
Creating High-quality Roadmaps for
Motion Planning in Virtual Environments

Roland Geraerts and Mark H. Overmars
Institute of Information and Computing Sciences

Utrecht University
Utrecht, the Netherlands

Email: {roland,markov}@cs.uu.nl

Abstract— Our goal is to create roadmaps that are particularly
suited for motion planning in virtual environments. We use our
Reachability Roadmap Method to compute an initial, resolution
complete roadmap. This roadmap is small which keeps query
times and memory consumption low. However, for use in virtual
environments, there are additional criteria that must be satisfied.
In particular, we require that the roadmap contains useful cycles.
These provide short paths and alternative routes which allow for
variation in the routes a moving object can take. We will show
how to incorporate such cycles. In addition, we provide high-
clearance paths by retracting the edges of the roadmap to the
medial axis. Since all operations are performed in a preprocessing
phase, high-quality paths can be extracted in real-time as is
required in interactive applications.

I. INTRODUCTION

In many virtual environments, paths have to be planned
for entities to traverse from a start to a goal position in
the virtual world. A common way to plan the path is to
use an A* algorithm on a (low-resolution) grid. This search
algorithm is popular because it always finds a shortest path in
the roadmap if one exists. However, as contemporary virtual
worlds can be very large, storing the grid and running the
algorithm may consume a huge amount of memory which is
not always available, in particular on systems with constrained
memory such as console systems. In addition, the algorithm
may consume too much processor time, especially when many
paths have to be planned simultaneously. This will lead to
stalls in interactive applications. Paths resulting from A*
algorithms tend to have little clearance and can be aesthetically
unpleasant, so care must be taken to smooth them.

Another popular motion planning technique is the Proba-
bilistic Roadmap Method (PRM) [1], [2]. The PRM consists
of two phases: a construction and a query phase. In the
construction phase, a roadmap (graph) is built, approximating
the motions that can be made in the environment. In the query
phase, the start and goal are connected to the graph. The path
is obtained by a Dijkstra’s shortest path algorithm. A drawback
of the PRM is that a resulting roadmap often contains many
redundant nodes and edges, in particular when the environment
contains one or more narrow passages [3]. In addition, the
roadmap may contain many short edges which complicates
the smoothing phase that often follows a query phase [4].

Nieuwenhuisen et al. [4] improve a roadmap generated by
the PRM such that it can be used for path planning in games.

Their method guarantees that the paths are short, have enough
clearance from the obstacles, and are C1 continuous, leading
to natural looking motions. Such a path can be retrieved almost
instantaneously. Their method does not guarantee that a path
can always be found (if one exists in the free space Cfree). In
addition, the method is limited to two-dimensional problems.

Sometimes, roadmaps are created manually from which
paths can be extracted. However, this can take many hours
of precious time setting up and debugging the roadmap [5].

Our goal is to automatically create a roadmap for 2D and 3D
(possibly large and complex) environments that can be used
to guide the motions for entities in a virtual environment. By
a careful integration of existing and new techniques, we aim
at generating roadmaps with the following four properties:

1. The roadmap is resolution complete. This means that a
valid query (which consists of a start and a goal config-
uration) can always be connected to the roadmap. If the
start and goal belong to the same connected component
of the free space, then a corresponding path can always
be found (at a given resolution).

2. The roadmap is small. A small roadmap assures low
query times and low memory consumption. A path that
is extracted from a small roadmap will have reasonably
long edges. These are easier to optimize. For example,
Nieuwenhuisen et al. [4] add circular arcs to the roadmap
to make the paths C1 continuous, resulting in natural
looking motions. In addition, when a roadmap must obey
other criteria, a small roadmap eases manual tuning.

3. The roadmap contains useful cycles. These cycles provide
short paths and alternative routes which allow for varia-
tion in the routes that entities take. Van den Berg et al. [6]
exploit cycles in dynamic environments where additional
obstacles might appear, and to avoid deadlock situations
when multiple robots move in the same environment.

4. The roadmap provides high-clearance paths. By retract-
ing the roadmap to the medial axis, paths with much
clearance can be extracted in real-time. High-clearance
paths work well with entities that have large widths, such
as a wide formation of characters. In addition, they are
perfectly suitable for guiding the motions of a group of
entities [7] or for creating a useful backbone path for the
animation of walking characters [8].

Fig. 1. The coverage and maximal connectivity criteria have been met. The
reachability regions of the white nodes cover the complete free space and are
connected via the black node.

The paper is organized as follows: In Section II, we discuss
the Reachability Roadmap Method which creates the initial
roadmap satisfying the first and second property. In Section
III, we propose an algorithm that adds useful cycles to the
roadmap. We meet the fourth property in Section IV which
shows how to retract a roadmap to the medial axis. We perform
experiments with 2D and 3D virtual environments in Section
V and conclude in Section VI that our algorithm successfully
creates roadmaps satisfying these four properties.

II. REACHABILITY ROADMAP METHOD

In [3], we introduced the Reachability Roadmap Method
(RRM) which creates small roadmaps that are resolution com-
plete. We proved that the RRM creates a roadmap graph G
satisfying the following two criteria:

Definition 1 (coverage). Graph G = (V, E) covers Cfree when
each configuration c ∈ Cfree can be connected using the local
planner to at least one node ν ∈ V .

Definition 2 (maximal connectivity). Graph G is maximally
connected when for all nodes ν ′, ν′′ ∈ V , if there exists a
path in Cfree between ν′ and ν′′, then there exists a path in G
between ν′ and ν′′.

Coverage ensures that every query (which consists of a
start and goal configuration) can be directly connected to the
roadmap, as is required to solve the problem. If there exists a
path in the free configuration space (Cfree) between the start
and goal configuration, then maximal connectivity ensures that
a path between them can be found in the roadmap graph G.

The RRM discretizes the configuration space and computes
a small number of guards that cover the complete free space.
These guards are then connected via connectors to fulfill
the maximal connectivity criterion. The resulting roadmap
is then pruned to obtain an even smaller roadmap. Fig. 1
shows an environment whose free space is covered by two
(white) nodes and is connected via one extra (black) node. The
reachability region for the upper left node has been drawn.
Each configuration in this region can be connected with a
straight-line connection to the node, and a three-node graph
suffices to solve any query in this environment.

III. ADDING USEFUL CYCLES

In [9], we discussed three methods for decreasing the path
length. Although these methods can decrease the path length

considerably, they usually do not remove the detours around
obstacles. These detours can be avoided by adding cycles to
the roadmap. Besides obtaining shorter paths, cycles provide
alternative routes for an entity.

In the following subsections, we will show how to add
useful cycles to the roadmap. Our strategy is partly based on
the work of Nieuwenhuisen and Overmars [10] which adds
useful edges to the roadmap. An edge is useful if it introduces
a cycle that improves the roadmap according to some criterion.
As we are working with small roadmaps, unfavorably placed
queries can still lead to long paths. We will show that these
can be avoided by adding useful nodes and their corresponding
edges to the initial roadmap. The final roadmap will then be
composed of all nodes from the initial roadmap, as well as the
added useful nodes and useful edges between those nodes.

A. Useful edges

Nieuwenhuisen and Overmars [10] propose a technique that
adds useful cycles to the roadmap. The goal is to add only
those edges that have a high probability of introducing a path
that cannot be continuously deformed into an existing path.

A useful edge is defined as follows:

Definition 3 (Useful edge). Let ν be the node that corresponds
to configuration c which has been added to the graph and V n

its set of neighbors. Let ν ′ be a node in V n and d(ν, ν′) be
the distance between ν and ν ′. The graph distance between
ν and ν′ is G(ν, ν′) which is the length of the shortest path
in the graph from ν to ν ′. If there is no path from ν to ν ′,
G(ν, ν′) is ∞. Then edge ε(ν, ν ′) is K-useful if

K ∗ d(ν, ν′) < G(ν, ν′).

This definition only adds an edge to the graph between ν
and ν′ if their graph distance improves by a factor K. A small
value of K adds more edges than a large value of K. Fig. 2
shows that no cycles are added if K is set to ∞. If K ≤
1, then all collision-free edges (i.e. local paths) are allowed.
The authors use a pruned version of Dijkstra’s shortest path
algorithm to efficiently determine whether a particular edge
is useful. They also show, when time goes to infinity, that
their approach will find a path with a length converging to
K ∗ |Π|, where |Π| denotes the length of shortest possible
path Π. Hence, the larger the number of nodes in the roadmap
(and the smaller the value of K), the shorter the expected
length of a path. As one of our criteria is obtaining a small
roadmap, these two conflicting criteria (short path length and
small roadmap) need to be balanced.

B. Adding useful nodes

In Fig. 2, unfavorably placed start and goal positions were
added and connected to the roadmap. As few nodes were
placed in the middle of the environment, such a small roadmap
can yield long paths, making detours around the obstacles. We
handle this problem by adding useful nodes (and useful edges)
to the roadmap, while attempting to keep it small. Accordingly,
we define a useful node as follows:

(a) K = ∞ (b) K = 1.5 (c) K = 1

Fig. 2. A roadmap that contains few nodes can lead to long paths for
unfavorably placed queries. Even when parameter K is set to one, i.e. when
all collision-free connections are added as edges to the roadmap, the extracted
path can be long compared to the optimal path.

Definition 4 (Useful node). Let c ∈ Cfree be a configuration
and ν be its representing node. Let {ν ′, ν′′} be its two closest
neighbors in the graph to which a collision-free connection
exists, i.e. edge ε(ν, ν ′) ∈ Cfree and edge ε(ν, ν ′′) ∈ Cfree. Let
Π be the shortest path in G between ν ′ and ν′′. If no path
exists, then Π = ∅. Then node ν is useful if:

∃νi ∈ Π : ε(ν, νi) /∈ Cfree.

As one of our goals is to obtain high-clearance paths, we
only select candidate useful nodes that lie on the medial axis.
Definition 4 says that a node ν is useful if ν can be connected
to two neighbors and the new cycle guides the entity around an
obstacle, i.e. there must be at least one connection from node
ν to the nodes describing the shortest path Π which causes the
moving object to collide with an obstacle. We limit ourselves
to checking connections between nodes because checking all
connections from node ν to each configuration on path Π will
consume too much time.

Algorithm 1 ADDUSEFULNODES(graph G(V, E))
1: MA← list of configurations, sampled on the medial axis
2: for all c ∈MA do
3: ν ← node that represents configuration c
4: ν′, ν′′ ← the two closest neighbors of the input graph

to ν for which edges ε(ν, ν ′) and ε(ν, ν′′) ∈ Cfree
5: Π← shortest path in G from ν ′ to ν′′

6: for all νi ∈ Π do
7: if ε(ν, νi) /∈ Cfree then
8: V ← V ∪ ν
9: E ← E ∪ ε(ν, ν′)

10: E ← E ∪ ε(ν, ν′′)
11: break

As a clarification, we apply Algorithm 1 on our running
example. Fig. 3(b) shows the resulting roadmap. (The black
discs represent the useful nodes.) It can be noticed that the
useful nodes have a tendency to spread. This can be explained
as follows. Suppose that a candidate node ν is very close to
a previously added useful node ν ′ which has already been
added and connected to the roadmap. Then it is likely that ν
has the same two neighbors as ν ′ to which free connections
exist. (Node ν will not be connected to ν ′ as useful nodes are
only connected to nodes from the initial roadmap to keep the

(a) Useful cycles:
length=63.8

(b) Useful nodes:
length=25.9

(c) Useful nodes, use-
ful cycles, edges recon-
nected: length=18.3

Fig. 3. Path lengths of an unfavorably placed query. The factor K for adding
useful cycles is 1.5.

roadmap small.) As their edges will lie close together, it is
unlikely that ν is part of a connection that collides with an
obstacle. As a result, node ν is not labeled useful according
to Definition 4.

C. Reconnecting the edges

The roadmap quality can be further improved by rearranging
its edges. Our approach creates a graph G′ that consists of
all nodes from graph G. Then, for each pair of nodes, we
check if the connection between them is collision-free. Such a
connection is added as an edge to G′ if the edge is K-useful.
The approach is outlined in Algorithm 2. First, we create a
priority queue (sorted on increasing edge length) and fill it
with all collision-free connections between pairs of nodes from
graph G. The improved graph G′ will have the same nodes as
graph G. The edges of G′ consist of edges extracted from the
queue if the two nodes do not belong to the same connected
component or if the edge introduces a K-useful cycle. Due to
the reconnection of the edges, it can occur that a (useful) node
is no longer part of a cycle. If such a node has degree one,
than this node is removed as our goal is to keep the roadmap
small. Fig. 3(c) shows the roadmap whose edges have been
reconnected.

Algorithm 2 RECONNECTEDGES(graph G(V, E), factor K)
Output: graph G′(V ′, E′)

1: PriorityQueue Q {sorted on increasing edge length}
2: for all pair of nodes ν ′, ν′′ ∈ V : ν′ 6= ν′′ do
3: if edge ε(ν′, ν′′) ∈ Cfree then Q.push(ε(ν ′, ν′′))
4: V ′ ← V
5: E′ ← ∅
6: while not Q.empty() do
7: edge ε(ν′, ν′′)← Q.top()
8: Q.pop()
9: if K ∗ d(ν′, ν′′) < G(ν′, ν′′) then E′ ← E′ ∪ ε

10: Remove all useful nodes from V ′ with degree 1

Fig. 3 gives an indication of changes in path length of the
unfavorably placed query in several phases of the running
example. In each picture, the same initial roadmap was used
(which was produced by the Reachability Roadmap Method).
Fig. 3(a) shows the path for the roadmap to which useful cycles
were added. This path is rather long. A shorter path was found

in (b), which shows the roadmap after adding useful nodes and
their corresponding connections. Yet a shorter path was found
after reconnecting the edges, which is shown in (c).

IV. PROVIDING HIGH-CLEARANCE PATHS

The fourth criterion which a roadmap must obey is that
high-clearance paths can be obtained in real-time. A path
has a high clearance if it follows the medial axis of the free
configuration space. We use our retraction algorithm from [9]
to retract the paths to the medial axis.

Rather than retracting paths, our goal now is to retract the
entire roadmap to the medial axis. To ensure that the complete
roadmap will be retracted to the medial axis, we require that
its nodes initially lie on the medial axis. The Reachability
Roadmap Method already satisfies this requirement. For each
edge ε, let Π be the local path that corresponds to the edge.
We apply the retraction algorithm to each local path Π.

The result of this approach can be viewed in Fig. 5. The
input graph was created in three steps. A small covering
roadmap was produced by the Reachability Roadmap Method.
Then useful nodes and edges were added. These edges were
then successfully retracted by the appropriate algorithm. Note
that some retracted edges have overlapping parts. We do not
attempt to merge them as this will increase the number of
nodes in the roadmap.

V. EXPERIMENTS

In this section, we test our approach on four virtual en-
vironments. In the first part of the experiments, we compare
the roadmaps produced by the following three algorithms. The
first algorithm, which we refer to as the Grid Roadmap Method
(GRM), creates a grid. The GRM is constructed by placing a
node on each corner of each free grid cell. Edges are added for
each boundary and each diagonal of a free cell. This algorithm
is often used in the game community. The second algorithm is
the Reachability Roadmap Method (RRM) from [3]. (See this
paper for a comparison between the RRM and the PRM.) The
third algorithm (RRM*) uses the RRM as input and adds useful
nodes and edges. Its edges are then rearranged.

In the second part of the experiments, we retract the edges
of the roadmaps produced by the RRM* to the medial axis of
the free space to obtain high-clearance paths. We refer to this
combination of methods as the Retract RRM* (RRRM).

A. Experimental setup

We integrated the algorithms in a single motion planning
system called SAMPLE (System for Advanced Motion PLan-
ning Experiments), which we implemented in Visual C++ un-
der Windows XP. SAMPLE automates conducting experiments,
i.e. statistics are automatically generated and processed. All
experiments were run on a 3 GHz Pentium 4 processor with
1 GB memory. We used Solid for collision checking [11].

We conduct experiments with the environments depicted in
Fig. 4. Information on the environments and robots is listed
in Table I. The environments have the following properties:

(a) Field (b) Office

(c) House (d) Quake

Fig. 4. The four test environments.

TABLE I
INFORMATION ON THE ENVIRONMENTS AND ROBOTS.

Bounding boxes

environment robot grid resolution # objects

Field 47 × 47 1 × 1 94 × 94 16,000
Office 80 × 80 1 × 1 × 4 160 × 160 79,000
House 57 × 20 × 40 3 × 3 × 3 57 × 20 × 40 1,000
Quake 130 × 25 × 80 1 × 1 × 1 130 × 25 × 80 4,000

Field This small environment contains ten cones, two fences
and four trees. These obstacles are cluttered in a large part of
the environment. The other part is rather empty. There are
many alternative routes. We will test whether our algorithm
can capture most of them.

Office This large environment with more than 80 pieces
of furniture (79,000 geometrical objects) has a rather non-
uniform distribution. There are large open spaces and many
narrow passages, requiring a large grid to capture the connec-
tivity of Cfree. Also this environment contains many alternative
routes. The results will show whether our algorithm can
capture them. We also investigate how well our algorithm deals
with large environments containing many obstacles.

House This environment has twelve rooms. There are few
alternative routes from one room to another room. Hence,
we expect that few cycles will be added to the reachability
roadmap. Each edge in the roadmap will be retracted to the
medial axis of the environment. We will investigate how much
the clearance improves along the roadmap.

Quake This environment has been converted from a level
from the game Quake. (See www.quake.com). There are many
alternative routes. We will investigate how much the average
path length decreases when we add useful cycles. Furthermore,
we will test whether the clearance can be added successfully
to roadmaps of problems involving three DOFs.

When we add cycles to a roadmap, we need a way to
measure the improvement. For this purpose we define the
Shortest path factor (SPF):

Definition 5 (Shortest path factor). Let G′ = (V ′, E′) be the
graph created by the GRM. Let G = (V, E) be a graph for
which V ⊆ V ′. Furthermore, let Ψ be the set of shortest paths
in G between each pair of nodes in V , n be the number of
paths in Ψ and Ψ′ be the set of shortest paths in G′ between
each pair of nodes in V . Finally, let | · | denote the length of
a path. Then the Shortest path factor is defined as follows:

SPF =

n∑

i=1

|Ψi|/
n∑

i=1

|Ψ′

i
|.

This definition provides a factor that describes how much
longer the expected length of a path (between two nodes of
graph G) is compared to the optimal path length in the grid.
If the factor equals one, then each extracted path will be the
shortest one in the grid. The larger this factor, the larger the
detour made by the moving object.

For all environments and techniques, we define 100 random
queries and report how many seconds it takes to solve them.
Regarding the Grid Roadmap Method, finding the closest free
neighbor can be done in O(1) time. Hence, we only report the
time needed for running Dijkstra’s shortest path algorithm. In
contrast, the other two methods require finding the closest free
neighbors and running Dijkstra’s algorithm.

We also keep track of the sizes of the roadmaps, the con-
struction times, the query times and clearance information (i.e.
minimum, average and maximum clearance of configurations
in the roadmap). The clearance is measured as the Euclidean
distance between the pair of closest points on the moving
object and obstacles.

B. Experimental results

In the following paragraphs, we will describe the results of
adding useful cycles and nodes, and adding clearance to the
roadmap. See Fig. 5 for visualizations of these results.

1) Adding useful cycles and nodes: For each environment,
we created a roadmap by applying the Grid Roadmap Method
(GRM), the Reachability Roadmap Method (RRM) and the
modified RRM (RRM*) method. We set parameter K to 1.5.
The results are stated in Table II and are discussed below:

Field Even for this relatively small environment, the GRM
produced a huge roadmap. As a result, computing 100 random
queries took 1.36 seconds. These running times may be
acceptable for real-time behavior. An advantage of the method
is that a shortest path in the grid will always be found, but as
indicated above, the path lacks clearance as it runs very close
to obstacles. The RRM created a small roadmap consisting of
29 nodes and 18 edges. As the graph was small, connecting
a query to the roadmap and running Dijkstra’s algorithm on
average took 4.3 ms. Hence, this roadmap can be used in real-
time situations. However, due to the small size of the roadmap,
the off-center placement of the nodes in the environment, and

the fact that the roadmap does not have cycles, the shortest
path factor is rather high (1.57). This means that an extracted
path between two nodes in the roadmap is on average 57%
larger than the corresponding shortest path in the grid of the
GRM roadmap. The RRM* added 14 useful nodes and 29 useful
edges to the roadmap. As a result, the SPF decreased to 1.137
which means that an extracted path will be much shorter than
an extracted path in the RRM roadmap. This did not have a
negative impact on the extraction times of the queries.

Office Again, the GRM created a huge roadmap. Finding a
shortest path between existing nodes in this roadmap took 34
ms on average. The RRM created a small roadmap. The RRM*
added 15 nodes and 33 edges to this roadmap, improving
the SPF with 53 percent points. Hence, an extracted path
will make less detours. In addition, a close inspection of this
roadmap in Fig. 5 shows that many alternative routes have
been introduced. This did not result in longer query times.
The RRM and RRM* methods function well in environments
with a lot of detail and many obstacles as the three methods
needed only a few seconds.

House A roadmap produced by the GRM for a 3D grid
will inevitably become huge, even for a relatively small
environment such as this one. Running a query on average
took 135 ms, which is far too long in real-time situations. It
was surprising to observe that the RRM only needed 34 nodes
and 33 edges to get the free space covered and connected.
Apparently, the nodes were properly placed in each room, as
the RRM* did not add any useful node to the roadmap. Only
one edge was added. Running a query took on average 8 ms.
An extracted path will be short, because, on average, it will
be only 23% larger than the corresponding optimal path in the
grid.

Quake The roadmap created by the GRM became huge
(> 1.5 million edges). As a result, extracting a query took
0.64 seconds on average. The RRM created a small roadmap.
This sparse roadmap lead to a high SPF. By adding 61 nodes
and 151 edges, the RRM* reduced this factor substantially.
Extracting a query took on average 42 ms, which may be too
high in a real-time situation. Connecting the query to the graph
consumed relatively much time as many connections had to
be checked for collisions.

In conclusion, roadmaps created by the GRM rapidly become
huge, especially when 3D grids are required, resulting in query
times that are too high for real-time performance. In practice,
much smaller grids are used but this can be problematic
when there are narrow passages. In contrast, the RRM creates
small roadmaps that completely cover the free space and have
low query times. However, the extracted paths can be long.
The RRM* combines the advantages of GRM and RRM, i.e.
reasonably short paths are produced while the extraction times
are kept relatively low. The resulting paths were on average 14
to 23 percents larger than the optimal paths in a corresponding
grid. Since the RRM* placed the nodes on the medial axis,
a large clearance caused the nodes to lie far away from the
obstacles, increasing the path length.

TABLE II
ROADMAP STATISTICS FOR THE FOUR ENVIRONMENTS. THREE METHODS

WERE COMPARED. WE COLLECTED THE FOLLOWING STATISTICAL DATA:
THE CONSTRUCTION TIME OF THE ROADMAP, ITS NUMBER OF NODES |V |

AND EDGES |E|. THEN WE MENTION THE SHORTEST PATH FACTOR (SPF)
AND THE SUMMED RUNNING TIME OF 100 RANDOM QUERIES.

Field Graph statistics Path statistics

time (s) |V | |E| SPF 100 queries (s)

GRM 0.88 7,350 27,741 1.000 1.36
RRM 0.75 29 18 1.570 0.43
RRM* 0.91 43 47 1.137 0.23

Office Graph statistics Path statistics

time (s) |V | |E| SPF 100 queries (s)

GRM 0.89 16,917 62,297 1.000 3.42
RRM 1.10 154 147 1.812 0.38
RRM* 2.70 167 180 1.181 0.36

House Graph statistics Path statistics

time (s) |V | |E| SPF 100 queries (s)

GRM 12.91 40,088 454,250 1.000 13.48
RRM 11.67 34 33 1.225 0.82
RRM* 18.68 34 34 1.224 0.82

Quake Graph statistics Path statistics

time (s) |V | |E| SPF queries (s)

GRM 210.16 134,492 1,511,241 1.000 63.54
RRM 306.44 71 65 2.068 2.71
RRM* 384.90 132 216 1.194 4.15

2) Improving query performance: The largest portion of
the query time for RRM and RRM* is occupied by checks
for collision-free connections from the query position to the
roadmap. We could remove the need for collision checks by
using the clearance information of the roadmap. For example,
let c be a configuration that has to be added as a node
to the roadmap and c′ be a configuration located on the
roadmap. If distance d(c, c′) < Clearance(c′), then we know
that c can be connected to c′. Since distance calculations
between configurations are much faster than collision checks,
using clearance information, gathered in the preprocessing of
roadmaps, decreases query time significantly.

As an example, we apply this idea to the Field environment
(see Fig. 6). First, we only use the clearance information of
the nodes in the roadmap. Fig. 6(a) shows a collection of discs
centered at the nodes. The radius of a disc equals the amount
of clearance of the moving object represented by the node. A
query does not collide with the obstacles when it lies in these
discs. The total coverage of the discs is 38.5% of the free
space. If we also use the minimum amount of clearance along
the paths that correspond to the edges and place a disc along
each configuration on the paths, the percentage improves to
57.7 which is shown in Fig. 6(b). The amount of coverage can
be further improved by considering all configurations on all
local paths of the roadmap. Fig. 6(c) shows that this improves

(a) RRM (b) RRM* (c) RRRM

Fig. 5. The results for the Field, Office, House and Quake environments. The
left column shows the initial roadmaps created by the Reachability Roadmap
Method. The middle column shows the roadmaps to which useful nodes and
cycles were added (RRM*). The right column shows the roadmaps to which
clearance was added (RRRM). Due to space limitations, the retracted roadmap
for the Quake environment could not be displayed effectively here.

the coverage to 80.1%. The highest amount of coverage can be
obtained by using each configuration in a retracted roadmap.
This leads to a coverage of 98.5% of the free space. In this
case, the retracted roadmap consists of 870 configurations.
Hence, at most 870 distance calculations are needed to check
if a configuration can be connected to the roadmap. Checking
whether one configuration can be connected takes 0.073 ms
which makes the approach suitable for real-time planning.
Even when the roadmap is larger (which is the case in the
other environments), connecting a query by using clearance
information turned out to be efficient, i.e. the times were below
1 ms. Since running Dijkstra’s shortest path algorithm was far
below 1 ms for the roadmaps produced by the RRM and RRM*,
we conclude that this technique enables real-time extraction of
queries in all tested environments.

A big advantage of using clearance information is that mo-
tion planning can be performed without expensive collision-
checking operations. In particular, no geometrical data has to
be stored for motion planning purposes which saves memory.
Since we created small roadmaps, storing clearance informa-
tion is feasible.

3) Adding clearance: As indicated above, high-clearance
paths are often preferred. Such paths can be obtained by
retracting each of the four roadmaps created by the RRM* to
the medial axis. We refer to this method as the Retracted RRM*
(RRRM). We compare the clearance of roadmaps produced

(a) Clearance of the
nodes. Coverage: 38.5%.

(b) Clearance of the nodes
and edges. Cov.: 57.7%.

(c) Clearance of each con-
figuration. Cov.: 80.1%.

(d) Clearance of retracted
configs. Cov: 98.5%.

Fig. 6. Using clearance information of the roadmap.

TABLE III
CLEARANCE AND TIME STATISTICS FOR RRM* AND RETRACTED RRM*

(RRRM) ROADMAPS. STATISTICS CORRESPONDING TO THE RRRM ARE THE

AVERAGES OVER 100 INDEPENDENT RUNS.

Field Clearance Time

min avg max s

RRM* 0.03 2.71 6.44
RRRM 0.34 3.08 6.46 24

Office Clearance Time

min avg max s

RRM* 0.00 1.60 6.82
RRRM 0.01 1.77 7.53 320

House Clearance Time

min avg max s

RRM* 0.00 2.17 5.64
RRRM 0.13 3.33 10.41 49

Quake Clearance Time

min avg max s

RRM* 0.00 2.90 9.45
RRRM 0.05 3.28 9.75 343

by the RRM* and RRRM. Table III shows the corresponding
statistics. In all retracted roadmaps, the (minimum, maximum
and average) clearance was improved. The times needed for
the retraction were reasonably fast for the Field and House
environments. The roadmaps for Office and Quake environ-
ments were retracted within six minutes. The main reason for
this difference is that the latter two roadmaps are considerably
larger than the other two. We expect that the running times
of the retraction algorithms can be dramatically decreased by
incorporating learning techniques.

VI. CONCLUSION

We presented a method that automatically computes a
roadmap for 2D and 3D virtual environments. The method
creates roadmaps having advantages over roadmaps created
with e.g. a PRM or GRM. We used the Reachability Roadmap
Method to generate resolution complete small roadmaps. As
paths, extracted from this roadmap, can make long detours
around obstacles, we provided a method that adds useful
cycles to the roadmap. Experiments showed that alternative
and reasonably short paths can be extracted from the enhanced
roadmap. The query times on this roadmap are low which
enables real-time extraction of paths. Another criterion the
roadmap should satisfy is that high-clearance paths can be
extracted without extra computation time in the query phase.
This criterion was met by retracting the edges of the roadmap
to the medial axis of the free space. While this may take a
reasonable amount of time, we believe that the running times
of the retraction algorithm can be improved dramatically by
incorporating learning techniques.

In future work, the method could be extended to incorporate
extra constraints that level designers put on the roadmaps. For
example, one could incorporate non-holonomic constraints,
walkable surfaces, take special care of staircases and incor-
porate tactical information in the roadmap.

ACKNOWLEDGMENT

Part of this research has been funded by the Dutch
BSIK/BRICKS Project.

REFERENCES

[1] L. Kavraki, P. Švestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, pp. 566–580,
1996.

[2] J. Barraquand, L. Kavraki, J.-C. Latombe, T.-Y. Li, R. Motwani, and
P. Raghavan, “A random sampling scheme for path planning,” Interna-
tional Journal of Robotics Research, vol. 16, pp. 759–744, 1997.

[3] R. Geraerts and M. Overmars, “Creating small roadmaps for solving mo-
tion planning problems,” in IEEE International Conference on Methods
and Models in Automation and Robotics, 2005, pp. 531–536.

[4] D. Nieuwenhuisen, A. Kamphuis, M. Mooijekind, and M. Overmars,
“Automatic construction of roadmaps for path planning in games,” in
International Conference on Computer Games: Artificial Intelligence,
Design and Education, 2004, pp. 285–292.

[5] G. Alt, “The suffering: A game AI case study,” in Challenges in Game
AI workshop, Nineteenth national conference on Artificial Intelligence,
2004, pp. 134–138.

[6] J. Berg, D. Nieuwenhuisen, L. Jaillet, and M. Overmars, “Creating robust
roadmaps for motion planning in changing environments,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2005, pp.
2515–2521.

[7] A. Kamphuis and M. Overmars, “Finding paths for coherent groups
using clearance,” in Eurographics/ ACM SIGGRAPH Symposium on
Computer Animation, 2004, pp. 19–28.

[8] A. Kamphuis, J. Pettre, M. Overmars, and J.-P. Laumond, “Path finding
for the animation of walking characters,” in Poster proceedings of
Eurographics/ACM SIGGRAPH Symposium on Computer Animation,
2005, pp. 8–9.

[9] R. Geraerts and M. Overmars, “Clearance based path optimization for
motion planning,” in IEEE International Conference on Robotics and
Automation, 2004, pp. 2386–2392.

[10] D. Nieuwenhuisen and M. Overmars, “Useful cycles in probabilistic
roadmap graphs,” in IEEE International Conference on Robotics and
Automation, 2004, pp. 446–452.

[11] G. Bergen, Collision Detection in Interactive 3D Environments. Morgan
Kaufmann, 2003.

