Separating a Walkable Environment into Layers

Arne Hillebrand Marjan van den Akker Roland Geraerts Han Hoogeveen

> Department of Information and Computing Sciences Utrecht University, the Netherlands

- 1 Obtain a 3D-model of a building;
- 2 Filter and repair to obtain the walkable environment;
- 3 Obtain a multi-layered environment;
- 4 Do something useful (e.g. generate a navigation mesh).

ntroduction ●○○○	Finding MLEs	Experiments 000000	Conclus o
What?			

- 1 Obtain a 3D-model of a building;
- Filter and repair to obtain the walkable environment;
- **3** Obtain a multi-layered environment;
- I Do something useful (e.g. generate a navigation mesh).

Introduction	Finding MLEs	Experiments	Conclusion
0000			
Multi-layered env	ironment		

- ▶ No two polygons *P* and *Q* in a layer *L_i* overlap;
- ► Iff polygons P and Q are connected and in different layers, the shared edge between P and Q is a connection in C.
- Every polygon *P* is assigned to exactly one layer.

^[1] van Toll, Cook, and Geraerts, "Navigation meshes for realistic multi-layered environments"

Introduction	Finding MLEs	Experiments	Conclusion
0000			
Multi-layered env	vironment		

- ▶ No two polygons *P* and *Q* in a layer *L_i* overlap;
- ► Iff polygons P and Q are connected and in different layers, the shared edge between P and Q is a connection in C.
- Every polygon *P* is assigned to exactly one layer.

^[1] van Toll, Cook, and Geraerts, "Navigation meshes for realistic multi-layered environments"

Introduction	Finding MLEs	Experiments	Conclusion
0000			
Multi-layered environme	ent		

- ▶ No two polygons *P* and *Q* in a layer *L_i* overlap;
- ► Iff polygons P and Q are connected and in different layers, the shared edge between P and Q is a connection in C.
- Every polygon *P* is assigned to exactly one layer.

^[1] van Toll, Cook, and Geraerts, "Navigation meshes for realistic multi-layered environments"

Introduction	Finding MLEs	Experiments	Conclusion
0000			
Multi-layered env	ironment		

- ▶ No two polygons *P* and *Q* in a layer *L_i* overlap;
- ► Iff polygons P and Q are connected and in different layers, the shared edge between P and Q is a connection in C.
- Every polygon *P* is assigned to exactly one layer.

^[1] van Toll, Cook, and Geraerts, "Navigation meshes for realistic multi-layered environments"

Introduction	Finding MLEs	Experiments	Conclusion
○○●○		000000	0
Related work			

Creators

- "Render" a multi-layered environment top down [1]
- Modelling tool where layer information is encoded [2]
- Create navigation mesh with a multi-layered environment as intermediate result [3]

Users

- Use a multi-layered graph of a building to clear buildings [4]
- Use a multi-layered environment to create navigation mesh [5]

^[1] Deusdado, Fernandes, and Belo, "Path planning for complex 3D multilevel environments"

^[2] Jiang et al., "A semantic environment model for crowd simulation in multilayered complex environment"

^[3] Oliva and Pelechano, "NEOGEN: Near optimal generator of navigation meshes for 3D multi-layered environments"

^[4] Rodriguez and Amato, "Roadmap-based level clearing of buildings"

^[5] van Toll, Cook, and Geraerts, "Navigation meshes for realistic multi-layered environments"

Introduction	Finding MLEs	Experiments	Conclusion
0000			
Minimally connected mu	ılti-layered environment		

Definition (Minimally connected multi-layered environment)

A minimally connected multi-layered environment (MICLE) is a multi-layered environment where the number of connections is minimal.

0000		000000	O
Walkable environ	iment graph		
	\square		
		H	

- A vertex for every polygon;
- ► An edge between every distinct pair of connected polygons; Associated with each edge e is also an integer weight w(e).
- An overlap annotation between every distinct pair of overlapping polygons.

0000		000000	o
Walkable enviror	nment graph		

- A vertex for every polygon;
- ► An edge between every distinct pair of connected polygons; Associated with each edge e is also an integer weight w(e).
- An overlap annotation between every distinct pair of overlapping polygons.

0000		OOOOOO	o
Walkable environ	ment graph		
		A-I	
		AL_	

- A vertex for every polygon;
- ► An edge between every distinct pair of connected polygons; Associated with each edge e is also an integer weight w(e).
- An overlap annotation between every distinct pair of overlapping polygons.

0000		experiments 000000	O Conclusion
Walkable environ	ment graph		
	_		
		12	
		H.	

- A vertex for every polygon;
- ► An edge between every distinct pair of connected polygons; Associated with each edge e is also an integer weight w(e).
- An overlap annotation between every distinct pair of overlapping polygons.

Introduction	Finding MLEs	Experiments	Conclusion
	00000		
Finding "good" MLEs			

Minimize the cumulative weight of connections.

Developed three algorithms:

- ► ILP;
- Local search;
- Height heuristic.

Introduction	Finding MLEs	Experiments	Conclusion
0000	00000	000000	
Height heuristic $(1/3)$			

Observation:

Polygons traditionally clustered at height levels.

Observation:

Polygons traditionally clustered at height levels.

CLUSTER

- 1 Create components
- 2 Scan bottom to top
- **3** Merge components in range
- 4 Increase range and repeat

LOCALMIN

- 1 Keep active list
- 2 Merge or redistribute
- **3** Repeat while active $\neq \emptyset$

Introduction	Finding MLEs	Experiments	Conclusion
	00000		
Height heuristic (2/3): (CLUSTER		

Introduction	Finding MLEs	Experiments	Conclusion
	00000		
Height heuristic (2/3):	CLUSTER		

Introduction	Finding MLEs	Experiments	Conclusion
	00000		
Height heuristic (2/3):	CLUSTER		

Introduction	Finding MLEs	Experiments	Conclusion
	00000		
Height heuristic (2/3):	CLUSTER		

Introduction	Finding MLEs	Experiments	Conclusion
	00000		
Height heuristic (2/3):	CLUSTER		

Introduction	Finding MLEs	Experiments	Conclusion
	00000		
Height heuristic (2/3): (CLUSTER		

Introduction	Finding MLEs	Experiments	Conclusion
	00000		
Height heuristic (2/3): (CLUSTER		

Introduction	Finding MLEs	Experiments	Conclusion
	00000		
Height heuristic (2/3): (CLUSTER		

Introduction	Finding MLEs	Experiments	Conclusion
0000	○○○○●	000000	O
Height heuristic $(3/3)$: 1	LOCALMIN		

Introduction	Finding MLEs	Experiments	Conclusion
0000	○○○○●	000000	0
Height heuristic $(3/3)$: 1	LOCALMIN		

Introduction	Finding MLEs	Experiments	Conclusion
0000	○○○○●	000000	0
Height heuristic (3/3): 1	LOCALMIN		

Introduction	Finding MLEs	Experiments	Conclusion
0000	○○○○●	000000	0
Height heuristic (3/3): 1	LOCALMIN		

Introduction	Finding MLEs	Experiments	Conclusion
0000	○○○○●	000000	0
Height heuristic $(3/3)$: I	LOCALMIN		

Introduction	Finding MLEs	Experiments	Conclusion
0000	○○○○●	000000	0
Height heuristic (3/3): 1	LOCALMIN		

Introduction	Finding MLEs	Experiments	Conclusion
0000	○○○○●	000000	0
Height heuristic (3/3): 1	LOCALMIN		

Introduction	Finding MLEs	Experiments	Conclusion
0000	○○○○●	000000	0
Height heuristic (3/3): 1	LOCALMIN		

Introduction	Finding MLEs	Experiments	Conclusion
0000	○○○○●	000000	0
Height heuristic (3/3): 1	LOCALMIN		

Introduction	Finding MLEs	Experiments	Conclusion
0000	○○○○●	000000	0
Height heuristic (3/3): 1	LOCALMIN		

Introduction	Finding MLEs	Experiments	Conclusion
0000	○○○○●	000000	0
Height heuristic $(3/3)$: 1	LOCALMIN		

Introduction	Finding MLEs	Experiments	Conclusion
0000	00000	••••••	0
What and how?			

What did we want to determine?

- How do the algorithms scale;
- Quality of the solution (number of connections);
- Independence of geometric representation.

Introduction	Finding MLEs	Experiments	Conclusion
	00000		0
What and how?			

How did we test this?

- Test different environments;
- Rotate environment;
- Compress the graph.

Introduction	Finding MLEs	Experiments	Conclusion
	00000		0
What and how?			

How did we test this?

- Test different environments;
- Rotate environment;
- Compress the graph.

Introduction	Finding MLEs	Experiments	Conclusion
0000		●○○○○○	O
What and how?			

How did we test this?

- Test different environments;
- Rotate environment;
- Compress the graph.

0000	00000	00000	0
Results			
-			
			>
	~		

Results (2/2)

Em	inonmont		local s	earch			F	IH			ILI	P	
Env	nomment	C	C sd	t (ms)	t sd	C	C sd	t (ms)	t sd	C	C sd	t (ms)	t sd
	As_oilrig	25.00	0.56	$5.27e^{4}$	$2.99e^{3}$	28.50	2.12	$9.27e^{1}$	$1.08e^{1}$	-	—	—	—
	Halo	4.00	0.00	$6.21e^{3}$	$3.47e^{2}$	4.35	0.67	$3.15e^{0}$	$3.66e^{-1}$	4.00	0.00	—	_
	Cliffsides	4.00	0.00	$1.99e^{4}$	$9.42e^{2}$	4.00	0.00	$3.19e^{1}$	$4.11e^{0}$	_	-	-	-
	Hexagon	29.20	0.70	$1.09e^{4}$	$6.51e^{2}$	31.00	1.45	$1.56e^{2}$	$8.96e^{0}$	57.50	8.02	-	—
Ċ	Library	8.25	0.44	$6.41e^{3}$	$1.71e^{2}$	9.00	0.00	$6.30e^{0}$	$5.71e^{-1}$	_	—	—	_
Ĥ	Tower	38.35	1.14	$1.93e^{5}$	$2.06e^{4}$	40.40	1.60	$8.85e^{2}$	$8.65e^{1}$	65.00	0.00	-	—
2	Station 1	15.20	0.41	$3.33e^{3}$	$1.95e^{2}$	17.25	0.55	$6.85e^{0}$	$3.66e^{-1}$		_	-	_
ina	Station 2	6.00	0.00	$1.62e^{3}$	$5.40e^{1}$	6.00	0.00	$1.00e^{0}$	$0.00e^{0}$	6.00	0.00	$4.56e^{6}$	$3.67e^{3}$
ц <u>е</u> .	Parking lot	8.00	0.00	$1.40e^{3}$	$4.61e^{1}$	8.00	0.00	$1.00e^{0}$	$0.00e^{0}$	8.00	0.00	$2.38e^{4}$	$4.56e^{2}$
0	City	392.95	4.70	$6.88e^{5}$	$3.39e^{4}$	444.55	6.53	$3.05e^{4}$	$1.55e^{3}$	25773.25	359.29	—	_
	Tower 10	41.60	1.14	$1.53e^{5}$	$1.21e^{4}$	64.60	4.13	$8.77e^{2}$	$8.26e^{1}$	551.25	26.27	-	-
	Tower 20	40.30	0.73	$1.88e^{5}$	$1.17e^{4}$	95.00	4.87	$1.04e^{3}$	$1.86e^{2}$	870.00	48.87	-	_
	Tower 40	41.00	0.92	$1.28e^{5}$	$1.17e^{4}$	87.00	6.36	$7.06e^{2}$	$7.49e^{1}$	-	—	—	—
	As_oilrig	26.05	0.89	$2.37e^{4}$	$1.69e^{3}$	27.95	0.89	$5.29e^{1}$	$2.31e^{0}$	_	—	—	_
	Halo	4.00	0.00	$2.65e^{3}$	$1.34e^{2}$	5.00	0.00	$2.00e^{0}$	$0.00e^{0}$	4.00	0.00	$4.39e^{6}$	$4.89e^{3}$
	Cliffsides	4.00	0.00	$1.01e^{3}$	$4.99e^{1}$	4.00	0.00	$6.05e^{0}$	$2.24e^{-1}$		_	-	_
	Hexagon	29.60	1.14	$2.07e^{3}$	$1.50e^{2}$	30.65	0.49	$3.69e^{1}$	$4.89e^{-1}$	21.33	9.29	-	—
Ö	Library	8.10	0.31	$3.34e^{3}$	$1.46e^{2}$	9.00	0.00	$4.05e^{0}$	$2.24e^{-1}$	8.00	0.00	-	_
B	Tower	36.60	0.68	$1.37e^{5}$	$1.53e^{4}$	40.60	3.02	$5.68e^{2}$	$4.19e^{1}$	845.25	85.80	—	_
γp	Station 1	16.25	0.72	$1.25e^{3}$	$8.81e^{1}$	19.00	0.00	$2.05e^{0}$	$2.24e^{-1}$	_	—	—	_
Ice	Station 2	6.00	0.00	$5.91e^{2}$	$1.50e^{1}$	6.00	0.00	$0.00e^{0}$	$0.00e^{0}$	6.00	0.00	$9.00e^{2}$	$2.02e^{0}$
p	Parking lot	8.00	0.00	$1.05e^{3}$	$2.88e^{1}$	8.65	0.49	$1.00e^{0}$	$0.00e^{0}$	8.00	0.00	$2.44e^{5}$	$2.14e^{3}$
R	Tower 10	41.35	1.66	$1.03e^{5}$	$6.85e^{3}$	63.65	2.21	$4.90e^{2}$	$3.16e^{1}$	1232.75	47.80	-	-
	Tower 20	39.55	0.83	$1.03e^{5}$	$7.79e^{3}$	100.30	4.51	$5.94e^{2}$	$7.38e^{1}$	-	—	—	_
	Tower 40	40.90	0.97	$9.12e^{4}$	$6.21e^{3}$	95.55	7.05	$4.98e^{2}$	$3.96e^{1}$	-	-	-	-

Introduction	Finding MLEs	Experiments	Conclusion
0000		000000	O
Analysis $(1/3)$: Tower			

Introduction	Finding MLEs	Experiments	Conclusion
0000	00000	000000	
Analysis (2/3): Geometr	ric independence		

Results for Tower environment

Introduction	Finding MLEs	Experiments	Conclusion
0000		○○○○○●	O
Analysis (3/3)			

27 tables condensed in one normal table and two 3D tables.

Speed:

- ▶ HH is **faster** than LS for 12/13 environments;
- ► No statistical difference between HH red. and HH;
- ► LS is **slower** than LS red. for 12/13 environments.

Quality:

- ► HH finds lower |C| than HH red. in 5/13 cases;
- ► HH finds higher |C| than LS in 8/13 cases;
- ► LS and HH have higher |C| when environment is rotated. Although effect is less pronounced for LS

All above statements are statistically significant for $\alpha = 0.001$

Introduction	Finding MLEs	Experiments	Conclusion
0000		000000	•
Conclusion			

We have:

- Identified a common (sub-)problem: finding an MLE;
- Implemented and tested three algorithms.
 Height heuristic, local search and ILP

In the future:

- Work on the first step in the pipeline (extracting a WE);
- Extend 2D algorithms to multi-layered environments.