
On Experimental Research in Sampling-based Motion Planning

Roland Geraerts

Institute of Information and Computing Sciences, Utrecht University

P.O. Box 80.089, 3508 TB Utrecht, the Netherlands, Email: roland@cs.uu.nl

1 Introduction

Motion planning is one of the fundamental problems in robotics. The motion planning prob-
lem can be defined as finding a path between a start and goal placement of a robot in an
environment with obstacles. Over the past fifteen years, many different researchers have stud-
ied sampling-based motion planning techniques such as the Probabilistic Roadmap Method
(prm) [2]. This has led to many variants, each with its own merits. It is difficult to compare
the different techniques because they were tested on different types of environments, using
different underlying libraries, implemented by different people on different machines.

We have provided a comparative study and analysis of a number of these techniques,
all implemented in a single system and run on the same test environments and on the same
computer [1]. We encountered many difficulties and pitfalls during this study. We will identify
them and discuss our solutions based on our experimental research over the past four years.

2 Methods

General setup Our goal was to create a system that facilitated conducting experiments
easily and reducing making errors. We met this goal by creating a single motion planning
system called sample (System for Advanced Motion PLanning Experiments) which we im-
plemented in c++ using Visual Studio.net 2003 under Windows xp Professional.

In a motion planning experiment, many choices exist for the components that compose
a sampling-based motion planning algorithm. sample provides an easy api (Application
Programming Interface) to add techniques (such as a particular sampling or local planning
technique) to a component and to add its parameters. We created a gui to set up an experi-
ment easily (see Figure 1). We considered two types of experiments. The first type compares
different techniques while the second type examines the influence of a particular parameter
of a technique. An experiment can be saved to/loaded from disk to enable repeating the
experiment. We created a command line version of sample to run the actual experiments.
This program can run on a dedicated computer that has no processes running (such as a virus
scanner or an internet connection) which could influence the results. Initially, we collected
the experimental data manually. As this was quite a tedious job being sensitive to copy/paste
errors, we decided to automate this by automatically collecting and processing the data.

We implemented many techniques and added them to sample. Sometimes it was hard
to implement a technique in a way it was intended by the creator since not all details were
always present in the paper (which is often due to space limitations). In some cases, we found
these details in the source code which was available on the web.

1



Figure 1 Setting up an experiment in sample. In this example, the effect the parameter ‘max
distance’ of the ‘Forest’ neighbor selection strategy is studied. The parameter is varied between 5 and
40. For each different value, the experiment is carried out 100 times.

2



Representative problems The results of our comparative study indicated that some pre-
vious conclusions were too general which was probably caused by considering a set of examples
that was too limited. We have to admit that it can be difficult to choose an appropriate set.
In our study, we tried to employ environments and robots that resembled a wide range of con-
figuration spaces. That is, we used environments with cluttered obstacles, narrow passages,
many/few obstacles and scale differences. In addition, we used both small/large as well as
different types of robots.

Some existing papers present a new technique only using examples satisfying its intentional
goal. However, we think that also examples should be included that show its worst-case
behavior and its limitations. For example, in our research on creating small roadmaps [1],
we not only used an environment to show the potential of the algorithm, but also used an
environment to show that other algorithms can be faster.

Interchangeability In our research group, initially, every member had its own implemen-
tation of his techniques which made it difficult to compare them. In addition, much work was
wasted by creating components of software having comparable functionality. We decided to
create libraries taking care of common functionalities such as a collision checker, a visualizer,
and a graph library [5,6]. These libraries can be downloaded on the web. Also other libraries
have been made available such as the Nearest neighbor library [7]. Besides the libraries, we
encourage to make the source code of the complete system available such as done by [3, 4].

Another important issue is the ability to exchange the geometry of environments and
robots, as well as problem descriptions. We resolved this issue by using vrml as language for
describing the geometry and xml as language for the descriptions.1 There are great advan-
tages of using existing languages: They are well-documented, parsers and type checkers are
available for all appropriate platforms and programs exist to create and edit these descriptions.
We think that the robotics community would benefit by supporting these languages.

3 Results

Evaluation of solution An issue each researcher has to deal with is how to evaluate the
results. A common way to evaluate the results is to compare the new technique with existing
techniques. In our comparative study, we initially compared techniques based on the time
required to solve one relevant witness query. This however did not guarantee that every
possible query could be solved by the roadmap that was constructed. We improved the study
by evaluating the techniques based on solving every possible query. That is, we provided an
analysis tool that indicated when the roadmap was dense enough to solve each query.

Another way to evaluate the results is to compare against the optimal solution. In some
cases, we created an experiment for which the optimal solution is known. Unfortunately,
such experiments can in general only be conducted for trivial cases. For more complicated
experiments (such as the ones used for measuring path quality [1]), we tried to approximate
the optimal solution by performing many runs. In addition, we used visual inspection to
evaluate the results. In future research, we will also incorporate user evaluation to make the
judgments.

1Many geometry files can be downloaded on http://www.give-lab.cs.uu.nl/movie/moviemodels.

3



Statistics Our comparative study showed that the variance in the running times was often
large. This phenomenon is undesirable because of two reasons. First, a large variation
complicates statistical analysis and can even make it unreliable. Second, it is undesirable
from a users point of view, e.g. it can be hard to give a user an indication of how long the
method will take to terminate. Hence, we had to be very careful analyzing the results. As the
running times could vary extensively, we performed a large number of runs (i.e. 100) for each
experiment. In this way we increased its statistical significance. In addition, we created box
plots to provide insight in the distribution of the running times. (Such a box plot displays the
middle 50% of the data, the average, the standard deviation and the minimum and maximum
value.)

It may seem that deterministic techniques do not have such a ‘variance problem’. Nonethe-
less, the study showed that a small change of the environment leads to a comparable amount
of variance. Hence, care must be taken when deterministic techniques are involved.

4 Conclusion

It is often difficult to compare and evaluate techniques experimentally, because they were
tested on different types of environments, using different underlying libraries, implemented
by different people on different machines. By creating a system that facilitates integrating the
techniques and automates conducting experiments, many errors can be avoided. To enable a
fair and easy implementation of techniques, source code and software components should be
made available. In addition, we encourage to use standard file formats (such as vrml and
xml) to exchange problems easily.

When techniques have been implemented, they have to be evaluated by considering a large
range of examples. Moreover, examples that show their limitations should also be included.
A common way to evaluate the results is to compare techniques with existing ones. While
such a comparison is often made based on running times, it may not always be convenient
to use such a criterion. We think that incorporating user evaluation and user studies may be
appropriate.

References

[1] R. Geraerts. Sampling-based Motion Planning: Analysis and Path Quality. PhD thesis,
Utrecht University, http://www.cs.uu.nl/∼roland/motion planning/thesis.html, 2006.

[2] L.E. Kavraki, P. Švestka, J.-C. Latombe, and M.H. Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics

and Automation, 12:566–580, 1996.

[3] J.-C. Latombe. MPK: Motion planning kit. http://ai.stanford.edu/∼mitul/mpk, 2006.

[4] S.M. LaValle. MSL: Motion strategy library. http://msl.cs.uiuc.edu/msl, 2006.

[5] D. Nieuwenhuisen. Atlas. http://www.cs.uu.nl/∼dennis/atlas/atlas.html, 2006.

[6] D. Nieuwenhuisen. Callisto. http://www.cs.uu.nl/∼dennis/callisto/callisto.html, 2006.

[7] A. Yershova and S.M. Lavalle. MPNN: Nearest neighbor library for motion planning.
http://msl.cs.uiuc.edu/∼yershova/mpnn/mpnn.htm, 2006.

4


