
The Explicit Corridor Map: Using the Medial Axis
for Real-Time Path Planning and Crowd
Simulation
Wouter van Toll1, Atlas F. Cook IV2, Marc J. van Kreveld3, and
Roland Geraerts4

1 Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands
W.G.vanToll@uu.nl

2 Information and Computer Sciences Department, University of Hawaii at
Manoa, Hawaii
acook4@hawaii.edu

3 Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands
M.J.vanKreveld@uu.nl

4 Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands
R.J.Geraerts@uu.nl

Abstract
We describe and demonstrate the Explicit Corridor Map (ECM), a navigation mesh for path
planning and crowd simulation in virtual environments. For a bounded 2D environment with
polygonal obstacles, the ECM is the medial axis of the free space annotated with nearest-obstacle
information. It can be used to compute short and smooth paths for disk-shaped characters of
any radius. It is also well-defined for multi-layered 3D environments that consist of connected
planar layers. We highlight various operations on the ECM, such as dynamic updates, visibility
queries, and the computation of paths (indicative routes).

We have implemented the ECM as the basis of a real-time crowd simulation framework
with path following and collision avoidance. Our implementation has been successfully used to
simulate real-life events involving large crowds of heterogeneous characters. The enclosed demo
application displays various features of our software.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling, I.6.8
Types of Simulation

Keywords and phrases Medial axis, Navigation mesh, Path planning, Crowd simulation

Digital Object Identifier 10.4230/LIPIcs.SoCG.2016.70

Category Multimedia Contribution

1 Introduction

Many simulations, games, and other applications feature virtual characters that need to plan
and traverse paths through a complicated environment in real-time. Our research focuses on
path planning and crowd simulation for disk-shaped characters that move along walkable
surfaces. A navigation mesh subdivides these surfaces into regions for path planning purposes.
We describe the Explicit Corridor Map (ECM) [1, 8], a navigation mesh that allows path

© Wouter van Toll, Atlas F. Cook IV, Marc J. van Kreveld, and Roland Geraerts;
licensed under Creative Commons License CC-BY

32nd International Symposium on Computational Geometry (SoCG 2016).
Editors: Sándor Fekete and Anna Lubiw; Article No. 70; pp. 70:1–70:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.70
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


70:2 The Explicit Corridor Map

planning for characters of an arbitrary radius. This document describes the theoretical
background of our demo application, as well as a number of implementation details. Various
parts of this text have been extracted from a journal article that is currently in review.

2 Definitions

Let a 2D environment E be a bounded two-dimensional planar environment with polygonal
obstacles. The obstacle space Eobs is the union of all obstacles, including the boundary of
the environment. The complement of Eobs is the free space Efree. The complexity of E is the
number of vertices n required to define Eobs using interior-disjoint simple polygons.

The Explicit Corridor Map (ECM) is based on the medial axis (MA) [6], which is related
to the Voronoi diagram of line segment sites [5]. Various definitions of the MA exist; we
define it as the closure of all points in Efree that have at least two distinct equidistant nearest
points in Eobs, in terms of 2D Euclidean distance. An example is shown in Figure 1a.

The ECM is an MA annotated with nearest-obstacle information. More precisely, it is
an undirected graph G = (V, E) where V is the set of MA vertices of degree 1, 3, or higher.
Each edge eij ∈ E is a sequence of MA arcs between two vertices vi and vj in V . An edge
is represented by n′ ≥ 2 bending points bp0, . . . , bpn′−1 where bp0 = vi, bpn′−1 = vj , and
bp1, . . . , bpn′−2 are the degree-2 MA vertices inbetween. Each bending point bpk on an edge
stores its two nearest obstacle points lk and rk on the left and right side of the edge. An
example of an ECM is shown in Figure 1b.

The bending points and their annotations induce a subdivision of Efree into polygonal
ECM cells. Therefore, the ECM serves as a navigation mesh. Similarly to the medial axis,
the ECM can be constructed in O(n log n) time and requires O(n) space.

We have extended the MA and ECM to multi-layered environments that consist of 2D
layers connected by k line segment connections. The MA is based on distances projected
onto a common ground plane. The multi-layered ECM can be computed in O(kn log n) time
by initially treating the connections as obstacles and then opening them incrementally [8].
An article with improved definitions, proofs, and algorithms is currently under submission.

3 Operations

Given a query point q, we can find the ECM cell that contains q in O(log n) time using a
standard point location data structure. Given this cell, it takes O(1) time to compute the
nearest obstacle point nq to q and the retraction Retr(q) of q, which is the point where the
half-line from nq through q first intersects the medial axis.

When an obstacle is inserted or deleted during the simulation, the ECM can be dynamically
updated in real-time [9]. Our algorithms for dynamic updates are based on algorithms for site
insertions and deletions in Voronoi diagrams. Their running times depend on the number of
neighboring obstacles for the dynamic obstacle.

We can also use the ECM to efficiently compute the visibility polygon of a query point,
or to check if two points are mutually visible. These algorithms automatically work in
multi-layered environments because they only rely on the connectivity between ECM cells.

4 Path Planning and Crowd Simulation

To compute a global path from a point s to a point g, we retract the query points and then
use A* search [2] to find a shortest path from Retr(s) to Retr(g) on the medial axis. Because



W. van Toll, A. F. Cook IV, M. J. van Kreveld, and R. Geraerts 70:3

(a) Medial axis

q
Retr(q)

nq

(b) ECM / Retractions

s

g

(c) Path planning

Figure 1 The ECM and its operations in a simple 2D environment. a Obstacles are shown in
gray. The medial axis is shown in blue. Degree-2 vertices are shown as small dots; other vertices are
shown as large dots. b The ECM adds nearest-obstacle annotations, shown as orange line segments.
For any query point q (red dot), we can use the ECM to compute the nearest obstacle point nq

(black dot) and the retraction Retr(q) (circle). c To plan a path from s to g, we first compute a
shortest path on the medial axis. This induces a corridor of free space (light blue) in which we can
compute e.g. a short route with clearance to obstacles (shown in yellow).

the ECM stores nearest-obstacle information, we can dynamically ignore edges that are too
narrow for a character to use. Therefore, we can use the ECM to plan paths for characters of
an arbitrary radius. The resulting medial axis path induces a corridor of free space around
the medial axis. Within this corridor, we can compute various types of geometric paths, such
as a shortest path with clearance to obstacles [1]. Figure 1c summarizes this.

A geometric path can be used as an indicative route for the character to follow smoothly
during the simulation. In each simulation step, the character computes a preferred velocity
that steers it further along the indicative route. Next, the character converts this preferred
velocity to an actual velocity that avoids collisions with other characters. For more details
on these simulation components, we refer the reader to an overview paper [7].

5 Implementation

We have implemented a framework that combines the ECM with algorithms for path planning,
path following, collision avoidance, and other tasks related to crowd simulation. The software
was written in C++ in Visual Studio 2013, but the code is platform-independent.

5.1 Computing the ECM
To robustly compute the ECM, we have integrated two different libraries for computing
Voronoi diagrams of line segment sites: Vroni [3] and a package of Boost (http://www.boost.
org/). First, we compute the Voronoi diagram using either library. Next, traverse it while
adding nearest-obstacle annotations and removing vertices and edges that are not part of
the medial axis. Finally, we remove all connected components that lie inside obstacles. For
the multi-layered ECM, we first perform these steps for each layer separately (possibly in
parallel), and then we open the connections one by one.

Since the Boost Voronoi library requires integer coordinates as input, we multiply all
coordinates by 10,000 and round them to the nearest integer. For convenience and comparative
purposes, we use these rounded coordinates in Vroni as well. Since we use meters as units,

SoCG 2016

http://www.boost.org/
http://www.boost.org/


70:4 The Explicit Corridor Map

Figure 2 A large multi-layered city and its medial axis, computed using our ECM implementation.

this scaling implies that we represent all coordinates within a precision of 0.1 millimeters.
We have also created an approximating GPU-based construction algorithm [4, 1], but

this approach cannot guarantee certain properties such as topological correctness, accurate
positions of vertices, and full coverage of the free space. This makes many other ECM
algorithms very difficult to implement, most notably our algorithms for dynamic updates
and the construction algorithm of the multi-layered ECM.

Experiments show that our Vroni-based implementation is faster than the Boost-based
version. However, the advantage of Boost is that it is thread-safe, which allows us to compute
multi-layered ECMs very efficiently by computing the ECMs of all layers in parallel. Figure 2
shows an example of a huge multi-layered environment. Its ECM, with over 40,000 vertices
and 120,000 bending points, was computed in under 14 seconds using Vroni.

5.2 Demo Application and Other Results

The enclosed demo application automatically loads four 2D environments and computes their
ECMs using Boost. In the first environment, it creates a character at a random position
and lets it compute and follow an indicative route to a random goal position. Whenever the
character reaches its goal, it computes a new route to a new random position. The user can
switch between environments, assign new goal positions, change the radius of the character
(which may affect the accessibility of certain ECM edges), and change the preferred distance
to obstacles (which affects the indicative route, but not the corridor in which it lies).

The full version of our framework can simulate tens of thousands of heterogeneous
characters in real-time using multi-threading and an efficient subdivision of the simulation
loop into substeps [7]. The framework can also be linked as a DLL to other software, such as
the Unity3D game engine (http://www.unity3d.com/).

References

1 R. Geraerts. Planning short paths with clearance using Explicit Corridors. In Proceedings
of the IEEE International Conference on Robotics and Automation, pages 1997–2004, 2010.

2 P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–
107, 1968.

3 M. Held. VRONI and ArcVRONI: Software for and applications of Voronoi diagrams in
science and engineering. In Proceedings of the 8th International Symposium on Voronoi
Diagrams in Science and Engineering, pages 3–12, 2011.

http://www.unity3d.com/


W. van Toll, A. F. Cook IV, M. J. van Kreveld, and R. Geraerts 70:5

4 K.E. Hoff III, T. Culver, J. Keyser, M. Lin, and D. Manocha. Fast computation of gener-
alized Voronoi diagrams using graphics hardware. International Conference on Computer
Graphics and Interactive Techniques, pages 277–286, 1999.

5 D.T. Lee and R.L. Drysdale III. Generalization of Voronoi diagrams in the plane. SIAM
Journal on Computing, 10(1):73–87, 1981.

6 F. Preparata. The medial axis of a simple polygon. In Mathematical Foundations of
Computer Science, volume 53, pages 443–450. Springer, 1977.

7 W. van Toll, N. Jaklin, and R. Geraerts. Towards believable crowds: A generic multi-level
framework for agent navigation. In ASCI.OPEN, 2015.

8 W.G. van Toll, A.F. Cook IV, and R. Geraerts. Navigation meshes for realistic multi-layered
environments. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 3526–3532, 2011.

9 W.G. van Toll, A.F. Cook IV, and R. Geraerts. A navigation mesh for dynamic environ-
ments. Computer Animation and Virtual Worlds, 23(6):535–546, 2012.

SoCG 2016


	Introduction
	Definitions
	Operations
	Path Planning and Crowd Simulation
	Implementation
	Computing the ECM
	Demo Application and Other Results


