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Navigating Through 
Virtual Worlds:

From Single Characters to Large Crowds

ABSTRACT

With the rise and success of digital games over the past few decades, path planning algorithms have 
become an important aspect in modern game development for all types of genres. Indirectly-controlled 
playable characters as well as non-player characters have to find their way through the game’s environ-
ment to reach their goal destinations. Modern gaming hardware and new algorithms enable the simula-
tion of large crowds with thousands of individual characters. Still, the task of generating feasible and 
believable paths in a time- and storage-efficient way is a big challenge in this emerging and exciting 
research field. In this chapter, the authors describe classical algorithms and data structures, as well as 
recent approaches that enable the simulation of new and immersive features related to path planning 
and crowd simulation in modern games. The authors discuss the pros and cons of such algorithms, give 
an overview of current research questions and show why graph-based methods will soon be replaced by 
novel approaches that work on a surface-based representation of the environment.

INTRODUCTION

Over the past decade, educational games have 
received increasing attention. By now, a large body 
of research has been carried out to determine how 
the principles behind engaging digital games can 
be utilized to improve learning. In general, this 
is an open research question with new methods 

still being developed, e.g. (Jeuring, van Rooij, & 
Pronost, 2014). It has been shown for particular 
cases that engaging virtual environments can yield 
a higher motivation and better learning results for 
students (Murray, Bogost, Mateas, & Nitsche, 
2006; Ketelhut, Dede, Clarke, Nelson, & Bow-
man, 2007; Ketelhut, 2007; Gee, 2007; Schmitz, 
Specht, & Klemke, 2012).
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A key requirement to achieve a high level of 
engagement and thus better learning results is the 
game being immersive. Immersion can be achieved 
in many ways, among which are the technological 
aspects of a game. Modern computer hardware and 
smarter algorithms have radically changed and 
shaped the overall appearance of digital games 
in general and educational games in particular. 
Technological aspects of games such as graphics, 
modeling or physics simulation have received 
much attention, and this led to a wide range of 
novel techniques to generate visually convincing 
and believable pictures, character models, and 
animations.

By contrast, the paths traversed by virtual 
characters1 are often not visually convincing. 
Many educational games do not let their virtual 
characters move around autonomously. This is 
due to the fact that moving characters might not 
be necessary to achieve the learning goals. Fur-
thermore, the computation of realistic and visually 
convincing paths is difficult and might even ruin 
a user’s immersion when done in a cheap way. 
However, many educational games try to simulate 
a realistic virtual 3D environment to better match 
recent advances in entertainment games. An ex-
ample of such a game is The River City Project 
(2002 - 2007). The game has been successfully 
used by teachers and students in the U.S., and 
results indicate that using virtual environments 
in education “might act as a catalyst for change 
in student’s self-efficacy and learning processes” 
(Ketelhut, 2007). The River City Project simulates 
a virtual city from the late 19th century with build-
ings and different terrain, and the residents of the 
city are displayed as virtual 3D non-player charac-
ters. These, however, seem stationary and do not 
autonomously move around the city in a realistic 
way. We believe that state-of-the-art path planning 
and crowd simulation methods can improve such 
games with respect to the users’ immersion and 
overall learning experiences.

Many games that do support moving characters 
rely on predetermined or scripted paths. In such 

games, a designer can manually create believable 
paths that are of high quality. While this does 
not ruin a user’s immersion, it also limits the 
flexibility and design possibilities of a game. By 
contrast, games that are more flexible and allow 
unpredictable interactions among characters rely 
on algorithms to handle path planning.

In this chapter, we will discuss such algorithms. 
We focus on path planning for single virtual char-
acters and large virtual crowds. The latter have 
become increasingly important in simulation soft-
ware for mass events and evacuation training, e.g. 
(SportEvac, 2014), which could be used in school 
education to increase the students’ awareness of 
potential dangers during such events.

The overall goal in this research field is to 
compute visually convincing and natural paths 
for a large number of characters in real-time to 
improve the user’s immersion. We will discuss 
how this field and the methods used have changed 
over the past few decades, and give an overview 
of state-of-the-art techniques and open research 
problems.

We will start with discussing different ways 
to represent traversable space in a virtual envi-
ronment. A classical approach is to use a grid or 
waypoint-graph representation. Path planning is 
then done using a graph-based search algorithm. 
We will explain why a graph representation is not 
adequate for many challenging path planning and 
crowd simulation problems.

A more recent approach to represent traversable 
space is to use a navigation mesh. We will discuss 
the advantages of navigation meshes over graph 
representations. In a believable and immersive 
game world, autonomous virtual characters need 
to react adequately to dynamic changes in the 
environment. Such dynamic changes might allow 
traversing paths that were previously blocked, or 
they might block paths that were previously tra-
versable. Examples are parking cars on a sidewalk 
or an automatic door that opens and closes. Many 
games avoid solving these issues by using work-
around techniques. Characters may be permitted 
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to temporarily walk through obstacles, or the discs 
used for collision avoidance are very small. These 
workarounds may destroy a player’s experience in 
an otherwise immersive world. A navigation mesh 
needs to be able to efficiently represent virtual 
environments that can dynamically change over 
time, and we will discuss cutting-edge research 
on this topic.

Some recent path planning methods that use a 
navigation mesh are based on a multi-level plan-
ning hierarchy. They compute a first rough path and 
then use advanced path following techniques that 
modify the input path to generate a smooth curve 
with certain desired properties. In this context, we 
will discuss the Indicative Route Method, which 
uses an augmented navigation mesh called Explicit 
Corridor Map. We also discuss its successor, the 
Modified Indicative Routes and Navigation meth-
od, which allows path planning in heterogeneous 
virtual environments that feature different region 
types. We will also give an overview of different 
collision-avoidance techniques and discuss their 
advantages and drawbacks.

Another topic we will discuss is social group 
behavior. While many of the aforementioned path 
planning methods solve issues related to single 
characters, they lack simulating social aspects 
for groups. In real life, people tend to form social 
groups and split up again after a while. Members 
of such groups try to stay in particular social for-
mations whenever possible. Other people display 
different walking behavior when encountering a 
social group. For instance, social territories occu-
pied by groups are usually avoided by other people. 
An immersive virtual world needs to reflect this.

Handling large virtual crowds requires dif-
ferent approaches. Virtual crowds that consist of 
hundreds of individual characters can be rendered 
with modern gaming hardware. In an educational 
game that features large crowds, however, only a 
small portion of the overall CPU power can be 
assigned to handle crowd simulation. Thus, co-
ordinating and handling the navigation of crowds 

requires advanced strategies on a theoretical and 
practical level.

We now start by discussing different ways to 
represent traversable space in a virtual environ-
ment. Such representations form a basis on top 
of which path planning and crowd simulation can 
be performed.

REPRESENTING 
TRAVERSABLE SPACE

How should traversable space be represented in a 
game? The choice for a certain representation is 
strongly connected to the complexity and required 
efficiency of the application at hand. In this section, 
we discuss several representations of traversable 
space and their pros and cons.

Historically, digital games have been developed 
for entertainment purposes, while educational 
games are a comparably new phenomenon. Thus, 
we will consider examples from popular entertain-
ment games when discussing traversable space. 
The same observations and conclusions can be 
applied to recent and future educational games.

Depending on the type of game, more or less 
effort needs to be spent on this matter. As an ex-
treme example in which representing traversable 
space is a trivial task, consider the classic 2D 
arcade game Space Invaders (Taito Corporation, 
1978). Here, the enemies move in a predetermined 
and scripted way, which does not involve any path 
planning. The player’s traversable space is only 
a 1D straight-line segment at the bottom of the 
screen for which no complex representation is 
necessary. Note that there is no automated path 
planning for the directly-controlled player char-
acter either, but the player’s traversable space is 
still important for collision avoidance with the 
left and right screen limits. A game that is more 
complex with respect to path planning is Pac-Man 
(Namco, 1980). The enemies follow different 
strategies to catch the player. Here, the 2D game 
world consists of rectilinear tiles that are either 
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traversable or blocked. Thus, a simple tile-based 
grid approach is a sufficient way to represent 
all traversable space. By contrast, many modern 
games tend to simulate an open world (e.g. Grand 
Theft Auto V (Rockstar Games, 2013)), or they 
provide a sandbox environment, which allows play-
ers to generate their own content (e.g. Minecraft 
(Mojang, 2009)). Both types of games feature 
highly dynamic multi-layered 3D environments 
with different terrain types. Characters in future 
variants of such game genres should not only 
plan collision-free paths, but also autonomously 
detect and use areas where climbing or jumping 
over gaps is possible to access difficult-to-reach 
areas in the game world. Such features require a 
representation of traversable space that is far from 
trivial and still open to future research.

The topology of the game world also influ-
ences the choice of how to represent traversable 
space. While the topology of the world in Space 
Invaders is a 2D plane, there are games with more 
complex topologies. In Pac-Man, characters are 
allowed to exit to the left and right screen edges to 
appear on the opposite side. This behavior follows 
the topology of a cylinder. An example of a game 
with the world topology of a torus is Asteroids 
(Atari Inc, 1979). The player’s ship as well as 
asteroids and flying saucers can exit the screen 
to all four edges and appear on the opposite side. 
3D Games that allow a character to fly, such as 
Descent (Parallax Software, 1994), feature a 3D 
space topology. In Super Mario Galaxy, the player 
can fully circumnavigate small planets and, hence, 
the world topology equals a sphere (Nintendo EAD 
Tokyo, 2007). In Super Paper Mario (Nintendo 
SPD, 2007), the player has to interactively switch 
between 2D and 3D perspectives to solve puzzles. 
In Portal (Valve Corporation, 2007), the player can 
create traversable connections between arbitrary 
points in particular areas of the game world. The 
game Monument Valley (Ustwo, 2014) features 
dynamic Escher-like worlds that are physically 
impossible. Other exotic topological spaces such 
as the Möbius Strip (Möbius & Listing (indepen-

dently), 1858) or the Klein Bottle (Klein, 1882) 
require different path planning strategies, but may 
also enable novel gameplay elements.2

Note that we only discuss games that require 
two-dimensional traversable space representa-
tions. Even when the game world is technically 
a (multi-layered) 3D environment, a 2D repre-
sentation is sufficient as long as characters need 
to traverse 2D surfaces only. For actual 3D path 
planning (e.g. for autonomous flying characters), 
the problems we discuss in this chapter are more 
complex and require even more advanced algo-
rithms beyond the scope of this chapter.

For more information on world topologies and 
the concept of traversable space in digital games, 
we refer to the discussion Theorizing Navigable 
Space in Video Games (Wolf, 2009/2010). Its main 
focus is on space the player can traverse from an 
abstract level. For path planning purposes, how-
ever, we are interested in representing space for 
autonomous characters or player characters that 
are controlled in an indirect way (e.g. by assigning 
a goal position via a mouse click or a finger press 
on a touchpad). Therefore, we will now list several 
methods to represent traversable space that have 
been used in past and present digital games, and 
discuss their advantages and drawbacks.

Grids

Grids can be intuitively described as regular 
subdivisions of the plane into cells of a particular 
shape and with a particular grid resolution. From 
an abstract point of view, grids can be seen as a 
special case of lattice structures. This means that 
by adding so-called generator vectors to a given 
cell point in the grid, any neighboring cell point 
can be obtained. For a 2D grid, two generators 
representing the up and right directions are suffi-
cient to obtain all grid cell points (LaValle, 2006).

Grids are intuitive and easy to implement, 
which makes them a popular representation of 
traversable space. The most common types are 
rectilinear or square grids. However, other types 
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have been widely used in games, too. Hexagonal 
grids are common, as well as grids with isomet-
ric diamond-shaped tiles; see Figure 1. From a 
topological point of view, isometric grids and 
rectilinear grids are equal. They are commonly 
used in 2D games to simulate an isometric view on 
pseudo-three-dimensional game worlds in which 
correct clipping is easily achieved by rendering 
objects on the grid from top to bottom along the 
screen. They are also used in many traditional and 
modern board games, and have also been widely 
used in pen and paper role-playing games to 
simulate combat scenarios.

When traversable space is represented using a 
grid, the actual path finding is usually performed 
on the dual graph of the grid cells. This is because 
a wide range of graph-search algorithm exists that 
can compute shortest paths efficiently (see Section 
“A* and its variants”). Furthermore, game objects 
are usually placed in the center of the grid cell. 
In the dual graph, each grid cell is represented as 
a vertex and adjacent cells are connected by an 
edge. While a rectilinear, square or isometric grid 
keeps its structure when considering its dual graph 
(except for an offset translation), hexagonal grids 
become triangular and vice versa, see Figure 2. 
Thus, using the center points of hexagonal cells 
as possible character positions is technically the 
same as performing path-finding on a triangular 
graph. In the case of square grids, typical vari-
ants are 4-neighbor and 8-neighbor square grids, 

depending on whether diagonal movement from 
one cell to another is allowed or not.

Path planning can also be done on the edges 
or vertices of the grid itself. The Settlers II, 
for instance, uses a hexagonal grid (Blue Byte 
Software (today: Ubisoft Blue Byte), 1996). The 
player can build roads along the edges and place 
flags along the vertices of the grid. Objects are 
then distributed and moved along the roads. The 
edges and vertices of the grid are also used in 
adaptations of abstract board games such as Go 
or in many puzzle games.

While grids are easy to implement, a major 
problem is that grids may not cover all of the tra-
versable space visually shown to the player. Some 
corners of the game world and important passages 
between two obstacles might not be traversable 
due to a too coarse grid resolution; see Figure 3.

The question of how much a grid path deviates 
from a shortest path on the exact geometry has 
been mathematically answered via path-length 
analysis proofs. Nash (2012) presented a unified 
proof structure for upper bounds on the length of 
square, triangular, hexagonal and cubic 3D grid 
paths. The author showed that a grid path on a 
triangular, 4-neighbor square, 8-neighbor square, 
or hexagonal grid can be at most 2, 1.41, 1.08, or 
1.15 times as long as an optimal (shortest) path, 
respectively. In addition, Jaklin, Tibboel, and Ger-
aerts (2014) presented a path-cost analysis proof 
for 8-neighbor square grid paths in environments 
with multiple region types (e.g. different terrain 

Figure 1. Rectilinear, isometric and hexagonal grids



541

Navigating Through Virtual Worlds
 

types), where the cost for traversing a particular 
region is given as a weight .They showed that a 
grid path can be at most 5.08 times as long as an 
optimal path in this situation, when all regions 
are aligned with the grid.

Grids or their dual graphs are also inflexible 
because characters’ motions are hard to coordinate 
when two or more characters follow the same edge 
bi-directionally. In addition, they impose only an 
infinitely small subset of all possible trajectories. 
Resulting motions may not be visually convincing 
because the underlying graph edges are not smooth 
and do not cover energy-optimal paths. Smoothing 
the paths can be expensive and often requires a 
global approach. This is undesired because digital 
games require real-time responses. Furthermore, 

the dual graph of a grid requires computationally 
expensive updates when the obstacles are inserted, 
deleted, or moved. Note that these issues also 
occur with other graph-based approaches such as 
waypoint graphs, which we discuss now.

Waypoint Graphs or Road Maps

Waypoint graphs and road maps are two inter-
changeable terms. The nodes (or waypoints) 
resemble locations in the game world in which a 
character can be located. An edge between two 
nodes in the graph resembles a straight-line path 
which characters can traverse without hitting 
obstacles; see Figure 4.

Figure 2. Hexagonal grids and triangular grids are dual graphs of each other. Each point is a vertex 
in the triangular graph (red), and it corresponds to a hexagonal cell in its dual graph representation.
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Waypoint graphs can be automatically gener-
ated based on the visibility graph of the environ-
ment or based on some other decomposition of 
the traversable space such as the medial axis 
of the environment (see Section “Navigation 
Meshes” and (de Berg, van Kreveld, Overmars, 
& Schwarzkopf, 2000). Other examples from the 
robotics community are Probabilistic Road Maps 
(Kavraki, Svestka, Latombe, & Overmars, 1996) 
and Rapidly-Exploring Random Trees (LaValle, 
1998). The latter two are more general because 

they can be used to solve higher-dimensional 
problems, e.g. finding a path for a robot manipula-
tor arm with six joints that has to grasp an object 
and move it through a cluttered 3D environment.

The nodes of a visibility graph are the vertices 
of the polygonal obstacles in the environment. An 
edge between two nodes is added in the visibility 
graph, if the straight-line segment between them 
does not intersect any obstacles, or, in other words, 
if the two nodes see each other; see Figure 5 (left). 
Note that the complexity of the visibility graph 

Figure 3. Squared grid overlaid on a polygonal environment: Red (dark) squares count as obstacles 
because they are partially covered by polygons. Some passages are not traversable due to the too coarse 
grid resolution.
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can be quadratic in the number n  of polygon 
vertices. The graph can be computed in O n( ²)
worst-case optimal time (Welzl, 1985; Ghosh, 
2007).

Laumond (1987) introduced the concept of 
the generalized visibility graph, which has been 
used for path planning by several authors (Yu, 
2006; Masehian & Amin-Naseri, 2004; Wein, van 
den Berg, & Halperin, 2007). For a character that 
is represented as a disc with a maximum size 
r ≥ 0 , the obstacles in the generalized visibility 
graph are first inflated by r  using Minkowski’s 
operations. There are two types of nodes in the 

resulting graph. Vertices of the first type are 
concave corners of the inflated obstacles. Vertices 
of the second type are fictitious vertices that cor-
respond to convex arcs of the inflated obstacles. 
In general, a shortest path in a polygonal scene 
consists of segments that are tangent to the borders 
of the obstacles. Therefore, it can be shown that 
all vertices of type one need not be connected by 
additional edges because they are never part of a 
shortest path. For the set of fictitious vertices, a 
generalized notion of visibility is used: Two ficti-
tious vertices see each other, if and only if there 
is at least one pair of points on the corresponding 

Figure 4. A waypoint graph for an environment with four obstacles
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two arc segments such that their straight-line 
connection is tangent to both arc segments. See 
Figure 5 (right) for an example. The generalized 
visibility graph is not only smaller in the number 
of edges, but it also makes a character automati-
cally keep clearance from obstacles. Since the 
search for tangents can be performed in O n( ²)  
time, the overall time complexity to compute the 
generalized visibility graph is the same as for the 
visibility graph.

Another common way to build a waypoint 
graph is to manually determine waypoints and 
edges for a given environment in the level design 
phase of game production. Some games such as 
real-time strategy games (e.g. Starcraft II (Bliz-
zard Entertainment, 2010)) even allow players to 
set waypoints themselves and use this as a tactical 
gameplay element.

As mentioned before, waypoint graphs are 
generally smaller in the number of nodes and 
edges compared to the dual graph of a grid. This 

decreases the time to perform a path-finding 
algorithm on that structure (see Section “A* and 
its Variants”).

However, all graph-based techniques suffer 
from a range of problems that are inherent to these 
techniques. A graph does not provide informa-
tion about the actual geometry of the scene, and 
it does not allow characters to deviate from their 
paths induced by the graph edges. This becomes 
an even bigger problem for a large crowd and 
collision-avoidance among the crowd members. 
The resulting paths may neither be natural nor 
visually convincing.

Given all these issues, we believe that the 
end of graph-based methods for advanced path 
planning has come. Recent techniques based on 
a surface-representation of the virtual environ-
ment - such as navigation meshes - are a promis-
ing next step into the future of digital games that 
feature large crowds or require other advanced 
navigational tasks.

Figure 5. Left: A visibility graph for a scene with three obstacles. Dashed edges are pruned in the gen-
eralized visibility graph because their corresponding vertices in the generalized graph do not see each 
other. Right: A generalized visibility graph for the same scene with inflated obstacles and corresponding 
visibility edges.
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Navigation Meshes

A navigation mesh is a set of two-dimensional 
simple polygons representing the traversable space 
in a game world. With this general definition, the 
aforementioned grids can also be seen as special 
types of navigation meshes. However, navigation 
meshes can be built with polygons representing 
the exact geometry of the environment, or with 
a sufficient approximation of it. Figure 6 shows 
an example of a navigation mesh.

Games that come with level editors and support 
path planning with navigation meshes either use an 
automatic navigation mesh generation algorithm 
or let the user define traversable space for the 
level geometry within the editor. For example, 
in Counter-Strike: Source, automatic navigation 
mesh generation for user-generated maps is done 
by a flood-filling algorithm (Valve Corporation, 
2004). The user defines spawn-points for players 
on traversable parts of the game map. From those 
points, the algorithm computes all traversable 
space that can be reached from the initial posi-
tions. Additionally, the user can explicitly mark 
traversable areas in case the algorithm fails to 
detect some parts due to steep stairs or ramps.

An open source library to automatically con-
struct navigation meshes out of 3D level geometry 
is the project recastnavigation (Mononen, 2009). 
Recast generates a voxel mold from the 3D level 
geometry and automatically detects and prunes 
non-traversable areas. The resulting walkable 
space is then divided into simple overlaid 2D re-
gions with one single non-overlapping contour. By 
tracing the boundaries of the regions, the algorithm 
produces a set of traversable convex polygons as 
a final output. The resulting navigation mesh can 
be then used for path planning. For example, it 
can be fed into Detour, which is a path-finding 
toolkit accompanying Recast.

Kallmann (2010a) introduced a navigation 
mesh called a Local Clearance Triangulation 
(LCT). It can be used to answer path queries 
for characters of different size. Locally shortest 

paths can be computed in optimal time. If global 
optimality is required, an extended search is used 
to gradually improve the path. Furthermore, Kall-
mann discussed several algorithms and operations 
that are based on generic triangulation-based 
navigation meshes and on the LCT in particular 
(Kallmann, 2010b). Among these are methods 
for automatic agent placement, tracking moving 
obstacles, and ray-obstacle intersection queries. 
Kallmann’s navigation mesh yields an exact rep-
resentation of the environment and can handle 
dynamic updates efficiently. However, (multi-
layered) 3D environments are not discussed.

Pettré et al. (2005) introduced a navigation 
mesh based on discs and cylindrical areas. It sup-
ports multi-layered 3D environments and charac-
ters of variable size. However, it does not support 
an exact representation of the navigable space and 
efficient dynamic updates of the environment.

A navigation mesh that combines the advan-
tages of the aforementioned approaches is the 
Explicit Corridor Map (ECM) (Geraerts, 2010). 
It is based on the medial axis of the environment, 
which is the set of all points that are equidistant 
from at least two distinct closest obstacle points; 
see Figure 7.

The medial axis can be seen as a special type 
of waypoint graph in which all edges run through 
the center of the free space between pairs of ob-
stacle polygons. For each vertex of the medial 
axis graph, there are either at least three obstacle 
polygons that have the same distance from that 
vertex, or the vertex is placed in a non-convex 
corner of an obstacle. An edge between two ver-
tices of the medial axis consists of a sequences 
of straight-line segments and parabolic arcs, de-
pending on the type of corresponding obstacles 
to its left and right, see Figure 7 (left). With each 
element in this sequence, its left and right closest 
obstacle points are stored. This partitions a 2D 
environment into a set of walkable areas in 
O n n( log )  time and O n( )  space, where n  is the 
total number of obstacle vertices. Each area cor-
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responds to one particular obstacle polygon, as 
all points in that area are closer to that obstacle 
than to all other obstacles.

In the field of Computational Geometry, a 
similar structure is known as the Generalized 
Voronoi Diagram (GVD), and it has been widely 
studied during the last decades. It can be efficiently 
computed using graphics hardware (Hoff, Keyser, 
Lin, Manocha, & Culver, 1999): First, for each 
two-dimensional site (i.e. the obstacle polygons, 
lines or points) a three-dimensional distance mesh 
is computed and drawn by the graphics hardware, 
each mesh in a different color. By projecting the 

distance meshes back onto the 2D plane and trac-
ing the boundary lines of the different regions in 
the color buffer, a feasible approximation of the 
GVD can be obtained. This approach requires 
the obstacle polygons to be convex, so concave 
polygons are first subdivided into a convex ones. 
This yields edges and vertices that are not part of 
the GVD for the original scene. For path planning 
purposes, these additional edges are desired if they 
run into convex corners. Otherwise characters 
cannot access such corners. All other additional 
edges, however, are redundant. The medial axis 

Figure 6. A navigation mesh for the environment shown in Figure 3 and Figure 4
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is basically the same as the GVD, but with the 
redundant edges and vertices pruned.

The main drawback of the ECM is that it is 
difficult to implement in a robust way. There are 
software libraries available for computing GVDs 
(Held, 2011; The Boost C++ Library, 2015), but 
they often struggle with imprecision in the data 
due to numerical rounding errors, especially when 
a high level of detail is needed. Consequently, the 
input data (i.e. obstacles) need to be preprocessed.

Still, the ECM has many advantages. All tra-
versable space is represented with respect to the 
correct topology of the environment. This resolves 
the issues that are inherent to all approximated 
representations that we discussed before. Further-
more, the ECM is space-efficient and supports 
time-efficient extraction of global paths with any 
desired amount of clearance from obstacles. The 
ECM works both for 2D and multi-layered 3D 
environments; see Figure 7. In addition, the ECM 
can be dynamically updated in real-time by only 
applying local changes to the mesh whenever an 
obstacle is inserted or deleted (van Toll, Cook IV, 
& Geraerts, 2012).

For more algorithms on automatic navigation 
mesh generation and related path planning top-
ics, we refer the interested reader to the AI Game 
Programming Wisdom book series (Rabin, 2008). 
This concludes the first part on representing tra-
versable space. We have discussed a wide range 
of representations, as well as their advantages and 
drawbacks. Now we will show how the correspond-
ing structures can be queried to compute paths.

PATH PLANNING FOR 
SINGLE CHARACTERS

In this section, we will elaborate on both classic 
and recent path planning strategies. We start with 
the popular A* search algorithm on a graph. We 
then present the Indicative Route Method (IRM), 
and its successor, the Modified Indicative Route 
and Navigation (MIRAN) method. Afterwards, 
we give a general overview of local collision 
avoidance strategies.

Figure 7. Left: Obstacles (shown in red; the center U-shape and the four bounding line segments), medial 
axis (solid blue), ECM vertices (large discs) and closest points, subdividing the free space into ECM 
cells (dotted gray lines). Right: a multi-layered 3D environment and its medial axis (van Toll, Cook IV, 
& Geraerts, 2012).
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A* and Its Variants

The A* algorithm (Hart, Nilsson, & Raphael, 
1968) is one of the best known and probably the 
most used path-finding algorithm in the domain 
of digital games. This is because it can efficiently 
compute shortest paths in a graph and combines 
the advantages of Dijkstra’s algorithm (1959) 
with a greedy Best-First-Search strategy. With 
only small and easy to implement variations, a 
wide range of variants (e.g. shorter computation 
time to find good paths rather than optimal ones) 
can be obtained.3 This makes the A* algorithm a 
flexible and powerful tool for many path-finding 
applications (Trovato, 1996).

The main idea of A* is to combine actual 
traversal costs from a start node with heuristic 
values that estimate the distance to a target node. 
Given an edge-weighted graph with two desig-
nated nodes s  and t , a function  assigns to 
each node n  in the graph the costs of the cur-
rently known shortest path from s  to n . Further-
more, a heuristic function h  assigns to each node 
in the graph the estimated costs of a path from n  
to t . A* then starts to search for a path from s  
to t  by computing f g h= +  for each node 
under consideration and expanding a node with 
minimum f -value in each step. The g -value of 
a node n  is updated whenever a shorter path than 
the current one from s  to n  is detected. A* man-
ages two lists of nodes, the open list and the closed 
list. While the open list stores all nodes that are 
currently under consideration, the closed list stores 
all nodes that have already been expanded and do 
not need to be visited again.

It can be proven, if the heuristic function h  
does not overestimate the actual costs for each 
node, that A* will always find an optimal (i.e. 
shortest) path. On the contrary, if h  overestimates 
the costs for some or all nodes, the computation 
time of the search may be decreased, but the path 
may not be optimal.

If h  is an exact estimation of the actual costs, 
then A* has the nice property to find a shortest 
path in optimal time. In this case only the nodes 
that are contained in a shortest path as well as 
their neighbors are expanded; see Figure 8 (bot-
tom). Even if all paths in the graph are shortest, 
A* will expand only one of them depending on 
the sorting strategy of the open list. A theoretical 
approach to exploit this property could be to 
compute all costs of optimal paths for all pairs of 
nodes in the graph as a preprocessing step (with-
out storing the paths themselves to save space). 
These costs could then be used as an exact heu-
ristic to make A* compute optimal paths in opti-
mal time. However, this is only practical for small 
graphs and is usually not a feasible solution in 
gaming applications.

If we do not consider the heuristic function h  
and let f g= , we get Dijkstra’s algorithm (1959). 
If we only consider h  and ignore all the g -values 
in each node (i.e. f h= ), we get a greedy Best-
First-Search strategy. Therefore, A* can be seen 
as generalization of both strategies. Figure 8 il-
lustrates the three different strategies on a grid 
with uniform costs. It shows that Dijkstra’s algo-
rithm finds an optimal path, but expands a high 
number of nodes. The greedy strategy expands 
only a few nodes, but the resulting path is far from 
optimal. A* combines both strategies, finding an 
optimal path while expanding only a few nodes. 
Note that in the example, we assume to have an 
exact heuristic h , which reduces the number of 
expanded nodes to a minimum.

In general, finding a feasible heuristic can be 
difficult because the quality of the heuristic de-
pends on the environment. The Euclidean distance 
is a popular choice. However, it is not well-suited 
for maze-like environments in which the length of 
a path between two points may differ a lot from 
the Euclidean distance between them.

There are many more variants and modifica-
tions of A*. As the size of the open list strongly 
influences the computation time for the final path, 
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many variants aim at keeping the number of nodes 
in the open list small. For example, the size of the 
open list can be limited by a constant number of 
nodes, and nodes with the highest f -values can 
be dropped whenever the open list becomes big-
ger than that number (beam search (Lowerre & 
Reddy, 1980)).

Instead of generating one large set of opened 
and closed nodes, performance can also be im-
proved by searching from s  to t  and from t  to 
s  simultaneously and stop when the two paths 
meet in the same node. However, the result is not 
guaranteed to be optimal.

Another concept is to inflate the h -values by 
some given weight w ≥1 and to compute the 
f -values as f g wh= + . With this weighted A* 
variant (Pohl, 1970), additional emphasis is put 
on the heuristic. In this way, the expansion of 
nodes that appear to be closer to the goal are 
preferred, thus yielding a trade-off between com-
putation time and quality of the path. This idea is 
further extended to anytime variants of A*, which 
start with a high weight for the heuristic values 
to compute a first rough solution quickly. This 
first solution is then improved over time by adjust-
ing the weights. One of those anytime variants is 
ARA* (Likhachev, Gordon, & Thrun, 2004), in 

Figure 8. Comparison of different search strategies on a grid with uniform costs. Obstacles are shown 
in grey, free space is shown in white. Expanded cells are shown in dark green. Cells that are part of the 
final path are shown in bright green (with arrows pointing towards the next node on the final path). Top 
Left: Dijkstra’s algorithm expands many nodes, but finds an optimal path. Top Right: Best-First-Search 
expands only a few nodes, but finds a non-optimal path. Bottom: A* combines both advantages (an exact 
heuristic is chosen to illustrate the strength of A*).



550

Navigating Through Virtual Worlds
 

which the weight w  is based on a linear trajec-
tory and two additional user-controlled parameters. 
The user has to set the initial value of w  to-
gether with a fixed step size ∆w  by which the 
weight is decreased between the computation of 
solutions. Another anytime variant of A* is called 
ANA* (Anytime Non-parametric A*) (van den 
Berg, Shah, Huang, & Goldberg, 2011). It uses a 
novel criterion for deciding which node to expand 
next in each step. Instead of expanding the node 
with lowest weighted f -value, it expands the 
node that maximizes the term e G g h= −( ) / , 
with G  being the costs of the currently best solu-
tion (which is set to infinity in the first iteration). 
The term e  can be intuitively understood as the 
ratio between the “budget” that is left to improve 
the current-best solution and the estimated costs 
between the node and the goal. Maximizing e  
corresponds to picking the largest weight w  such 
that f G≤ , and to expanding the node that is 
most promising to improve the current-best solu-
tion. ANA* overcomes the user’s problem in 
ARA* of finding appropriate parameters, and has 
comparable and in some cases better performance 
than ARA*.

Despite the fact that A* and its variants are 
widely used for path planning in digital games, 
it is not the final answer. Many open research 
questions cannot be answered by using A* on a 
graph. Recent approaches use the aforementioned 
navigation meshes and the possibility to store 
additional information. Solving advanced path 
planning and crowd simulation problems on 
2D-surface representations of the environment 
rather than on 1D representations such as graphs 
require new strategies, which we will discuss in 
the following sections.

The Indicative Route Method

The Indicative Route Method (IRM) (Karamouzas, 
Geraerts, & Overmars, 2009) is a path planning 
strategy based on the Explicit Corridor Map 

(ECM); see Section “Navigation Meshes”. The 
IRM combines the general concept of global 
planning using the ECM together with local 
force-based strategies. Given a character with a 
start position and a designated goal position, the 
method works as follows.

First, an indicative route is created. An in-
dicative route is a route from the start to the goal 
position, and it functions as a guiding line and a 
rough estimation of the character’s preferred route 
through the environment. This route can be either 
manually designed or automatically computed by 
a global path planning approach (e.g. by an A* 
search on a grid; see Sections “Grids” and “A* 
and its Variants”). We assume that the indicative 
route is given as a straight-line strip between a 
set of waypoints; see Figure 9 (left).

Second, the actual path is computed by letting 
the character move towards an attraction point in 
a number of discrete time steps. In each step, the 
character’s current position x  is retracted onto 
the medial axis. This retraction works as follows: 
We trace the line between x  and its closest ob-
stacle point in opposite direction until it intersects 
the medial axis. This intersection point is the 
retraction point of x , and it is denoted by r ; see 
Figure 9 (right). Now the radius of the maximum 
clearance disc around r  is given as the distance 
between r  and its closest obstacle point. In 
other words, the maximum clearance disc is the 
disc centered at r  that is as large as possible 
before it intersects an obstacle. If the goal position 
is contained inside the disc, the character will be 
attracted to it. Otherwise, the attraction point 𝛂 
is defined as the last point on the indicative route 
that intersects the boundary of the clearance disc; 
see Figure 9 (right). The attraction point 𝛂 , the
character’s current position x  and its preferred 
speed induce a preferred velocity for the charac-
ter in each step of the simulation. This velocity is 
then integrated using Euler’s integration (Butch-
er, 2008) or a similar integration scheme to produce 
smooth and natural paths; see Figure 10 for an 
example in a 3D city environment.
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For a modest number of characters, the IRM 
runs at framerates suitable for real-time applica-
tions. However, the IRM has its drawbacks. For 
large crowds of tens of thousands of individual 
characters, the method is computationally ineffi-
cient. Furthermore, the retraction strategy requires 
indicative routes to have no self-intersections and 
backtracks, thus limiting the flexibility and power 
of the method for specific scenarios. Furthermore, 
as the definition of the attraction point depends 
on the available amount of free space around the 
character’s current (retracted) position, the method 
causes undesired behavior in large areas of free 
space, but also in confined spaces. When there is 
a large area of free space around the character, the 
maximum clearance disc has a large radius. This 
results in attraction points being far ahead of the 
character’s current position. The resulting path 
smoothes the indicative route to a great extent and 
skips parts that might be important. By contrast, 
in confined spaces such as a narrow but slightly 
winding and long passage, the maximum clearance 

is small. The IRM makes the character frequently 
change its orientation although a straight move-
ment in the direction of the corridor is expected.

To address these limitations, the Modified 
Indicative Routes and Navigation method was 
developed. This method can be seen as a succes-
sor of the IRM, and we will describe it now in 
more detail.

The Modified Indicative Routes 
and Navigation Method

The Modified Indicative Routes and Navigation 
(MIRAN) method adopts from the IRM the con-
cept of using an indicative route and computing 
an attraction point in each step of the simulation 
(Jaklin, Cook IV, & Geraerts, 2013). It computes 
several candidate attraction points in each step of 
the simulation. The best candidate is then picked 
according to a weight-function that takes region 
preferences into account.

Figure 9. Left: an indicative route with waypoints w w
0 8
, ..., . Right: a character with center point x , its 

retraction point r  on the medial axis, and attraction point 𝛂 as the intersection of the indicative route
and the maximum clearance disc (dashed) around r .
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MIRAN improves on the IRM in several 
aspects. Its main contribution is the simulation 
of heterogeneous environments for different 
character profiles. Each character profile has its 
own specific preferences for certain region types 
(roads, bike-lanes, sidewalks, lawns, etc.). MIRAN 
can be used for path following without requiring 
a copy of the navigable space for each character 
profile. Furthermore, the method allows the user 
to control how closely an indicative route should 
be followed and how much freedom a character 
has to deviate from or skip parts of it. Thus, the 
method is independent of local clearance informa-
tion and overcomes the aforementioned problems 
of the IRM.

While MIRAN makes the above contribution, 
it has its limitations. MIRAN is defined for a char-
acter represented as a point in the environment, not 
a disc or similar 2D shape. Thus, different char-
acter sizes and arbitrary clearance from obstacles 
are not supported by this method. Furthermore, 

MIRAN does not handle collision avoidance with 
region-preferences. Characters do independently 
take regions into account while travelling, but 
they ignore this information as soon as collisions 
among them need to be avoided. Solving these 
issues is subject of current research.

The quality of paths generated with the MIRAN 
method also depends on the quality of the indica-
tive routes that are used. These can be computed by 
using A* on a grid (Jaklin, Cook IV, & Geraerts, 
2013), but recent approaches rather consider the 
exact geometry of the environment (Jaklin, Tib-
boel, & Geraerts, 2014) (see Figure 11).

Local Collision Avoidance

In this section, we give an overview of different 
strategies to handle local collision avoidance be-
tween characters. The algorithms can generally 
be divided into three categories. First, reactive 
steering methods let the character adapt its path 

Figure 10. A smooth path computed by the Indicative Route Method using the Explicit Corridor Map 
(Geraerts, 2010)
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to dynamic and static obstacles. Second, colli-
sion prediction methods assume that a character 
moves with a constant velocity. Future motions 
are predicted by linearly extrapolating the char-
acter’s current movement. In this way, collisions 
can be detected and avoided in advance. Third, 
example-based methods use a database of example 
behaviors from captured crowd data. A character 
selects an example behavior that closely matches 
its current state with respect to a given metric. We 
now discuss related work for each of the three 
collision avoidance categories.

Reactive steering methods originated from the 
robotics community. Force-based approaches are 
usually a variant of a potential field as described 
in Section “Potential Field and Flow-Based 
Methods”. In the field of animation and crowd 
simulation, reactive steering was introduced by 
the seminal work of Reynolds on flocks, herds and 
schools (Reynolds C. W., 1987). In this model, 
three behavioral rules are applied to each flock 
member: avoiding collision with nearby flock 
members, matching velocity with the nearby 
flock members, and staying close to nearby flock 
members. Collision avoidance is achieved by 
repulsive forces that are exerted on nearby flock 
members. The shorter the distance between two 
flock members, the stronger the repulsive force. 
Velocity matching can be seen as predictive col-
lision avoidance because flock members that 
successfully match their velocities are unlikely 
to collide. The three behavioral rules are ordered 
by priority and accumulated to produce the flock 
members motion. The order can be dynamically 
adapted during the simulation to temporarily split 
the flock for avoiding collisions.

Another reactive and force-based approach 
popular in the civil and traffic engineering com-
munity is the social force model introduced by 
Helbing and Molnár (1995). The behavior of 
pedestrian crowds is simulated by solving New-
ton’s equations of motion, using both physical 
and socio-psychological forces. Repulsive and 
tangential forces are used to model interactions 

between individuals with respect to their relative 
distance, and to avoid collisions with obstacles. 
Heigas, Luciani, Thollot and Castagné (2003) 
propose an approach in which characters and 
obstacles are represented as particles. Interac-
tions are represented by physically-based forces 
exerted between each pair of particles using a 
mass-spring-damper model. The distance between 
interacting particles influences the stiffness and 
viscosity of the model.

Reactive steering methods need not necessarily 
be force-based. Other reactive approaches com-
prise rule-based systems on a 2D grid (Loscos, 
Marchal, & Meyer, 2003) or by using cellular au-
tomata (Wolfram, 1994). Behavioral models such 
as the work of Terzopoulos, Tu, and Grzeszczuk 
(1994) to simulate artificial fish also belong to 
this category.

Reactive steering methods have the drawback 
that characters react to avoid collisions when other 
characters or obstacles get sufficiently close. 
This may result in unnatural trajectories because 
humans tend to resolve collisions in advance by 
the principle of least effort (Zipf, 1949). Further-
more, the resulting motions are often subject to 
oscillations.

Predictive methods address these issues. 
Reynolds (1999) presents a collection of steer-
ing behaviors, one of them being the unaligned 
collision avoidance behavior. Collisions are 
predicted by extrapolating current motions and 
resolving them by adjusting orientation and move-
ment speed accordingly. Pettré, Ondřej, Olivier, 
Cretual, and Donikian (2009) describe a model 
based on experimental study. In this model, pe-
destrians take different roles during interactions 
(e.g. passing first or giving way). Adaptations of 
speed and orientation to avoid collisions depend 
on the specific roles of the characters. Among 
the predictive methods are also the more recent 
vision-based approaches. Those are based on the 
assumption that paths are most natural if decisions 
are based on the characters’ visual stimuli. Ondřey, 
Pettré, Olivier, and Donikian (2010) combine 
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visual stimuli with motor response laws. Fiorini 
and Shiller (1998) introduced the concept of a 
Velocity Obstacle (VO). For each character, the 
VO represents the set of all velocities that would 
lead to a collision with another character at some 
future time step. By taking the union of VOs for 
all characters under consideration, collisions can 
be avoided by selecting a velocity outside of the 
combined VO. Van den Berg et al. (2008) extended 
this concept to the Reciprocal Velocity Obstacle 
(RVO) that guarantees oscillation-free motions. 
A variety of models have improved on the VO 
and RVO concepts; see for example (Snape, Berg, 
Guy, & Manocha, 2009; Guy, et al., 2009; van den 
Berg, Guy, Lin, & Manocha, 2009). Vision-based 

approaches tend to be computationally expensive. 
This becomes particularly relevant when simulat-
ing crowds with high densities. In those scenarios, 
flow-based methods may be preferred (Treuille, 
Cooper, & Popovic, 2006). To further overcome 
the problems of short-range avoidance strategies, 
long-range collision avoidance has recently been 
taken into consideration (Golas, Narain, Curtis, & 
Lin, 2014; Anvari, Bell, Angeloudis, & Ochieng, 
2014).

Among the example-based techniques are the 
works of Ju et al. (2010), Lee, Choi, Hong, and Lee 
(2007) and Lerner et al. (2007). Using a database 
of captured crowd behaviors, each character selects 
an example behavior that is close to its current 

Figure 11. The MIRAN method in a forest environment. An adult character (solid non-smooth indicative 
route and solid smooth path,) avoids puddles and dense wood, but is attracted to a region with a pan-
oramic view (light grey). A child (dashed non-smooth indicative route and dashed smooth path) crosses 
puddles and climbs fallen tree logs (Jaklin, Cook IV, & Geraerts, 2013).
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state with respect to a given metric. Example-based 
models may simulate realistic motions and capture 
complex avoidance maneuvers based on actions 
taken by real members of a crowd. However, cor-
responding databases are limited to the number 
of different behaviors. Situations may occur in 
which all matching examples lead to collisions. 
In addition, the scenario must always be similar 
to the real-life scenario from which the examples 
were extracted. Lastly, example-based solutions 
are rather used for offline-simulations and are not 
applicable to real-time applications such as digital 
games due to a high computational complexity.

As we have described in this section, there 
is a great variety of strategies that all have its 
advantages and drawbacks. Factors that influ-
ence the choice for a specific method are: What 
number of characters does a game need to handle 
simultaneously? Does it have large crowds or few 
individual characters? What is the desired degree 
of realism? How many collisions are expected 
in each time frame, and how important are low 
computation times for resolving those collisions? 
How is traversable space represented, and what 
collision avoidance strategies are best suited for 
this representation? Answers to such questions 
need to be answered in the design phase of a game.

CROWD SIMULATION STRATEGIES

The strategies we discussed in the previous sec-
tions mainly focus on computing feasible path 
trajectories for individual characters. With modern 
hardware, they can be used to simulate a crowd 
by applying the corresponding techniques to all 
crowd members simultaneously and adding lo-
cal collision-avoidance techniques. A different 
approach is to handle a crowd as one large entity 
by simulating the motion of each member as a 
per-particle energy minimization, thus handling 
a crowd similar to a fluid or gas. We now give an 
overview of such models.

Potential Fields and Flow-
Based Methods

Using Potential Fields for path planning is an ap-
proach that has emerged from the field of robotics 
(Latombe, 1991). The general task in behavior-
based robotics is to have a robot plan and execute 
its actions in three steps. First, it receives input 
through its sensors. Second, it evaluates the input 
to compute a desired behavior (i.e. seek the goal 
point or avoid a wall). Third, it maps this plan to 
a corresponding sequence of motor actions. For 
path planning in digital games, we are mainly 
interested in the second step of this approach. 
Potential Fields are widely used in this context 
because they are an intuitive and well-studied 
mathematical concept.

Moving characters in a potential field can be 
compared to a leaf floating on a stream of water, or 
a marble rolling through an environment of steep 
ramps or hills. The surrounding local topology or 
geometry of the environment directly influences 
the path of the moving object.

From an abstract point of view, a potential field 
can be described as a mapping from an input vector 
to an output vector. In robotics, the input vector 
usually describes the robot’s current orientation 
and speed, and the same can be applied to mov-
ing characters in a digital game or simulation. 
The output vector describes a motion from the 
current position to the next. If the environment is 
represented by a finite and discrete approximation 
of all traversable space (e.g. by a grid, see Sec-
tion “Grids”), the potential field can be visually 
shown as a vector field. It shows the union of all 
output vectors for every possible location of the 
character in the environment; see Figure 12. It 
might be necessary to compute the whole set of 
output vectors for large crowds that have a shared 
goal. However, when using potential fields for 
a small number of characters, the whole set of 
output vectors is hardly ever computed and only 
the ones are calculated that are actually necessary 
for the characters’ motion.
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For path planning purposes, a given goal 
point in the environment acts as an attractor for 
the character. The corresponding potential field 
applies forces on the character such that it is di-
rected towards the goal; see Figure 12 (left). On 
the contrary, obstacles apply a repulsive force 
on the characters to avoid collisions; see Figure 
12 (right).

Just like a rolling marble can get stuck in a 
hole or valley, characters can easily get stuck in 
local minima of the potential field. This is one of 
the main drawbacks when using potential fields 
for path planning. Potential fields that are free of 
local minima do exist, but they are expensive to 
compute (Connolly & Grupen, 1992), (Rimon 
& Koditschek, 1992), (Sundar & Shiller, 1994). 
Workarounds are usually considered to handle 
this problem (e.g. predict the next few steps and 
change a character’s motion if the current motion 
will lead to a local minimum).

Other flow-based methods have also been used 
for crowd simulation. Hughes (2003) modeled 
human pedestrians as a continuous density field, 
using partial differential functions to describe 

crowd dynamics. Treuille, Cooper, and Popovic 
(2006) presented a real-time crowd model based 
on continuum dynamics. Their model exhibits 
emergent phenomena observed in real crowds 
such as lane formation or vortex formation when 
several groups cross each other. Furthermore, it 
can be used in real-time applications. The authors 
showed that they can efficiently steer two oppos-
ing armies or let a crowd in a city react in panic to 
a user-controlled flying-saucer. Kerr and Spears 
(2006) presented a simulation model based on 
gas-kinetics for mobile robots. Pimenta, Michael, 
Mesquita, Pereira, and Kumar (2008) used a model 
based on Smoothed Particle Hydrodynamics to 
simulate swarms of mobile robots.

The main advantage of the abovementioned 
models is that they can efficiently simulate large 
numbers of characters, as long as there are only a 
few goal-states involved. In such cases, they usu-
ally outperform agent-based models in terms of 
computation times. However, the computational 
complexity of such models becomes too high for 
real-time applications when a large number of 
different crowds with different goal states needs to 

Figure 12. Left: an attractive potential field with a goal point. Right: a repulsive potential field with an 
obstacle.
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be simulated. Furthermore, flow-based models are 
not well-suited for low- to medium crowd densities, 
in which the individuality of each crowd member 
has a larger impact on the overall crowd behavior 
than in high-density scenarios. Lastly, none of 
the above models focuses on social interactions 
among crowd members. We now give an overview 
of models that simulate groups, formations and 
social interactions.

Groups and Formations

Simulating social interactions among the members 
of a crowd is a challenging step towards more 
immersive educational games. Pedestrians in a 
city environment such as The River City Project 
(2002 - 2007) should not walk individually, but 
form small social groups, walk together and auto-
matically adapt to dynamic changes like spotting 
a friend in a crowd.

In this section, we give a brief overview of re-
search on simulating small and large social groups 
of virtual characters. The basis for many of these 
approaches is the behavioral model by Reynolds 
to simulate flocks, herds, and schools (Reynolds 
C. W., 1987), which the author later extended by 
adding steering behaviors (Reynolds, 1999) and 
interactions within groups (Reynolds, 2000). 
Since this model mainly aims at simulating the 
behavior of groups of animals, other researchers 
have focused on autonomous human characters.

Musse and Thalmann (1997) presented a 
rule-based model for crowd behavior of multiple 
pedestrian groups. Characters in this model exhibit 
flocking behavior and are able to switch between 
groups based on sociological factors. The authors 
do not elaborate on how group coherence is being 
addressed, and the proposed collision-avoidance 
model yields undesired behavior compared to 
state-of-the-art methods described in Section 
“Local Collision Avoidance”.

Kamphuis and Overmars (2004) proposed a 
path planning model that maintains group co-
herence and avoids spatial separation between 

members of the same group. The model focuses 
on large groups such as armies, and is thus well-
suited for military games and applications rather 
than simulations of small groups in which social 
factors determine the overall behavior.

Kimmel, Dobson and Bekris (2012) also ad-
dressed the problem of maintaining group coher-
ence. Their work is based on the Velocity Obstacle 
approach by Fiorini and Shiller (1998), and it 
extends this method by adding team behavior. The 
limitations of this model are that the characters all 
move at the same speed and that only one single 
formation is being kept.

Qiu and Hu (2010) presented a model to 
simulate dynamic groups based on utility theory 
and social comparison theory. Their model allows 
characters to dynamically leave and join groups 
based on spatial and social factors.

Park, Quek, and Cao (2012) presented a model 
that is based on common ground theory. This 
model aims at simulating the social interactions 
between group members. Each group has a leader, 
and group coherence is measured by the distance 
from a group member to its leader projected in 
the leader’s direction of motion.

Karamouzas and Overmars (2012) presented 
a method of how to simulate local behavior of 
small pedestrian groups consisting of two or three 
individuals in city environments. Their approach 
is based on empirical studies regarding the spatial 
organization of such groups (Moussaïd, Perozo, 
Garnier, Helbing, & Theraulaz, 2010), (Peters & 
Ennis, 2009). From those empirical studies, they 
derived three formations that small groups tend to 
adapt to, namely line-abreast, v-like and river-like 
formations. The line-abreast formation functions 
as the default one when the group members com-
municate with each other while moving towards 
their goal. It is best suited for keeping the social 
interaction, provided there is enough space to do 
so. If the environment becomes more crowded or 
obstacles prevent the line-abreast formation, the 
v-like formation is taken. It still provides space 
for communication between the group members 
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while adapting to the environmental situation. The 
river-like formation is taken when crowd density 
is too high to keep the v-like formation, or when 
the group has to move through a small hallway or 
an equivalent environmental setup. For groups of 
two pedestrians, the v-like formation is replaced 
by a more compact line-abreast formation that 
reduces the distance between the two members.

The model by Karamouzas and Overmars 
(2012) has been tested and visualized in different 
scenarios. Group interactions have been tested in 
a narrow corridor, a shopping mall and a busy 
crosswalk. The virtual shopping mall scenario 
was compared to original video footage of a 
real shopping mall. Different metrics have been 
defined to measure the quality of the results in a 
quantitative evaluation of the model.

Similar to collision-avoidance methods, it 
depends on the application at hand which crowd 
simulation model is best. A wide range of ap-
proaches and paradigms exist, and most of the 
recent models work well in specific scenarios. 
Some of them are beyond the scope of a typical 
gaming application, as they try to handle complex 
factors among social groups from fields such as 
sociology or psychology. With games becoming 
more and more realistic, though, these kind of 
factors might one day be a crucial and integral 
component of immersive gaming experiences, too.

FUTURE WORK

The advanced algorithms we have discussed in 
this chapter could be used in future educational 
games to enhance a player’s immersion and thus 
the overall learning experience. Autonomous 
virtual characters could change their appearance 
from static, stiff and unnatural to lively, dynamic 
and more believable by using the methods we 
covered in this chapter.

For instance, in a game such as The River City 
Project (2002 - 2007), a navigation mesh such as 
the Explicit Corridor Map (Geraerts, 2010) could 

enable the residents to autonomously move around 
the city with respect to the exact geometry of the 
walkable space. Using a method such as MIRAN 
(Jaklin, Cook IV, & Geraerts, 2013) makes them 
stay on preferred terrain and avoid less attractive 
regions without treating such regions as hard ob-
stacles, thus allowing more flexible behavior and 
creating smooth and visually convincing paths. 
Social-group methods such as (Karamouzas & 
Overmars, 2012) could be used to simulate the 
residents’ social behavior. The characters could 
walk individually, but temporarily form small 
social groups to have conversations or walk 
together in socially-friendly formations. Novel 
crowd simulation models enable the simulation 
of large crowds at interactive rates for both low- 
and high-density situations (van Goethem, Jaklin, 
Cook IV, & Geraerts, 2015). These could be used 
to populate a virtual environment like River City 
with even more characters that coordinate their 
walking behavior and react to dynamic changes 
in the environment.

Furthermore, virtual crowds are essential in 
training software for evacuation scenarios and 
crowd management such as SportEvac (2014). 
Such games could not only be used by managers 
of mass events and safety personnel, but also in 
P-12 education to increase the students’ awareness 
of potential dangers during such events.

The aforementioned methods could not only 
improve a player’s immersion to a great extent, 
but they could also enable advanced gameplay 
and novel game-design elements in future edu-
cational games. For example, virtual characters 
that display social behavior could be used in a 
game that aims at training communication skills. 
A player’s learning experience could be enhanced 
when the virtual characters not only react to the 
player’s negative actions by simply stating that 
they are displeased, but actually start avoiding 
the player and tell their fellow characters about 
the incident, who in turn also display a negative 
attitude towards the player.
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Future educational games could also simulate 
social-group behavior on a psychological level. 
The question of how individual characters meet, 
automatically form groups and depart has been 
addressed, but still leaves room for improvement. 
Studies from fields such as psychology and sociol-
ogy should be used as a basis for more in-depth 
methods to simulate human behavior.

CONCLUSION

As discussed in the previous sections, educational 
games often lack realism when characters need to 
navigate through a virtual environment. Characters 
display stiff movements and lack flexibility in the 
paths they choose. For instance, paths are often 
scripted and manually created by a designer. The 
resulting repetitive behavior reveals the underlying 
technological aspects of a game, which in turn 
destroys a player’s immersion and the overall 
learning experience.

Many different approaches have been taken to 
tackle path planning and crowd simulation issues 
in virtual environments. While the A* method on 
a grid is a flexible and general approach that has 
been widely and successfully used in the past, it 
is not the final answer to problems related to path 
planning and crowd simulation. We have discussed 
that surface-based representations of traversable 
space via navigation meshes gives developers the 
opportunity to create more advanced algorithms.

For all problems we have discussed in this 
chapter, a general and theoretically substantiated 
basis is missing. Therefore, novel approaches 
need to be taken, and new algorithms need to be 
developed to enhance future educational games 
with respect to their path planning and corre-
sponding game design possibilities. We believe 
that the end of graph-based methods is near, and 
that the future lies in combining data structures 
and novel algorithms that work on a surface-based 
representation of the virtual environment.

In this chapter, we have mainly focused on the 
navigation aspects of path planning and crowd 
simulation for educational games. Other important 
aspects are behavioral patterns, visualization and 
animation. These are addressed in the book by 
Thalmann and Musse (2013).

Overall it can be said that the field of path plan-
ning and crowd simulation is continually growing 
and improving. Promising new ideas might soon 
evolve into algorithms providing many immersive 
features, thus enhancing a player’s gaming experi-
ence and improving learning results in educational 
games for training and education purposes.
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KEY TERMS AND DEFINITIONS

Character: Any moving entity in a digital 
game, either autonomous or controlled by the 
player.

Crowd: A large number of static or moving 
characters in a digital game, either with a shared 
goal or with individual goals.

Indicative Route: A rough path from a start to 
a goal position, indicating the approximate direc-
tion a character should follow. Used for guiding a 
character, but not used as a final path.

Local Collision Avoidance: The task to de-
tect and avoid a collision among several moving 
characters on a local level, thus not taking global 
knowledge of the entire environment into account.

Navigation Mesh: A data structure to represent 
the traversable space in a digital game, consisting 
of 2D polygons.
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Path Planning: The task to compute and follow 
a path from a given start to a given goal position 
in the game world.

Traversable Space: The space that can be 
traversed by characters in a digital game.

ENDNOTES

1  Throughout this chapter, we will refer to 
any moving entity as a character. Characters 
do not need to be humanoid, but can also be 
vehicles or any type of automated moving 
entities, depending on the specific gaming 
application.

2  Visit http://www.geometrygames.org/To-
rusGames/ for a collection of games such 
as Chess or Tic Tac Toe that run on a torus 
or a Klein Bottle topology (Klein, 1882). 
Accessed January 22, 2015.

3  Visit http://theory.stanford.edu/~amitp/
GameProgramming/ for additional informa-
tion on path planning with A*. Accessed 
January 22, 2015.


