
A Comparative Study of Probabilistic
Roadmap Planners

Roland Geraerts Mark H. Overmars

Institute of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands.
Email: [roland,markov]@cs.uu.nl.

Abstract. The probabilistic roadmap approach is one of the leading motion plan-
ning techniques. Over the past eight years the technique has been studied by many
different researchers. This has led to a large number of variants of the approach,
each with its own merits. It is difficult to compare the different techniques because
they were tested on different types of scenes, using different underlying libraries,
implemented by different people on different machines. In this paper we provide
a comparative study of a number of these techniques, all implemented in a single
system and run on the same test scenes and on the same computer. In particu-
lar we compare collision checking techniques, basic sampling techniques, and node
adding techniques. The results should help future users of the probabilistic roadmap
planning approach to choose the correct techniques.

1 Introduction

The basic motion planning problem asks for computing a collision-free, fea-
sible motion for an object (or kinematic device) from a given start to a given
goal placement in a workspace with obstacles. Originally the problem was
studied within the robotics community, but in recent years many new ap-
plications arise in such areas as animation, virtual environments, computer
games, computer aided design and maintenance, and computational chem-
istry.

Over the years many different approaches to solving the motion planning
problem have been suggested. See the book of Latombe[21] for an extensive
overview of the situation up to 1991 and e.g. the proceedings of the yearly
IEEE International Conference on Robotics and Automation (ICRA) or the
Workshop on Foundations of Robotics (WAFR) for many more recent results.

The probabilistic roadmap planner (PRM) is a relatively new approach to
motion planning, developed independently at different sites [3,4,17,18,23,28].
It turns out to be very efficient, easy to implement, and applicable for many
different types of motion planning problems (see e.g. [10,13,15,19,20,26,24,27–
30]).

Globally speaking, the PRM approach samples the configuration space
(that is, the space of all possible placements for the moving object) for
collision-free placements. These are added as nodes to a roadmap graph.



2 Geraerts and Overmars

Pairs of promising nodes are chosen in the graph and a simple local motion
planner is used to try to connect such placements with a path. This process
continues until the graph covers the connectedness of the space.

The basic PRM approach leaves many details to be filled in, like how
to sample the space, what local planner to use and how to select promis-
ing pairs. Over the past eight years researchers have investigated these as-
pects and developed many improvements over the basic scheme (see e.g.
[1,6,7,16,19,22,24,29,31]). Unfortunately, the different improvements suggested
are difficult to compare. Each author used his or her own implementation of
PRM and used different test scenes, both in terms of environment and the
type of moving device used. Also the effectiveness of one technique sometimes
depends on choices made for other parts of the method. So it is still rather
unclear what is the best technique under which circumstances. (See [12] for
a first study of this issue.)

In this paper we make a first step toward a comparison between the differ-
ent techniques developed. We implemented a large number of the techniques
in a single motion planning system and added software to compare the ap-
proaches. In particular we concentrated on the sampling technique and the
choice of promising pairs of nodes. This comparison gives insight in the rel-
ative merits of the techniques and the applicability in particular types of
motion planning problems. Also we hope that in the longer run our results
will lead to improved (combinations of) techniques and adaptive approaches
that choose techniques based on observed scene properties.

The paper is organized as follows. In Section 2 we review the basic PRM
approach. In Section 3 we describe our experimental setup and the scenes we
use. In Section 4 we compare different ways of performing collision checks of
the paths produced by the local planner. We conclude that a binary approach
performs best. In Section 5 we consider different sampling strategies. We
conclude that, except for very special cases, one best uses a deterministic
approach based on Halton points, with a small amount of added randomness.
In Section 6 we study different strategies for choosing promising pairs of nodes
to connect. We conclude that one best picks a few nodes in each connected
component of the roadmap. These results partially contradict earlier claims.

2 The PRM Method

The motion planning problem is normally formulated in terms of the config-
uration space C, the space of all possible placements of the moving object.
Each degree of freedom of the object corresponds to a dimension of the con-
figuration space. Each obstacle in the workspace, in which the object moves,
transforms into an obstacle in the configuration space. Together they form
the forbidden part Cforb of the configuration space. A path for the moving
object corresponds to a curve in the configuration space connecting the start
and the goal configuration. A path is collision-free if the corresponding curve



A Comparative Study of Probabilistic Roadmap Planners 3

Fig. 1. The roadmap graph we get for the difficult hole test scene used in this
paper. The left image shows the graph using halton sampling and the right image
uses gaussian sampling.

does not intersect Cforb, that is, it lies completely in the free part of the
configuration space, denoted with Cfree.

The probabilistic roadmap planner samples the configuration space for
free configurations and tries to connect these configurations into a roadmap
of feasible motions. There are a number of versions of PRM, but they all use
the same underlying concepts.

The global idea of PRM is to pick a collection of (useful) configurations
in the free space Cfree. These free configurations form the nodes of a graph
G = (V,E). A number of (useful) pairs of nodes are chosen and a simple
local motion planner is used to try to connect these configurations by a path.
When the local planner succeeds an edge is added to the graph. The local
planner must be very fast, but is allowed to fail on difficult instances. A typical
choice is to use a simple interpolation between the two configurations, and
then check whether the path is collision-free. So the path is a straight line in
configuration space.

Once the graph reflects the connectivity of Cfree it can be used to an-
swer motion planning queries. (See Figure 1 for an example of the roadmap
graphs computed.) To find a motion between a start configuration and a goal
configuration, both are added to the graph using the local planner. (Some
authors use more complicated techniques to connect the start and goal to the
graph, e.g. using bouncing motion.) Then a path in the graph is found which
corresponds to a motion for the object. The pseudo code for the algorithm
for constructing the graph is shown in Algorithm ConstructRoadmap.

Note that in this version of PRM we only add an edge between nodes if
they are not in the same connected component of the roadmap graph. This
saves time because such a new edge will not help solving motion planning
queries. On the other hand, to get short paths such extra edges are useful
(see e.g. [14,25]). For this comparative study we will not add these additional
edges.

In this study we concentrate on the various choices for picking useful
samples, in line 2 of the algorithm, and for picking useful pairs of nodes for
adding edges, that is, on the choice of Nc in line 4. These are the most crucial



4 Geraerts and Overmars

Algorithm 1 ConstructRoadmap

Let: V ← ∅; E ← ∅;
1: loop
2: c← a (useful) configuration in Cfree
3: V ← V ∪ {c}
4: Nc ← a set of (useful) nodes chosen from V
5: for all c′ ∈ Nc, in order of increasing distance from c do
6: if c′ and c are not connected in G then
7: if the local planner finds a path between c′ and c then
8: add the edge c′c to E

steps and they strongly influence the running time and the structure of the
roadmap graph.

3 Experimental Setup

The probabilistic roadmap approach has been applied to many different types
of motion planning problems involving different kinds of robotic devices. In
this comparative study we restrict ourselves to free-flying objects in a three-
dimensional workspace. Such objects have six degrees of freedom, three trans-
lational degrees and three rotation degrees. In a later study we will consider
other devices.

In all experiments we use the most simple local method that consists of
a straight-line motion in configuration space, interpolating between the start
and goal configuration. In a later study we will consider the effect of using
more sophisticated local planners.

An important distinction is between single shot methods and preprocess-
ing methods. A single shot method asks to solve a particular motion planning
query for a given start and a given goal configuration. A preprocessing method
builds a data structure that can then be used to solve different motion plan-
ning queries efficiently. We feel that the PRM approach is particularly useful
as a preprocessing method and, hence, we choose that method in this paper.
This means that we won’t consider techniques like bidirectional methods and
lazy PRMs [6,24] which are particularly suited for single shot situations and
situations were just a few queries occur. We aim at computing a roadmap
that is checked for collisions and covers the free space adequately. To this
end, in each scene (see below) we defined a relevant query that can only
be solved when there is an adequate covering of the free space. We continue
building the roadmap until the query configurations lie in the same connected
component.

All techniques were integrated in a single motion planning system, called
SAMPLE (System for Advanced Motion PLanning Experiments), imple-
mented in Visual C++ under Windows XP. All experiments were run on



A Comparative Study of Probabilistic Roadmap Planners 5

Fig. 2. The scenes used for testing, together with the start and goal configuration
for the moving object.

a 2.4 GHz Pentium 4 processor with 1 GB of internal memory. In all ex-
periments we report the running time in seconds. Because the experiments
were conducted under the same circumstances, the running time is a good
indication of the efficiency of the technique. For those techniques where there
are random choices involved we report the average time over 20 runs. When
there is a large difference between runs we will indicate this.

For the experiments we used the following five scenes (see Figure 2):

corridor This is the most simple scene. An L-shaped object must trans-
late and rotate through a winding corridor to the other end. Some obstacles
force rotation of the object. We expect that all methods can solve this prob-
lem very quickly.



6 Geraerts and Overmars

rooms In this scene there are three rooms with lots of space and with
narrow doors between them. So the density of obstacles is rather non-uniform.
The table must move through the two narrow doors to the other room. The
table is rather complex because it has four cylindrical legs, leading to more
time-consuming collision checking.

clutter This scene consists of 500 uniformly distributed tetrahedra. An
L-shaped object must move among them from one corner to the other. The
configuration space will consist of many narrow corridors. There are multiple
solutions to the query.

hole A rather famous test scene. The moving object consists of four legs
and must rotate in a complicated way to get through the hole. The hole is
placed off-center to avoid that certain grid-based method have an advantage.
The configuration space will have two large open areas with (most likely) two
narrow winding passages between them.

house The house is a complicated scene consisting of 1600 polygons. It
has many small rooms. As a result a large roadmap will be required to cover
the free space. Also, because walls are thin, the collision checker must make
rather small steps along the paths, resulting in much higher collision checking
times.

4 Collision Checking

The most time-consuming steps in the probabilistic roadmap planner are the
collision checks that are required to decide whether a sample lies in Cfree
and whether the motion produced by the local planner is collision free. In
particular the second type of checks is time consuming. In this section we
investigate some techniques for collision testing of the paths.

As basic collision checking package we use Solid[5]. The advantage of
this package is that it considers objects like blocks, tetrahedra, spheres, and
cylinders as solids rather than boundary representations. This avoids the gen-
erations of samples inside obstacles. Also it reduces the number of obstacles
required to describe complicated scenes. Solid builds a data structure based
on bounding boxes for fast query answering.

When testing a path for collisions we can use the following techniques:

incremental In the incremental method we take small steps along the
path from start to goal. For each placement we check for collision with the
scene.

binary In the binary method we start by checking the middle position
along the path. If it is collision free we recurse on both halves of the path
checking the middle positions there. In this way we continue until either a
collision is found or the checked placements lie close enough together (again
determined by a given step size).



A Comparative Study of Probabilistic Roadmap Planners 7

In early papers on PRM the incremental method was used. Later papers
suggest that the binary method works better[24]. The reason is that the
middle position is the one that has the highest chance of not being collision
free. This means that, when the path is not collision free, this collision will
most likely be found earlier, that is, after fewer collision checks.

We tested both approaches. To make the results comparable we used a
deterministic version of PRM using Halton points for sampling and a simple
nearest-n node adding strategy (see Sections 5 and 6). As a result both version
create exactly the same roadmap. The following table shows the results for
the five test scenes:

collision checking

incremental binary

corridor 0.5 0.2
rooms 0.8 0.3
clutter 8.7 4.0
hole 44.2 43.3
house 380.0 207.4

As can be seen from the table, in all scenes the binary approach is faster
although the improvement varies over the type of scene. This can be explained
from the fact that in the hole scene path checks are more often successful than
in the other scenes. The binary approach only helps when the check fails.

It has been suggested that one should try to compute sweep volumes and
use these for collision tests. As a result, a path check would require just
one collision test. The problem is that it is very difficult to compute sweep
volumes for three-dimensional moving objects with six degrees of freedom. A
much simpler technique is to first check with the sweep volume introduced
by the origin of the object, that is, with a line segment between start and
goal position (see [11]).

line check In this method we first perform a collision test with the line
segment between the start and goal position in the workspace. Only if it is
collision-free we perform either the incremental or the binary method. (This
assumes that the origin of the object lies inside it.)

We would expect that this test will quickly discard many paths that have
a collision, leading to an improvement in running time. The following table
summarizes the results:



8 Geraerts and Overmars

binary collision checking

no line line check

corridor 0.2 0.2
rooms 0.3 0.3
clutter 4.0 4.3
hole 43.3 44.5
house 207.4 208.1

As can be seen, against our expectation, the line check did not lead to
any improvement. (It does help for the incremental method but the bounds
are still worse than for the binary method.) Sometimes it is even slightly
worse. We believe that this is due to the way Solid performs the collision
checking with the line segment. The line segment will normally have a rather
large bounding box. As a result the bounding box test will not be enough
to discard many obstacles. This requires more precise tests, which are more
expensive. Also, Solid will always report all intersections, not just the first
one. As the line might intersect multiple obstacles this will lead to additional
(redundant) work. Other collision checking packages might treat such line
intersections differently. We will investigate this in the future. Also, in all
test scenes, except for the rooms scene, our moving objects are rather sim-
ple. When the moving object gets more complex, collision tests with it will
become more expensive. In such a case the line check might lead to an im-
provement. In [11] it was suggested to only apply the line check when the
distance between the endpoints is large. We tried this but did not see any
significant improvement in performance. We conclude that, with Solid, we
best use binary collision checking without line checks. This is the technique
we will use in the remainder of this paper.

5 Basic Sampling

The first papers on PRM used uniform random sampling of the configuration
space to select the nodes to add to the graph. In recent years other approaches
have been suggested, either to create more samples in difficult regions or to
remedy certain disadvantages of the random behavior. We will first study
and compare some of the second type of approaches. In particular we will
study the following techniques:

random In the random approach a sample is created by choosing random
values for all its degrees of freedom. The sample is added when it is collision-
free. This was the traditional way of creating samples.

grid It has often been suggested to simply choose samples on a grid.
Because we don’t know the required grid resolution in advance we start with
a coarse grid and refine this grid in the process, halving the cell size. Grid
points on the same level of the hierarchy are added in random order.



A Comparative Study of Probabilistic Roadmap Planners 9

halton In [8] it has been suggested to use so-called Halton point sets as
samples. Halton point sets have been used in discrepancy theory to obtain a
good coverage of a region with points that is better than using a grid (see e.g.
[9]). Even though the criteria in PRM are rather different than in discrepancy
theory it has been suggested in [8] that the method is well suited for PRM.
The method is deterministic!

cell-based In this approach we take random configuration within cells of
decreasing size in the workspace. The first sample is generated randomly in
the whole space. Next we split the workspace in 23 equally sized cells. In a
random order we generate a configuration in each cell. Next we split each cell
into 23 sub-cells and repeat this for each sub-cell, etc. The rationale behind
this is that we get a much better spread of the positions over the configura-
tion space. (Also choosing cells for the rotational degrees of freedom would
lead to too many cells.)

Note that we do not include visibility sampling[22] in this test. We con-
sider visibility sampling as a node adding technique rather than a sampling
technique and, hence, it is described in the next section.

The following table summarizes the results.

basic sampling strategy

random grid halton cell-based

corridor 0.4 1.4 0.2 0.4
rooms 0.8 0.6 0.3 0.7
clutter 2.7 7.3 4.0 3.1
hole 33.9 26.2 43.3 42.3
house 210.0 262.5 207.4 225.9

It can be seen that the results are rather varying and that the determin-
istic halton approach is not always the fastest. In the hole scene it is even
considerably slower. The numbers contradict the results reported in [8] were
considerable improvements are reported. This might be due to the much
smaller connection distance chosen in [8] which seems to favor the halton
sampling. Such a smaller connection distance though increases the total time
bound. A big advantage of the halton approach though is that the results
are always the same while for the random approach and to a lesser extend
for the cell-based approach there is a large variation in running time. A few
bad samples added at the beginning can complicate the connection process
considerably. It has been suggested that this can be remedied by from time
to time restarting the process. We did not test this further. In general we
were surprised by the small differences. It seems the sampling approach is
not as critical as people have suggested before.

So we can conclude that the major advantage of using halton points does
not lie in the faster running time but in the deterministic nature that guar-
antees that the running time is always the same. But at the same time this is



10 Geraerts and Overmars

the weakness of the method. In the hole scene this can be seen. Here halton
seems to be unlucky in the configurations it picks. For any deterministic sam-
pling technique one can construct scenes for which it will take a huge amount
of running time. We suggest to remedy this by adding a small amount of ran-
domness to the method:

random halton In this approach we use halton points. But when adding
the nth sample point we choose an area around this point (in configuration
space) and choose a random configuration in this area. As size of the area we
choose kA/n where A is the area of (the relevant part of) the configuration
space and k is a small constant (in the order of 0.002 for the experiments
we conducted). So the area becomes smaller when more and more points are
added.

The following table shows the difference between halton and random hal-
ton.

sampling with halton points

deterministic random

corridor 0.2 0.3
rooms 0.3 0.2
clutter 4.0 2.2
hole 43.3 15.8
house 207.4 152.9

We conclude that adding a little bit of randomness does improve the
running time in almost all cases. The approach is better than any of the
other sampling techniques considered. So we recommend this method to be
used. (In the next section we do use halton sampling without randomness.
The reason is that this is easier for testing because we do not have to average
over different runs.)

As indicated above other sampling techniques have been suggested that
try to add more samples in difficult regions of the environment. It has for
example been suggested to add more samples near to obstacle boundaries[1,7],
to allow samples inside obstacles and push the to the free space[1,16] and to
sample near to the Voronoi diagram of the obstacles[31]. Here we compare
three techniques:

gaussian Gaussian sampling is meant to add more samples near obstacles.
The idea is to take two random samples, where the distance between the
samples is chosen according to a Gaussian distribution. Only if one of the
samples lies in the Cfree and the other lies in Cforb do we add the free sample.
It has been shown that this leads to a favorable sample distribution[7].

obstacle based This technique, based on [1], has a similar goal. We pick
a random sample. If if lies in Cfree we add it to the graph. Otherwise, we pick
a random direction and move the sample in that direction with increasing



A Comparative Study of Probabilistic Roadmap Planners 11

steps until it becomes free (or lies outside the scene). We add the free sample.
This will normally lie close to an obstacle boundary.

obstacle based * This is a variation of the previous technique where we
throw away a sample if it initially lies in Cfree. This will avoid many samples
in large open regions.

We expect these techniques to be useful only in scenes where there are
large open areas (in configuration space) and some narrow passages. The
results are as follows, comparing them to the random halton approach (see
also Figure 1).

sampling around obstacles

gaussian obstacle obstacle* halton

corridor 0.4 0.5 0.5 0.3
rooms 0.4 0.7 0.5 0.2
clutter 5.6 3.7 7.9 2.2
hole 3.1 8.0 2.1 15.8
house 268.0 197.1 209.4 152.9

As expected the techniques only perform better than halton for the hole
scene. As the techniques can be quite a bit worse for other scenes they cannot
be used as a general approach. Because all three techniques use a lot of
randomness they suffer from the same problem as random sampling that
some runs are very bad. We are currently investigating combinations of these
techniques with halton sampling.

6 Node Adding

In this section we will study the second important choice to be made in PRM:
how to select the set of neighbors to which we try to make connections. As
each test for a connection is expensive we should try to avoid these as much
as possible. On the other hand, if we try too few connections we will fail to
connect the graph. Connected components in the graph play a crucial role
here. We like to connect such components into larger components whenever
we can. Also, we need to create new components in unexplored parts of the
configuration space.

There are two global observations that can be made. First of all, as indi-
cated in Section 2, it is not useful (from a complexity point of view) to make
connections to nodes that are already in the same connected component.
Secondly, it is never useful to connect to nodes that lie too far away. The
chance of success for such a connection is minimal while the collision checks
required for testing the path are expensive. An important question here is
what we use as a distance measure (see also [2]). In particular, it is unclear



12 Geraerts and Overmars

how to take the rotational distance into account. In this paper we use dt +dr
where dt denotes the translational distance of the origin of the object and
dr denotes the distance traveled by the point of the object furthest from its
origin, while performing the rotation. This measure is easy to compute and
gives a reasonably estimate.

We consider the following techniques:
nearest-n Here we try to connect the new configuration c to the nearest

n nodes in the graph. The rationale is that nearby nodes lead to short con-
nections that can be checked efficiently. If many nearby nodes lie in the same
connected component there is no other component in the neighborhood so it
is acceptable that we only connect to a single component.

component Here we try to connect the new configuration to the nearest
node in each connected component that lies close enough. The rationale is
that we prefer to connect to multiple connected components.

component-n Here we try to connect the new configuration to at most
n nodes in each connected component. Still we keep the total number of
connections tried small (the same number as for nearest-n). The rationale is
that when the number of components is small we prefer to spend some extra
time on trying to make connections. Otherwise the time required for adding
the node will become the dominant factor.

visibility This method is based on the visibility sampling technique de-
scribed in [22]. We try to connect the new configuration to useful nodes.
Usefulness is determined as follows: When a new node can be connected to
no other nodes it forms a new connected component and is labeled useful. If
it connects two or more components it is also labeled useful. If it can be con-
nected to just one component it is not labeled useful. (In [22] useless nodes
are deleted but there is actually no reason for this. They won’t take any time
and they can be useful in query answering.) It has been observed in [22] that
the number of useful nodes remains small, making it possible to try connec-
tions to all of them.

The following table summarizes our test results. In all tests we use deter-
ministic halton sampling. As maximal connection distance we use a box that
is about half the size in each dimension of the configuration space. For the
nearest-n method we picked a value for n of about 15 (depending a bit on
the scene). For component-n we used a value of 3 in the experiments.

node adding strategy

nearest-n comp comp-n visibility

corridor 0.2 0.8 0.5 1.5
rooms 0.3 0.5 0.7 2.3
clutter 4.0 4.4 3.4 7.6
hole 43.3 > 120 31.9 20.9
house 207.4 279.6 189.1 > 600



A Comparative Study of Probabilistic Roadmap Planners 13

We were disappointed with the results for visibility adding. Only for the
hole scene did it perform better (but here the obstacle based sampling tech-
niques performed even better). From previous papers we had expected the
method to perform better. We believe that this is due to the fact that other
papers compare it with a method that is worse than nearest-n or component-
n. As can be seen, the results are a bit varying. But the component-n method
is in most cases the fastest and in the other cases almost the fastest. We con-
jecture that the reason is that it combines the following important aspects

• It aims at connecting different components.
• It never tries too many connections.
• It never tries too few connections.

The other methods lack in at least one of these aspects.
We plan to investigate node adding strategies further over the coming

months. We believe that a better definition of the notion of useful nodes is
required to improve the performance. Such a notion should probably change
during the construction process and might also depend on local scene prop-
erties.

7 Conclusions

In this paper we presented the results of a comparative study of various PRM
techniques. The results confirm previously made claims that the binary ap-
proach for collision checking works well. Previous claims on the quality of
halton points could not be confirmed but a variation of halton, adding some
randomness, gave a better performance in most scenes. For node adding it
turned out that visibility sampling did not perform as well as expected. A
technique based on choosing a number of nodes per component seemed to
perform best. We plan to further investigate the issue of selecting promis-
ing nodes for connections. Also we plan to experiment with a number of
additional techniques, in particular techniques aimed at narrow passages.

One thing that is clear from the study is that a careful choice of techniques
is important. Also, it is not necessarily true that a combination of good
techniques is good. For example, for the hole scene one might expect that
a combination of obstacle based and visibility works best. But experiments
show that this combination is actually about twice as bad (4.5 seconds).

We hope that our studies shed some more light on the questions what
technique to use in which situation. A major challenge is to create planners
that automatically choose the correct combination of techniques based on
scene properties or that learn the correct settings while running.

References

1. N. Amato, O. Bayazit, L. Dale, C. Jones, D. Vallejo, OBPRM: An obstacle-
based PRM for 3D workspaces, in: P.K. Agarwal, L.E. Kavraki, M.T. Mason



14 Geraerts and Overmars

(eds.), Robotics: The algorithmic perspective, A.K. Peters, Natick, 1998, pp.
155–168.

2. N. Amato, O. Bayazit, L. Dale, C. Jones, D. Vallejo, Choosing good distance
metrics and local planners for probabilistic roadmap methods, Proc. IEEE Int.
Conf. on Robotics and Automation, 1998, pp. 630–637.

3. N. Amato, Y. Wu, A randomized roadmap method for path and manipulation
planning, Proc. IEEE Int. Conf. on Robotics and Automation, 1996, pp. 113–
120.

4. J. Barraquand, L. Kavraki, J.-C. Latombe, T.-Y. Li, R. Motwani, P. Raghavan,
A random sampling scheme for path planning, Int. Journal of Robotics Research
16 (1997), pp. 759–774.

5. G. van den Bergen, Collision detection in interactive 3D computer animation,
PhD thesis, Eindhoven University, 1999.

6. R. Bohlin, L.E. Kavraki, Path planning using lazy PRM, Proc. IEEE Int. Conf.
on Robotics and Automation, 2000, pp. 521–528.

7. V. Boor, M.H. Overmars, A.F. van der Stappen, The Gaussian sampling strat-
egy for probabilistic roadmap planners, Proc. IEEE Int. Conf. on Robotics and
Automation, 1999, pp. 1018–1023.

8. M. Branicky, S. LaValle, K. Olson, L. Yang, Quasi-randomized path planning,
Proc. IEEE Int. Conf. on Robotics and Automation, 2001, pp. 1481–1487.

9. B. Chazelle, The discrepancy method, Cambridge University Press, Cambridge,
2000.

10. J. Cortes, T. Simeon, J.P. Laumond, A random loop generator for planning
the motions of closed kinematic chains using PRM methods, Proc. IEEE Int.
Conf. on Robotics and Automation, 2002, pp. 2141–2146.

11. L. Dale, Optimization techniques for probabilistic roadmaps, PhD thesis, Texas
A&M University, 2000.

12. L. Dale, N. Amato, Probabilistic roadmaps – Putting it all together, Proc.
IEEE Int. Conf. on Robotics and Automation, 2001, pp. 1940–1947.

13. L. Han, N. Amato, A kinematics-based probabilistic roadmap method for
closed chain systems, Proc. Workshop on Algorithmic Foundations of Robotics
(WAFR’00), 2000, pp. 233–246.

14. O. Hofstra, D. Nieuwenhuisen, M.H. Overmars, Improving the path quality for
probabilistic roadmap planners, to appear.

15. C. Holleman, L. Kavraki, J. Warren, Planning paths for a flexible surface patch,
Proc. IEEE Int. Conf. on Robotics and Automation, 1998, pp. 21–26.

16. D. Hsu, L. Kavraki, J.C. Latombe, R. Motwani, S. Sorkin, On finding narrow
passages with probabilistic roadmap planners, in: P.K. Agarwal, L.E. Kavraki,
M.T. Mason (eds.), Robotics: The algorithmic perspective, A.K. Peters, Natick,
1998, pp. 141–154.

17. L. Kavraki, Random networks in configuration space for fast path planning,
PhD thesis, Stanford University, 1995.

18. L. Kavraki, J.C. Latombe, Randomized preprocessing of configuration space
for fast path planning, Proc. IEEE Int. Conf. on Robotics and Automation,
1994, pp. 2138–2145.

19. L. Kavraki, P. Švestka, J-C. Latombe, M.H. Overmars, Probabilistic roadmaps
for path planning in high-dimensional configuration spaces, IEEE Trans. on
Robotics and Automation 12 (1996), pp. 566–580.

20. F. Lamiraux, L.E. Kavraki, Planning paths for elastic objects under manipu-
lation constraints, Int. Journal of Robotics Research 20 (2001), pp. 188–208.



A Comparative Study of Probabilistic Roadmap Planners 15

21. J-C. Latombe, Robot motion planning, Kluwer Academic Publishers, Boston,
1991.

22. C. Nissoux, T. Siméon, J.-P. Laumond, Visibility based probabilistic roadmaps,
Proc. IEEE Int. Conf. on Intelligent Robots and Systems, 1999, pp. 1316–1321.

23. M.H. Overmars, A random approach to motion planning, Technical Report
RUU-CS-92-32, Dept. Comput. Sci., Utrecht Univ., Utrecht, the Netherlands,
October 1992.

24. G. Sánchez, J.-C. Latombe, A single-query bi-directional probabilistic roadmap
planner with lazy collision checking, Int. Journal of Robotics Research, 2002,
to appear.

25. E. Schmitzberger, Probabilistic approach to list all non homotopic solutions of
a motion planning problem, unpublished notes, 2002.

26. S. Sekhavat, P. Švestka, J.-P. Laumond, M.H. Overmars, Multilevel path plan-
ning for nonholonomic robots using semiholonomic subsystems, Int. Journal of
Robotics Research 17 (1998), pp. 840–857.

27. T. Simeon, J. Cortes, A. Sahbani, J.P. Laumond, A manipulation planner for
pick and place operations under continuous grasps and placements, Proc. IEEE
Int. Conf. on Robotics and Automation, 2002, pp. 2022–2027.

28. P. Švestka, Robot motion planning using probabilistic roadmaps, PhD thesis,
Utrecht Univ. 1997.

29. P. Švestka, M.H. Overmars, Motion planning for car-like robots, a probabilistic
learning approach, Int. Journal of Robotics Research 16 (1997), pp. 119–143.

30. P. Švestka, M.H. Overmars, Coordinated path planning for multiple robots,
Robotics and Autonomous Systems 23 (1998), pp. 125–152.

31. S.A. Wilmarth, N.M. Amato, P.F. Stiller, MAPRM: A probabilistic roadmap
planner with sampling on the medial axis of the free space, Proc. IEEE Int.
Conf. on Robotics and Automation, 1999, pp. 1024–1031.


