe it now in
more detail.

The Modified Indicative Routes
and Navigation Method

The Modified Indicative Routes and Navigation
(MIRAN) method adopts from the IRM the con-
cept of using an indicative route and computing
an attraction point in each step of the simulation
(Jaklin, Cook IV, & Geraerts, 2013). It computes
several candidate attraction points in each step of
the simulation. The best candidate is then picked
according to a weight-function that takes region
preferences into account.

Figure 9. Left: an indicative route with waypoints w w
0 8
, ..., . Right: a character with center point x , its

retraction point r on the medial axis, and attraction point 𝛂 as the intersection of the indicative route
and the maximum clearance disc (dashed) around r .

552

Navigating Through Virtual Worlds

MIRAN improves on the IRM in several
aspects. Its main contribution is the simulation
of heterogeneous environments for different
character profiles. Each character profile has its
own specific preferences for certain region types
(roads, bike-lanes, sidewalks, lawns, etc.). MIRAN
can be used for path following without requiring
a copy of the navigable space for each character
profile. Furthermore, the method allows the user
to control how closely an indicative route should
be followed and how much freedom a character
has to deviate from or skip parts of it. Thus, the
method is independent of local clearance informa-
tion and overcomes the aforementioned problems
of the IRM.

While MIRAN makes the above contribution,
it has its limitations. MIRAN is defined for a char-
acter represented as a point in the environment, not
a disc or similar 2D shape. Thus, different char-
acter sizes and arbitrary clearance from obstacles
are not supported by this method. Furthermore,

MIRAN does not handle collision avoidance with
region-preferences. Characters do independently
take regions into account while travelling, but
they ignore this information as soon as collisions
among them need to be avoided. Solving these
issues is subject of current research.

The quality of paths generated with the MIRAN
method also depends on the quality of the indica-
tive routes that are used. These can be computed by
using A* on a grid (Jaklin, Cook IV, & Geraerts,
2013), but recent approaches rather consider the
exact geometry of the environment (Jaklin, Tib-
boel, & Geraerts, 2014) (see Figure 11).

Local Collision Avoidance

In this section, we give an overview of different
strategies to handle local collision avoidance be-
tween characters. The algorithms can generally
be divided into three categories. First, reactive
steering methods let the character adapt its path

Figure 10. A smooth path computed by the Indicative Route Method using the Explicit Corridor Map
(Geraerts, 2010)

553

Navigating Through Virtual Worlds

to dynamic and static obstacles. Second, colli-
sion prediction methods assume that a character
moves with a constant velocity. Future motions
are predicted by linearly extrapolating the char-
acter’s current movement. In this way, collisions
can be detected and avoided in advance. Third,
example-based methods use a database of example
behaviors from captured crowd data. A character
selects an example behavior that closely matches
its current state with respect to a given metric. We
now discuss related work for each of the three
collision avoidance categories.

Reactive steering methods originated from the
robotics community. Force-based approaches are
usually a variant of a potential field as described
in Section “Potential Field and Flow-Based
Methods”. In the field of animation and crowd
simulation, reactive steering was introduced by
the seminal work of Reynolds on flocks, herds and
schools (Reynolds C. W., 1987). In this model,
three behavioral rules are applied to each flock
member: avoiding collision with nearby flock
members, matching velocity with the nearby
flock members, and staying close to nearby flock
members. Collision avoidance is achieved by
repulsive forces that are exerted on nearby flock
members. The shorter the distance between two
flock members, the stronger the repulsive force.
Velocity matching can be seen as predictive col-
lision avoidance because flock members that
successfully match their velocities are unlikely
to collide. The three behavioral rules are ordered
by priority and accumulated to produce the flock
members motion. The order can be dynamically
adapted during the simulation to temporarily split
the flock for avoiding collisions.

Another reactive and force-based approach
popular in the civil and traffic engineering com-
munity is the social force model introduced by
Helbing and Molnár (1995). The behavior of
pedestrian crowds is simulated by solving New-
ton’s equations of motion, using both physical
and socio-psychological forces. Repulsive and
tangential forces are used to model interactions

between individuals with respect to their relative
distance, and to avoid collisions with obstacles.
Heigas, Luciani, Thollot and Castagné (2003)
propose an approach in which characters and
obstacles are represented as particles. Interac-
tions are represented by physically-based forces
exerted between each pair of particles using a
mass-spring-damper model. The distance between
interacting particles influences the stiffness and
viscosity of the model.

Reactive steering methods need not necessarily
be force-based. Other reactive approaches com-
prise rule-based systems on a 2D grid (Loscos,
Marchal, & Meyer, 2003) or by using cellular au-
tomata (Wolfram, 1994). Behavioral models such
as the work of Terzopoulos, Tu, and Grzeszczuk
(1994) to simulate artificial fish also belong to
this category.

Reactive steering methods have the drawback
that characters react to avoid collisions when other
characters or obstacles get sufficiently close.
This may result in unnatural trajectories because
humans tend to resolve collisions in advance by
the principle of least effort (Zipf, 1949). Further-
more, the resulting motions are often subject to
oscillations.

Predictive methods address these issues.
Reynolds (1999) presents a collection of steer-
ing behaviors, one of them being the unaligned
collision avoidance behavior. Collisions are
predicted by extrapolating current motions and
resolving them by adjusting orientation and move-
ment speed accordingly. Pettré, Ondřej, Olivier,
Cretual, and Donikian (2009) describe a model
based on experimental study. In this model, pe-
destrians take different roles during interactions
(e.g. passing first or giving way). Adaptations of
speed and orientation to avoid collisions depend
on the specific roles of the characters. Among
the predictive methods are also the more recent
vision-based approaches. Those are based on the
assumption that paths are most natural if decisions
are based on the characters’ visual stimuli. Ondřey,
Pettré, Olivier, and Donikian (2010) combine

554

Navigating Through Virtual Worlds

visual stimuli with motor response laws. Fiorini
and Shiller (1998) introduced the concept of a
Velocity Obstacle (VO). For each character, the
VO represents the set of all velocities that would
lead to a collision with another character at some
future time step. By taking the union of VOs for
all characters under consideration, collisions can
be avoided by selecting a velocity outside of the
combined VO. Van den Berg et al. (2008) extended
this concept to the Reciprocal Velocity Obstacle
(RVO) that guarantees oscillation-free motions.
A variety of models have improved on the VO
and RVO concepts; see for example (Snape, Berg,
Guy, & Manocha, 2009; Guy, et al., 2009; van den
Berg, Guy, Lin, & Manocha, 2009). Vision-based

approaches tend to be computationally expensive.
This becomes particularly relevant when simulat-
ing crowds with high densities. In those scenarios,
flow-based methods may be preferred (Treuille,
Cooper, & Popovic, 2006). To further overcome
the problems of short-range avoidance strategies,
long-range collision avoidance has recently been
taken into consideration (Golas, Narain, Curtis, &
Lin, 2014; Anvari, Bell, Angeloudis, & Ochieng,
2014).

Among the example-based techniques are the
works of Ju et al. (2010), Lee, Choi, Hong, and Lee
(2007) and Lerner et al. (2007). Using a database
of captured crowd behaviors, each character selects
an example behavior that is close to its current

Figure 11. The MIRAN method in a forest environment. An adult character (solid non-smooth indicative
route and solid smooth path,) avoids puddles and dense wood, but is attracted to a region with a pan-
oramic view (light grey). A child (dashed non-smooth indicative route and dashed smooth path) crosses
puddles and climbs fallen tree logs (Jaklin, Cook IV, & Geraerts, 2013).

555

Navigating Through Virtual Worlds

state with respect to a given metric. Example-based
models may simulate realistic motions and capture
complex avoidance maneuvers based on actions
taken by real members of a crowd. However, cor-
responding databases are limited to the number
of different behaviors. Situations may occur in
which all matching examples lead to collisions.
In addition, the scenario must always be similar
to the real-life scenario from which the examples
were extracted. Lastly, example-based solutions
are rather used for offline-simulations and are not
applicable to real-time applications such as digital
games due to a high computational complexity.

As we have described in this section, there
is a great variety of strategies that all have its
advantages and drawbacks. Factors that influ-
ence the choice for a specific method are: What
number of characters does a game need to handle
simultaneously? Does it have large crowds or few
individual characters? What is the desired degree
of realism? How many collisions are expected
in each time frame, and how important are low
computation times for resolving those collisions?
How is traversable space represented, and what
collision avoidance strategies are best suited for
this representation? Answers to such questions
need to be answered in the design phase of a game.

CROWD SIMULATION STRATEGIES

The strategies we discussed in the previous sec-
tions mainly focus on computing feasible path
trajectories for individual characters. With modern
hardware, they can be used to simulate a crowd
by applying the corresponding techniques to all
crowd members simultaneously and adding lo-
cal collision-avoidance techniques. A different
approach is to handle a crowd as one large entity
by simulating the motion of each member as a
per-particle energy minimization, thus handling
a crowd similar to a fluid or gas. We now give an
overview of such models.

Potential Fields and Flow-
Based Methods

Using Potential Fields for path planning is an ap-
proach that has emerged from the field of robotics
(Latombe, 1991). The general task in behavior-
based robotics is to have a robot plan and execute
its actions in three steps. First, it receives input
through its sensors. Second, it evaluates the input
to compute a desired behavior (i.e. seek the goal
point or avoid a wall). Third, it maps this plan to
a corresponding sequence of motor actions. For
path planning in digital games, we are mainly
interested in the second step of this approach.
Potential Fields are widely used in this context
because they are an intuitive and well-studied
mathematical concept.

Moving characters in a potential field can be
compared to a leaf floating on a stream of water, or
a marble rolling through an environment of steep
ramps or hills. The surrounding local topology or
geometry of the environment directly influences
the path of the moving object.

From an abstract point of view, a potential field
can be described as a mapping from an input vector
to an output vector. In robotics, the input vector
usually describes the robot’s current orientation
and speed, and the same can be applied to mov-
ing characters in a digital game or simulation.
The output vector describes a motion from the
current position to the next. If the environment is
represented by a finite and discrete approximation
of all traversable space (e.g. by a grid, see Sec-
tion “Grids”), the potential field can be visually
shown as a vector field. It shows the union of all
output vectors for every possible location of the
character in the environment; see Figure 12. It
might be necessary to compute the whole set of
output vectors for large crowds that have a shared
goal. However, when using potential fields for
a small number of characters, the whole set of
output vectors is hardly ever computed and only
the ones are calculated that are actually necessary
for the characters’ motion.

556

Navigating Through Virtual Worlds

For path planning purposes, a given goal
point in the environment acts as an attractor for
the character. The corresponding potential field
applies forces on the character such that it is di-
rected towards the goal; see Figure 12 (left). On
the contrary, obstacles apply a repulsive force
on the characters to avoid collisions; see Figure
12 (right).

Just like a rolling marble can get stuck in a
hole or valley, characters can easily get stuck in
local minima of the potential field. This is one of
the main drawbacks when using potential fields
for path planning. Potential fields that are free of
local minima do exist, but they are expensive to
compute (Connolly & Grupen, 1992), (Rimon
& Koditschek, 1992), (Sundar & Shiller, 1994).
Workarounds are usually considered to handle
this problem (e.g. predict the next few steps and
change a character’s motion if the current motion
will lead to a local minimum).

Other flow-based methods have also been used
for crowd simulation. Hughes (2003) modeled
human pedestrians as a continuous density field,
using partial differential functions to describe

crowd dynamics. Treuille, Cooper, and Popovic
(2006) presented a real-time crowd model based
on continuum dynamics. Their model exhibits
emergent phenomena observed in real crowds
such as lane formation or vortex formation when
several groups cross each other. Furthermore, it
can be used in real-time applications. The authors
showed that they can efficiently steer two oppos-
ing armies or let a crowd in a city react in panic to
a user-controlled flying-saucer. Kerr and Spears
(2006) presented a simulation model based on
gas-kinetics for mobile robots. Pimenta, Michael,
Mesquita, Pereira, and Kumar (2008) used a model
based on Smoothed Particle Hydrodynamics to
simulate swarms of mobile robots.

The main advantage of the abovementioned
models is that they can efficiently simulate large
numbers of characters, as long as there are only a
few goal-states involved. In such cases, they usu-
ally outperform agent-based models in terms of
computation times. However, the computational
complexity of such models becomes too high for
real-time applications when a large number of
different crowds with different goal states needs to

Figure 12. Left: an attractive potential field with a goal point. Right: a repulsive potential field with an
obstacle.

557

Navigating Through Virtual Worlds

be simulated. Furthermore, flow-based models are
not well-suited for low- to medium crowd densities,
in which the individuality of each crowd member
has a larger impact on the overall crowd behavior
than in high-density scenarios. Lastly, none of
the above models focuses on social interactions
among crowd members. We now give an overview
of models that simulate groups, formations and
social interactions.

Groups and Formations

Simulating social interactions among the members
of a crowd is a challenging step towards more
immersive educational games. Pedestrians in a
city environment such as The River City Project
(2002 - 2007) should not walk individually, but
form small social groups, walk together and auto-
matically adapt to dynamic changes like spotting
a friend in a crowd.

In this section, we give a brief overview of re-
search on simulating small and large social groups
of virtual characters. The basis for many of these
approaches is the behavioral model by Reynolds
to simulate flocks, herds, and schools (Reynolds
C. W., 1987), which the author later extended by
adding steering behaviors (Reynolds, 1999) and
interactions within groups (Reynolds, 2000).
Since this model mainly aims at simulating the
behavior of groups of animals, other researchers
have focused on autonomous human characters.

Musse and Thalmann (1997) presented a
rule-based model for crowd behavior of multiple
pedestrian groups. Characters in this model exhibit
flocking behavior and are able to switch between
groups based on sociological factors. The authors
do not elaborate on how group coherence is being
addressed, and the proposed collision-avoidance
model yields undesired behavior compared to
state-of-the-art methods described in Section
“Local Collision Avoidance”.

Kamphuis and Overmars (2004) proposed a
path planning model that maintains group co-
herence and avoids spatial separation between

members of the same group. The model focuses
on large groups such as armies, and is thus well-
suited for military games and applications rather
than simulations of small groups in which social
factors determine the overall behavior.

Kimmel, Dobson and Bekris (2012) also ad-
dressed the problem of maintaining group coher-
ence. Their work is based on the Velocity Obstacle
approach by Fiorini and Shiller (1998), and it
extends this method by adding team behavior. The
limitations of this model are that the characters all
move at the same speed and that only one single
formation is being kept.

Qiu and Hu (2010) presented a model to
simulate dynamic groups based on utility theory
and social comparison theory. Their model allows
characters to dynamically leave and join groups
based on spatial and social factors.

Park, Quek, and Cao (2012) presented a model
that is based on common ground theory. This
model aims at simulating the social interactions
between group members. Each group has a leader,
and group coherence is measured by the distance
from a group member to its leader projected in
the leader’s direction of motion.

Karamouzas and Overmars (2012) presented
a method of how to simulate local behavior of
small pedestrian groups consisting of two or three
individuals in city environments. Their approach
is based on empirical studies regarding the spatial
organization of such groups (Moussaïd, Perozo,
Garnier, Helbing, & Theraulaz, 2010), (Peters &
Ennis, 2009). From those empirical studies, they
derived three formations that small groups tend to
adapt to, namely line-abreast, v-like and river-like
formations. The line-abreast formation functions
as the default one when the group members com-
municate with each other while moving towards
their goal. It is best suited for keeping the social
interaction, provided there is enough space to do
so. If the environment becomes more crowded or
obstacles prevent the line-abreast formation, the
v-like formation is taken. It still provides space
for communication between the group members

558

Navigating Through Virtual Worlds

while adapting to the environmental situation. The
river-like formation is taken when crowd density
is too high to keep the v-like formation, or when
the group has to move through a small hallway or
an equivalent environmental setup. For groups of
two pedestrians, the v-like formation is replaced
by a more compact line-abreast formation that
reduces the distance between the two members.

The model by Karamouzas and Overmars
(2012) has been tested and visualized in different
scenarios. Group interactions have been tested in
a narrow corridor, a shopping mall and a busy
crosswalk. The virtual shopping mall scenario
was compared to original video footage of a
real shopping mall. Different metrics have been
defined to measure the quality of the results in a
quantitative evaluation of the model.

Similar to collision-avoidance methods, it
depends on the application at hand which crowd
simulation model is best. A wide range of ap-
proaches and paradigms exist, and most of the
recent models work well in specific scenarios.
Some of them are beyond the scope of a typical
gaming application, as they try to handle complex
factors among social groups from fields such as
sociology or psychology. With games becoming
more and more realistic, though, these kind of
factors might one day be a crucial and integral
component of immersive gaming experiences, too.

FUTURE WORK

The advanced algorithms we have discussed in
this chapter could be used in future educational
games to enhance a player’s immersion and thus
the overall learning experience. Autonomous
virtual characters could change their appearance
from static, stiff and unnatural to lively, dynamic
and more believable by using the methods we
covered in this chapter.

For instance, in a game such as The River City
Project (2002 - 2007), a navigation mesh such as
the Explicit Corridor Map (Geraerts, 2010) could

enable the residents to autonomously move around
the city with respect to the exact geometry of the
walkable space. Using a method such as MIRAN
(Jaklin, Cook IV, & Geraerts, 2013) makes them
stay on preferred terrain and avoid less attractive
regions without treating such regions as hard ob-
stacles, thus allowing more flexible behavior and
creating smooth and visually convincing paths.
Social-group methods such as (Karamouzas &
Overmars, 2012) could be used to simulate the
residents’ social behavior. The characters could
walk individually, but temporarily form small
social groups to have conversations or walk
together in socially-friendly formations. Novel
crowd simulation models enable the simulation
of large crowds at interactive rates for both low-
and high-density situations (van Goethem, Jaklin,
Cook IV, & Geraerts, 2015). These could be used
to populate a virtual environment like River City
with even more characters that coordinate their
walking behavior and react to dynamic changes
in the environment.

Furthermore, virtual crowds are essential in
training software for evacuation scenarios and
crowd management such as SportEvac (2014).
Such games could not only be used by managers
of mass events and safety personnel, but also in
P-12 education to increase the students’ awareness
of potential dangers during such events.

The aforementioned methods could not only
improve a player’s immersion to a great extent,
but they could also enable advanced gameplay
and novel game-design elements in future edu-
cational games. For example, virtual characters
that display social behavior could be used in a
game that aims at training communication skills.
A player’s learning experience could be enhanced
when the virtual characters not only react to the
player’s negative actions by simply stating that
they are displeased, but actually start avoiding
the player and tell their fellow characters about
the incident, who in turn also display a negative
attitude towards the player.

559

Navigating Through Virtual Worlds

Future educational games could also simulate
social-group behavior on a psychological level.
The question of how individual characters meet,
automatically form groups and depart has been
addressed, but still leaves room for improvement.
Studies from fields such as psychology and sociol-
ogy should be used as a basis for more in-depth
methods to simulate human behavior.

CONCLUSION

As discussed in the previous sections, educational
games often lack realism when characters need to
navigate through a virtual environment. Characters
display stiff movements and lack flexibility in the
paths they choose. For instance, paths are often
scripted and manually created by a designer. The
resulting repetitive behavior reveals the underlying
technological aspects of a game, which in turn
destroys a player’s immersion and the overall
learning experience.

Many different approaches have been taken to
tackle path planning and crowd simulation issues
in virtual environments. While the A* method on
a grid is a flexible and general approach that has
been widely and successfully used in the past, it
is not the final answer to problems related to path
planning and crowd simulation. We have discussed
that surface-based representations of traversable
space via navigation meshes gives developers the
opportunity to create more advanced algorithms.

For all problems we have discussed in this
chapter, a general and theoretically substantiated
basis is missing. Therefore, novel approaches
need to be taken, and new algorithms need to be
developed to enhance future educational games
with respect to their path planning and corre-
sponding game design possibilities. We believe
that the end of graph-based methods is near, and
that the future lies in combining data structures
and novel algorithms that work on a surface-based
representation of the virtual environment.

In this chapter, we have mainly focused on the
navigation aspects of path planning and crowd
simulation for educational games. Other important
aspects are behavioral patterns, visualization and
animation. These are addressed in the book by
Thalmann and Musse (2013).

Overall it can be said that the field of path plan-
ning and crowd simulation is continually growing
and improving. Promising new ideas might soon
evolve into algorithms providing many immersive
features, thus enhancing a player’s gaming experi-
ence and improving learning results in educational
games for training and education purposes.

ACKNOWLEDGMENT

This work was funded by the COMMIT/ project,
http://www.commit-nl.nl.

REFERENCES

Anvari, B., Bell, M. G. H., Angeloudis, P., &
Ochieng, W. Y. (2014). Long-range Collision
Avoidance for Shared Space Simulation based on
Social Forces. Transportation Research Procedia,
2, 318–326. doi:10.1016/j.trpro.2014.09.023

Atari Inc. (1979). USA: Asteroids.

Butcher, J. (2008). Numerical Methods for Ordi-
nary Differential Equations. John Wiley & Sons.
doi:10.1002/9780470753767

Connolly, C., & Grupen, R. (1992). Harmonic
Control. Proceedings of the 1992 International
Symposium on Intelligent Control, (pp. 503-506).
doi:10.1109/ISIC.1992.225142

de Berg, M., van Kreveld, M., Overmars, M.,
& Schwarzkopf, O. (2000). Computational Ge-
ometry: Algorithms and Applications (2nd ed.).
Springer-Verlag. doi:10.1007/978-3-662-04245-8

http://dx.doi.org/10.1016/j.trpro.2014.09.023
http://dx.doi.org/10.1002/9780470753767
http://dx.doi.org/10.1109/ISIC.1992.225142
http://dx.doi.org/10.1007/978-3-662-04245-8

560

Navigating Through Virtual Worlds

Dijkstra, E. (1959). A Note on two Problems in
Connexion with Graphs. Numerische Mathematik,
1(1), 269–271. doi:10.1007/BF01386390

Entertainment, B. (2010). Starcraft II. USA.

Fiorini, P., & Shillert, Z. (1998). Motion
Planning in Dynamic Environments using
Velocity Obstacles. The International Jour-
nal of Robotics Research, 17(7), 760–772.
doi:10.1177/027836499801700706

Gee, J. (2007). What video games have to teach us
about learning and literacy. New York: Palgrave
Macmillan.

Geraerts, R. (2010). Planning Short Paths with
Clearance using Explicit Corridors. Proceedings
of the IEEE International Conference on Robotics
and Automation (pp. 1997-2004). doi:10.1109/
ROBOT.2010.5509263

Geraerts, R., & Overmars, M. (2007). The Cor-
ridor Map Method: A general framework for
real-time high-quality path planning. Computer
Animation and Virtual Worlds, 18(2), 107–119.
doi:10.1002/cav.166

Ghosh, S. K. (2007). Visibility Algorithms in the
Plane. Cambridge University Press. doi:10.1017/
CBO9780511543340

Golas, A., Narain, R., Curtis, S., & Lin, M. C.
(2014). Hybrid Long-Range Collision Avoid-
ance for Crowd Simulation. IEEE Transactions
on Visualization and Computer Graphics, 20(7),
1022–1034. doi:10.1109/TVCG.2013.235
PMID:24080711

Grand Theft Auto V. (2013). Rockstar Games.
USA.

Guy, S. J., Chhugani, J., Kim, C., Satish, N.,
Lin, M. C., Manocha, D., & Dubey, P. (2009).
Clearpath: Highly parallel collision avoidance for
mulit-agent simulation. Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Symposium on
Computer Animation (SCA ‘09) (pp. 177-187).
doi:10.1145/1599470.1599494

Hart, P., Nilsson, N., & Raphael, B. (1968). A
Formal Basis for the Heuristic Determination
of Minimum Cost Paths. IEEE Transactions on
Systems Science and Cybernetics, 4(2), 100–107.
doi:10.1109/TSSC.1968.300136

Heigeas, L., Luciani, A., Thollot, J., & Castagné,
N. (2003). A Physically-Based Particle Model of
Emergent Crowd Behaviors. Graphicon.

Helbing, D., & Molnár, P. (1995). Social force
model for pedestrian dynamics. Physical Review
E: Statistical Physics, Plasmas, Fluids, and Re-
lated Interdisciplinary Topics, 51(5), 4282–4286.
doi:10.1103/PhysRevE.51.4282 PMID:9963139

Held, M. (2011). VRONI and ArcVRONI: Soft-
ware for and Applications of Voronoi Diagrams in
Science and Engineering. Proceedings of the 8th
International Symposium on Voronoi Diagrams in
Science and Engineering (pp. 3-12). doi:10.1109/
ISVD.2011.9

Hoff, K., Keyser, J., Lin, M., Manocha, D., & Cul-
ver, T. (1999). Fast computation of generalized vo-
ronoi diagrams using graphics hardware. Proceed-
ings of the 26th annual conference on Computer
graphics and interactive techniques SIGGRAPH
‘99 (pp. 277-286). doi:10.1145/311535.311567

Hughes, R. (2003). The Flow of Human
Crowds. Annual Review of Fluid Mechan-
ics, 35(1), 169–182. doi:10.1146/annurev.
fluid.35.101101.161136

http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1177/027836499801700706
http://dx.doi.org/10.1109/ROBOT.2010.5509263
http://dx.doi.org/10.1109/ROBOT.2010.5509263
http://dx.doi.org/10.1002/cav.166
http://dx.doi.org/10.1017/CBO9780511543340
http://dx.doi.org/10.1017/CBO9780511543340
http://dx.doi.org/10.1109/TVCG.2013.235
http://www.ncbi.nlm.nih.gov/pubmed/24080711
http://dx.doi.org/10.1145/1599470.1599494
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1103/PhysRevE.51.4282
http://www.ncbi.nlm.nih.gov/pubmed/9963139
http://dx.doi.org/10.1109/ISVD.2011.9
http://dx.doi.org/10.1109/ISVD.2011.9
http://dx.doi.org/10.1145/311535.311567
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161136
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161136

561

Navigating Through Virtual Worlds

Jaklin, N., Cook, I.V.A. IV, & Geraerts, R. (2013).
Real-time Path Planning in Heterogeneous En-
vironments. [CAVW]. Computer Animation and
Virtual Worlds, 24(3), 285–295. doi:10.1002/
cav.1511

Jaklin, N., Tibboel, M., & Geraerts, R. (2014).
Computing High-Quality Paths in Weighted Re-
gions. Proceedings of the 7th International ACM
SIGGRAPH Conference on Motion in Games (MIG
2014) (pp. 77-86).

Jeuring, J., van Rooij, R., & Pronost, N. (2014).
The 5/10 Method: A Method for Designing Edu-
cational Games. In Games and Learning Alliance
(pp. 364-369). Springer International Publishing.

Ju, E., Choi, M. G., Park, M., Lee, J., Lee, K.
H., & Takahashi, S. (2010). Morphable crowds.
ACM Transactions on Graphics, 29(6), 1.
doi:10.1145/1882261.1866162

Kallmann, M. (2010a). Navigation queries from
triangular meshes. Proceedings of the Third in-
ternational conference on Motion in Games (pp.
230-241). Springer-Verlag.

Kallmann, M. (2010b). Shortest paths with arbi-
trary clearance from navigation meshes. Proceed-
ings of the Eurographics / SIGGRAPH Symposium
on Computer Animation (SCA).

Kamphuis, & Overmars. (2004). Finding paths
for coherent groups using clearance. Proceed-
ings of the 2004 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA ‘04)
(pp. 19-28).

Karamouzas, I., Geraerts, R., & Overmars,
M. (2009). Indicative routes for path plan-
ning and crowd simulation. Proceedings of
the 4th international conference on founda-
tions of digital games FDG ‘09 (pp. 113-120).
doi:10.1145/1536513.1536540

Karamouzas, I., & Overmars, M. (2012). Simu-
lating and evaluating the local behavior of small
pedestrian groups. IEEE Transactions on Visual-
ization and Computer Graphics, 18(3), 394–406.
doi:10.1109/TVCG.2011.133 PMID:22241282

Kavraki, L. E., Svestka, P., Latombe, J.-C., &
Overmars, M. (1996). Probabilistic Roadmaps for
Path Planning in High-Dimensional Configuration
Spaces. IEEE Transactions on Robotics and Auto-
mation, 12(4), 566–580. doi:10.1109/70.508439

Kerr, W., & Spears, D. (2006). Robotic Simulation
of Gases for a Surveillance Task. Proceedings of
the 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems (pp. 1160-1168).

Ketelhut, D. (2007). The Impact of Student Self-
efficacy on Scientific Inquiry Skills: An Explor-
atory Investigation in River City, a Multi-user
Virtual Environment. Journal of Science Educa-
tion and Technology, 16(1), 99–111. doi:10.1007/
s10956-006-9038-y

Ketelhut, D., Dede, C., Clarke, J., Nelson, B., &
Bowman, C. (2007). Studying situated learning in
a multi-user virtual environment. In Assessment
of problem solving using simulations (pp. 37–58).
Lawrence Erlbaum Associates.

Kimmel, D., & Bekris (2012). Maintaining team
coherence under the velocity obstacle framework.
Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems
(AAMAS ‘12) (Vol. 1, pp. 247-256).

Klein, F. (1882). Eric W. Weisstein - MathWorld–
A Wolfram Web Resource. Retrieved from http://
mathworld.wolfram.com/KleinBottle.html

Latombe, J.-C. (1991). Robot Motion Planning.
Kluwer Academic Publishers. doi:10.1007/978-
1-4615-4022-9

Laumond, J. (1987). Obstacle growing in a non-
polygonal world. Information Processing Letters,
25(1), 41–50. doi:10.1016/0020-0190(87)90091-3

http://dx.doi.org/10.1002/cav.1511
http://dx.doi.org/10.1002/cav.1511
http://dx.doi.org/10.1145/1882261.1866162
http://dx.doi.org/10.1145/1536513.1536540
http://dx.doi.org/10.1109/TVCG.2011.133
http://www.ncbi.nlm.nih.gov/pubmed/22241282
http://dx.doi.org/10.1109/70.508439
http://dx.doi.org/10.1007/s10956-006-9038-y
http://dx.doi.org/10.1007/s10956-006-9038-y
http://mathworld.wolfram.com/KleinBottle.html
http://mathworld.wolfram.com/KleinBottle.html
http://dx.doi.org/10.1007/978-1-4615-4022-9
http://dx.doi.org/10.1007/978-1-4615-4022-9
http://dx.doi.org/10.1016/0020-0190(87)90091-3

562

Navigating Through Virtual Worlds

LaValle, S. M. (1998). Rapidly-exploring random
trees: A new tool for path planning [Technical
report].

LaValle, S. M. (2006). Planning Algorithms.
Cambridge University Press. doi:10.1017/
CBO9780511546877

Lee, K. H., Choi, M. G., Hong, Q., & Lee, J.
(2007). Group behavior from video: a data-driven
approach to crowd simulation. Proceedings of the
2007 ACM SIGGRAPH / Eurographics Symposium
on Computer Animation (SCA ‘07) (pp. 109-118).

Lerner, A., Chrysanthou, Y., & Lischinski, D.
(2007). Crowds by Example. Computer Graphics
Forum, 26(3), 655-664.

Likhachev, M., Gordon, G., & Thrun, S. (2004).
ARA*: Anytime A* with Provable Bounds on
Sub-Optimality. Advances in Neural Information
Processing Systems 16 Proceedings of the 2003
Conference (NIPS-03). MIT Press.

Loscos, C., Marchal, D., & Meyer, A. (2003). Intui-
tive crowd behaviour in dense urban environments
using local laws. Proceedings of the theory and
practice of computer graphics. IEEE Computer
Society. doi:10.1109/TPCG.2003.1206939

Lowerre, B., & Reddy, D. (1980). The harpy
speech understanding system. Trends of Speech
Recognition.

Masehian, E., & Amin-Naseri, M. (2004, June).
A voronoi diagram-visibility graph-potential field
compound algorithm for robot path planning.
Journal of Field Robotics, 21(6), 275–300.

Minecraft. (2009). Mojang.

Möbius, F., & Listing (independently), J. B. (1858).
Eric W. Weisstein - MathWorld–A Wolfram Web
Resource. Retrieved from http://mathworld.wol-
fram.com/MoebiusStrip.html

Mononen, M. (2009). recastnavigation. Retrieved
from https://github.com/memononen/recastnavi-
gation

Monument Valley. (2014). Ustwo.

Moussaïd, M., Perozo, N., Garnier, S., Helbing, D.,
& Theraulaz, G. (2010). The walking behavior of
pedestrian social groups and its impact on crowd
dynamics. PLoS ONE, 5(4), e10047. doi:10.1371/
journal.pone.0010047 PMID:20383280

Murray, B., Bogost, I., Mateas, M., & Nitsche,
M. (2006). Game design education: Integrating
computation and culture. Computer, 39(6), 43–51.
doi:10.1109/MC.2006.195

Musse, & Thalmann. (1997, September 2–3). A
model of human crowd behavior: Group inter-
relationship and collision detection analysis.
Computer Animation and Simulation 97, Proceed-
ings of the Eurographics Workshop in Budapest,
Hungary (pp. 36-51). Vienna: Springer.

Nash. (2012). Any-Angle Path Planning [PhD
thesis]. University of Southern California.

Super Mario Galaxy. (2007 Nintendo, E.A.D.
Tokyo, Japan.

Super Paper Mario. (2007). Nintendo SPD.

Ondřey, J., Pettré, J., Olivier, A.-H., & Donikian,
S. (2010). A Synthetic-Vision Based Steering Ap-
proach for Crowd Simulation. ACM Transactions
on Graphics, 29(4).

Pac-Man. (1980). Namco. Japan.

Descent. (1994). Parallax Software.

Park, Q., & Cao. (2012). Modeling social groups
in crowds using common ground theory. Proceed-
ings of the Winter Simulation Conference (WSC
‘12) (pp. 1-12). doi:10.1109/WSC.2012.6465119

http://dx.doi.org/10.1017/CBO9780511546877
http://dx.doi.org/10.1017/CBO9780511546877
http://dx.doi.org/10.1109/TPCG.2003.1206939
http://mathworld.wolfram.com/MoebiusStrip.html
http://mathworld.wolfram.com/MoebiusStrip.html
https://github.com/memononen/recastnavigation
https://github.com/memononen/recastnavigation
http://dx.doi.org/10.1371/journal.pone.0010047
http://dx.doi.org/10.1371/journal.pone.0010047
http://www.ncbi.nlm.nih.gov/pubmed/20383280
http://dx.doi.org/10.1109/MC.2006.195
http://dx.doi.org/10.1109/WSC.2012.6465119

563

Navigating Through Virtual Worlds

Pelechano, N., Allbeck, J. M., & Badler, N. I.
(2007). Controlling individual agents in high-
density crowd simulation. Proceedings of the 2007
ACM SIGGRAPH / Eurographics Symposium on
Computer Animation (SCA ‘07) (pp. 99-108).

Peters, C., & Ennis, C. (2009). Modeling groups
of plausivle virtual pedestrians. IEEE Com-
puter Graphics and Applications, 29(4), 54–63.
doi:10.1109/MCG.2009.69 PMID:19798863

Pettré, J., Laumond, J.-P., & Thalmann, D. (2005).
A navigation graph for real-time crowd animation
and mulitlayered uneven terrain. Proccedings of
the first international workshop on crowd simula-
tion (V-CROWDS’05).

Pettré, J., Ondřej, J., Olivier, A.-H., Cretual, A.,
& Donikian, S. (2009). Experiment-based mod-
eling, simulation and validation of interactions
between virtual walkers. Proceedings of the 2009
ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (SCA ‘09) (pp. 189-198).
doi:10.1145/1599470.1599495

Pimenta, L., Michael, N., Mesquita, R., Pereira,
G., & Kumar, V. (2008). Control of Swarms Based
on Hydrodynamic Models. Proceedings of the
2009 IEEE International Conference on Robotics
and Automation (ICRA 2009) (pp. 1948-1953).
doi:10.1109/ROBOT.2008.4543492

Pohl, I. (1970). Heuristic Search viewed as Path
Finding in a Graph. Artificial Intelligence, 1(3),
193–204. doi:10.1016/0004-3702(70)90007-X

Qiu, & Hu. (2010). Modeling group structures in
pedestrian crowd simulation. Simulation Model-
ling Practice and Theory, 18(2), 190-205.

Rabin, S. (2008). AI Game Programming Wisdom
4. Charles River Media.

Reynolds, C. W. (1987). Flocks, herds, and schools:
A distributed behavioral model. Computer Graph-
ics, 21(4), 25–34. doi:10.1145/37402.37406

Reynolds (1999). Steering Behaviors for Au-
tonomous Characters. Proceedings of the Game
Developers Conference 1999 (pp. 763-782).

Reynolds. (2000). Interaction with groups of
autonomous characters. Game Developers Con-
ference 2000 (pp. 449-460).

Rimon, E., & Koditschek, D. (1992). Exact robot
navigation using artificial potential functions.
IEEE Transactions on Robotics and Automation,
8(5), 501–518. doi:10.1109/70.163777

Schmitz, B., Specht, M., & Klemke, R. (2012).
An Analysis of the Educational Potential of Aug-
mented Reality Games for Learning. Proceedings
of the 11th World Conference on Mobile and
Contextual Learning 2012 (pp. 140-147).

INCONTROL Simulation Solutions. (2014).
SportEvac.

Snape, J., Berg, J. v., Guy, S. J., & Manocha, D.
(2009). Independent navigation of multiple mobile
robots with hybrid reciprocal velocity obstacles.
IEEE / RSJ International Conference on Intelligent
Robots and Systems, (pp. 5917-5922).

Space Invaders. (1978Taito Corporation. Japan.

Sundar, S., & Shiller, Z. (1994). Optimal obstacle
avoidance based on the hamilton-jacobi-bellmann
equation. ICRA, 94, 2424–2429.

Terzopoulos, D., Tu, X., & Grzeszczuk, R. (1994).
Artificial fishes: Autonomous locomotion, percep-
tion, behavior, and learning in a simulated physical
world. Artificial Life, 1(4), 327–351. doi:10.1162/
artl.1994.1.4.327

Thalmann, & Musse (2013). Crowd Simulation.
Springer.

The Boost C++ Library. (2015). Retrieved from
http://www.boost.org/

The River City Project. (2002 - 2007). Retrieved
from http://muve.gse.harvard.edu/rivercitypro-
ject/index.html

http://dx.doi.org/10.1109/MCG.2009.69
http://www.ncbi.nlm.nih.gov/pubmed/19798863
http://dx.doi.org/10.1145/1599470.1599495
http://dx.doi.org/10.1109/ROBOT.2008.4543492
http://dx.doi.org/10.1016/0004-3702(70)90007-X
http://dx.doi.org/10.1145/37402.37406
http://dx.doi.org/10.1109/70.163777
http://dx.doi.org/10.1162/artl.1994.1.4.327
http://dx.doi.org/10.1162/artl.1994.1.4.327
http://www.boost.org/
http://muve.gse.harvard.edu/rivercityproject/index.html
http://muve.gse.harvard.edu/rivercityproject/index.html

564

Navigating Through Virtual Worlds

The Settlers II (Original German title: Die Siedler
II: Veni, Vidi, Vici). (1996). Blue Byte Software.
Germany.

Treuille, A., Cooper, S., & Popovic, Z. (2006). Con-
tinuum Crowds. ACM Transactions on Graphics,
25(3), 1160–1168. doi:10.1145/1141911.1142008

Trovato, K. (1996). A* Planning in Discrete Con-
figuration Spaces of Autonomous Systems [PhD
Thesis]. University of Amsterdam.

Counter Strike: Source. (2004). Valve Corpora-
tion. USA.

Portal. (2007). Valve Corporation. USA.

van den Berg, J., Guy, S. J., Lin, M. C., & Manocha,
D. (2009). Reciprocal n-body collision avoidance.
Proceedings of the International Symposium on
Robotics Research.

van den Berg, J., Lin, M. C., & Machona, D.
(2008). Reciprocal velocity obstacles for real-
time multi-agent navigation. Proceedings of the
IEEE International Conference on Robotics and
Automation (pp. 1982-1935). doi:10.1109/RO-
BOT.2008.4543489

van den Berg, J., Shah, R., Huang, A., & Goldberg,
K. (2011). ANA*: Anytime Non-Parametric A*.
Proceedings of the AAAI conference on artificial
intelligence.

van Goethem, A., Jaklin, N., Cook, I. V. A., &
Geraerts, R. (2015). On Streams and Incentives:
A Synthesis of Individual and Collective Crowd
Motion [Technical Report UU-CS-2015-005].
Utrecht University.

van Toll, W., Cook, I. V. A. IV, & Geraerts, R.
(2012). A navigation mesh for dynamic environ-
ments. Computer Animation and Virtual Worlds,
23(6), 536–546. doi:10.1002/cav.1468

Wein, R., van den Berg, J., & Halperin, D. (2007).
The visibility-voronoi complex and its applica-
tions. Computational Geometry, 36(1), 66–87.
doi:10.1016/j.comgeo.2005.11.007

Welzl, E. (1985). Constructing the Visibility
Graph for n Line Segments in O(n2) time. In-
formation Processing Letters, 20(4), 167–171.
doi:10.1016/0020-0190(85)90044-4

Wolf, M. (2009/2010). Theorizing Navigable
Space in Video Games. Retrieved from http://
opus.kobv.de/ubp/volltexte/2011/4980/

Wolfram, S. (1994). Cellular Automata and
Complexity: Collected Papers. Addison-Wesley.

Yu, K. (2006). Finding a natural-looking path
by using generalized visibility graphs. Proceed-
ings of the 9th Pacific Rim international confer-
ence on Artificial Intelligence (pp. 170-179).
doi:10.1007/978-3-540-36668-3_20

Zipf, G. K. (1949). Human Behavior and the
Principle of Least Effort. Addison-Wesley Press.

KEY TERMS AND DEFINITIONS

Character: Any moving entity in a digital
game, either autonomous or controlled by the
player.

Crowd: A large number of static or moving
characters in a digital game, either with a shared
goal or with individual goals.

Indicative Route: A rough path from a start to
a goal position, indicating the approximate direc-
tion a character should follow. Used for guiding a
character, but not used as a final path.

Local Collision Avoidance: The task to de-
tect and avoid a collision among several moving
characters on a local level, thus not taking global
knowledge of the entire environment into account.

Navigation Mesh: A data structure to represent
the traversable space in a digital game, consisting
of 2D polygons.

http://dx.doi.org/10.1145/1141911.1142008
http://dx.doi.org/10.1109/ROBOT.2008.4543489
http://dx.doi.org/10.1109/ROBOT.2008.4543489
http://dx.doi.org/10.1002/cav.1468
http://dx.doi.org/10.1016/j.comgeo.2005.11.007
http://dx.doi.org/10.1016/0020-0190(85)90044-4
http://opus.kobv.de/ubp/volltexte/2011/4980/
http://opus.kobv.de/ubp/volltexte/2011/4980/
http://dx.doi.org/10.1007/978-3-540-36668-3_20

565

Navigating Through Virtual Worlds

Path Planning: The task to compute and follow
a path from a given start to a given goal position
in the game world.

Traversable Space: The space that can be
traversed by characters in a digital game.

ENDNOTES

1 Throughout this chapter, we will refer to
any moving entity as a character. Characters
do not need to be humanoid, but can also be
vehicles or any type of automated moving
entities, depending on the specific gaming
application.

2 Visit http://www.geometrygames.org/To-
rusGames/ for a collection of games such
as Chess or Tic Tac Toe that run on a torus
or a Klein Bottle topology (Klein, 1882).
Accessed January 22, 2015.

3 Visit http://theory.stanford.edu/~amitp/
GameProgramming/ for additional informa-
tion on path planning with A*. Accessed
January 22, 2015.

