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Context

We want efficient crowd simulations.
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Context

Large amount of computation spent on collision avoidance. Needs
several nearest neighbours.

Which method for finding nearest neighbours is most efficient?

Efficient:

I Construction

I Querying

I Variance
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Context

The k-nearest neighbour (kNN) problem is well-known.

I Robotics

I Machine learning

I Databases

I Computer vision

I ...

Usually: high dimensionality, separation between offline
construction and online querying, disk storage.

Our case: two or three dimensions, changing data, main memory.
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Data structures

Data structures selected on prevalence and availability of good
implementations.

We tested:

Data structure Construction time kNN query time

k-d tree O(n log n) O(k log n)
BD-tree O(n log n) O(k log n)
R-tree O(n log n) O(k log n)
Voronoi diagram O(n log n) O(k log n)
k-means O(n2) O(n)
Linear search O(1) O(n)
Grid O(n) O(n)
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k-d tree

Split alternatingly along axes.

Try to split remaining data in
half.

https://www.cs.umd.edu/~mount/ANN/Files/1.1.2/
ANNmanual 1.1.pdf
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Box-decomposition tree

k-d tree with extra split rule.

Split into inner and outer box.

https://www.cs.umd.edu/~mount/ANN/Files/1.1.2/
ANNmanual 1.1.pdf
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R-tree

Point or volumetric data.

Partitions may overlap.

Insertion and deletion of data
possible.

https://en.wikipedia.org/wiki/R-tree
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Hierarchical k-means clustering

Assign points to centroid.

Calculate new centroid and
iterate.

Apply hierarchically.

http://rossfarrelly.blogspot.com/2012/12/

k-means-clustering.html
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Voronoi diagrams

Cells of points closest to site.

Find nearest neighbours by
examining neighbouring cells.

http://merganser.math.gvsu.edu/david/voronoi.08.06/
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Implementations

k-d tree implementations provided by FLANN [1] and nanoflann
[2].

I FLANN: general-purpose implementation

I nanoflann: highly optimised for 2D and 3D data

FLANN also provides k-means implementation.

BD-tree is provided by ANN [3].

[1] Muja and Lowe, FLANN - Fast Library for Approximate Nearest Neighbors (http://www.cs.ubc.ca/research/

flann/)

[2] Blanco-Claraco, nanoflann (https://github.com/jlblancoc/nanoflann)

[3] Mount and Arya, ANN: A Library for Approximate Nearest Neighbor Searching (http://www.cs.umd.edu/

~mount/ANN/)
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Implementations

R-tree and Voronoi diagrams are provided by Boost [1].

R-tree has good update performance, test two versions:

1 Rebuild entire tree each time step

2 Update tree incrementally

Linear search and grid are own implementations.

[1] Gehrels et al., Boost Geometry Library (http://www.boost.org/libs/geometry)
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Scenarios

Test on artificial and real-world scenarios.

Artificial: test specific properties.

I Density: uniform vs clustered

I Stationary agents: test with 25, 50 or 75% of agents not
moving

I Scaling: add more agents each time step

Real-world:

I Simulations of evacuation of building

I Simulations for Tour de France [1]

I Jülich trajectory data of real crowds [2]

[1] van der Zwan, The Impact of Density Measurement on the Fundamental Diagram

[2] Keip and Ries, Dokumentation von Versuchen zur Personenstromdynamik
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Scenarios - density
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Scenarios - evacuation
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Scenarios - Tour de France
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Scenarios - Jülich bottleneck

17 / 25



Introduction Data structures Experiments Results Conclusion

Experimental setup

Jülich data only available as trajectories (tuples of id, time, x- and
y-coordinate).

For fair comparison, converted all data to trajectories.

C++ testing program reads data per time step, and:

1 Builds the structure for agent positions at current time step

2 Performs kNN query for each agent

For realism, queries are performed in parallel.

We fix k at 10; collision avoidance does not need more.
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Results

Total of 62 different scenarios: multiple instances of similar
settings.

Tested on machine running Ubuntu 15.10, with two Xeon 12-core
processors and 32 GB of DDR4 RAM.
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Results

Overall results per agent per time step:
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Results - scaling
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I Linear search quickly infeasible: 16 seconds per time step for
100,000 agents
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Results - scaling
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I R-tree and FLANN k-d tree have similar query performance,
but R-tree over 3x more expensive to update
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Results - scaling
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I R-tree update 20% faster than rebuild
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Results - scaling
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I nanoflann 2x faster than FLANN: 100,000 agents in ~35 ms
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Conclusion

nanoflann implementation of k-d tree clearly best option.

I Fastest except when number of agents very small

I Lowest variance

I 100,000 agents in 35 ms per time step

Grid competitive for small number of agents (< 1000) due to low
update cost. Linear search efficient up to a few hundred agents.

Updating R-tree more efficient than rebuilding.
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Future work

Currently working on extending kNN algorithm to multi-layered
environments, e.g. buildings with multiple floors.

I Euclidean nearest neighbours not enough: close x- and
y-coordinates may be on different floor

I Need to consider visibility
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Future work

Local neighbourhood does not change much between time steps:
could update only once every few steps.

I How often should we update?

Compare performance of GPU methods, looking for people with
expertise.
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Thanks!

J.L.Vermeulen@uu.nl
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