ASCI — IPA — SIKS tracks, ICT.OPEN, Veldhoven, November 14-15, 2011

Multi-Layered Navigation Meshes

Wouter G. van Toll, Atlas F. Cook IV, Roland Geraerts

Abstract

Virtual characters often need to plan visually convincing
paths through a complicated environment. For example, a
traveler may need to walk from an airport entrance to a stair-
case, descend the staircase, walk to a shuttle, ride the shuttle
to a destination, ride an elevator back to the ground floor,
and finally move on the ground floor again to reach the de-
sired airplane. Most previous research only supports path
planning in a single plane because the underlying data struc-
tures are two-dimensional. The goal of this paper is to per-
mit visually convincing paths to be efficiently computed in
a multi-layered environment such as an airport or a multi-
storey building. We describe an algorithm to create a navi-
gation mesh, and our implementation demonstrates the fea-
sibility of the approach.

A multi-layered environment is represented by a set of
two-dimensional layers and a set of connections. Each layer
is a collection of two-dimensional polygons that all lie in a
single plane, and each connection provides a means of mov-
ing between layers.

We first compute the traditional medial axis of each two-
dimensional layer in the environment. The connections are
then used to iteratively merge this collection of medial axes
into a single data structure. By adding a linear number of
line segments that connect the medial axis to the nearest ob-
stacles, we obtain a navigation mesh that mathematically de-
scribes the walkable areas in a multi-layered environment.
This mesh can easily be input into existing planners to gen-
erate visually convincing paths for thousands of characters
in real-time.

1 Introduction

Robots and virtual characters frequently need to plan visu-
ally convincing paths through a complicated environment.
Such paths should be easy to compute and should permit
virtual characters to avoid static obstacles as well as other
moving virtual characters. The goal of this paper is to per-
mit realistic paths to be efficiently computed in a non-planar
environment such as a multi-storey building or an airport.

A common strategy for efficiently computing realistic

This work was partially supported by the ITEA2 Metaversel
(www.metaversel.org) Project, the GATE project, and by INCONTROL
Simulation Solutions. The authors are part of the Institute of Informa-
tion and Computing Sciences, Utrecht University, 3584 CC Utrecht, the
Netherlands. E-mail addresses: wouter@vantoll.nl, A.F.CookIV @uu.nl,
R.J.Geraerts @uu.nl.

Figure 1: A multi-layered environment with three layers (ground floor,
first floor, and second floor). Here, staircases provide a means of moving
between layers. Obstacles are darkly-shaded. Our navigation mesh is con-
structed by augmenting a medial axis with line segments that connect this
medial axis to the nearest obstacle. Large disks depict vertices on the me-
dial axis. Small disks illustrate points on the medial axis where a nearest
obstacle changes.

paths is to partition the environment into a collection of
walkable areas. This partition is often referred to as a nav-
igation mesh. A useful data structure that can be used to
construct a navigation mesh is the medial axis. The medial
axis is the set of all points in an environment that have more
than one distinct closest point on the boundary of the envi-
ronment [21].

We initially compute the traditional medial axis of each
two-dimensional walkable region in the environment. This
collection of medial axes is then merged together into a sin-
gle multi-layered medial axis based on the connections in
the environment. By augmenting this structure with addi-
tional line segments that connect the medial axis to the near-
est obstacles, we obtain a partition of the multi-layered envi-
ronment into a set of walkable areas. These walkable areas
define a navigation mesh such that all points in a walkable
area have the same nearest obstacle(s). We refer the reader
to Figure 1 for an example.

1.1 Related Work in Two-Dimensions

Consider a two-dimensional polygonal environment that
contains n vertices. If the goal is simply to return a short-
est path through this two-dimensional environment, then the
following exact approaches exist.

Given one fixed source point s in a two-dimensional

317

ASCI — IPA — SIKS tracks, ICT.OPEN, Veldhoven, November 14—15, 2011

access side

_____ ~.--layer 2
Cr2
———————————— layer 1
G T layer 0 C
access side

obstacle side

access side

obstacle side access side

12 .
access sid obstacle
side

C,, laceess side|
01-==-==

obstacle side

layer 0 layer 1 layer 2

Figure 2: A multi-layered environment in R3 can be represented as a set of two-dimensional layers and a set of connections between these layers. For

example, the connection Cp; connects layer O and layer 1, and the connection C'12 connects layer 1 and layer 2. Each connection is directed in the sense that

it can only be used through its access side. The obstacle side of a connection is an impassable obstacle.

polygonal environment, Hershberger and Suri [9] show how
to quickly compute any shortest path from the source point
s. Their O(nlogn) preprocessing step uses the continuous
Dijkstra paradigm to maintain the “wavefront” of all points
in the environment that are equidistant to s. The main draw-
back to this approach is that their preprocessing technique is
inherently only relevant for one fixed source point.

Shortest paths can also be computed between any pair of
points in a two-dimensional environment with a visibility
graph. A visibility graph draws an edge between all pairs
of mutually visible vertices in the environment. Such a vis-
ibility graph can be constructed in O(n?) time [7] and can
be combined with A* search [8] or Dijkstra’s algorithm [3]
to quickly return a shortest path between any two points in a
two-dimensional environment.

Although the above approaches can be used to compute
paths through a two-dimensional polygonal environment,
shortest paths always turn at obstacle vertices. This behav-
ior causes a virtual character to nearly collide with many ob-
stacles and to make many sharp turns. As a result, recent
research has moved toward graph-based techniques and nav-
igation meshes.

Graph-based techniques such as probabilistic roadmaps
[16], rapidly-exploring random trees [17], and waypoint
graphs [22] represent the environment using a set of one-
dimensional edges. By contrast, a navigation mesh par-
titions the environment into walkable areas that are two-
dimensional. These walkable areas permit virtual charac-
ters to control their movements inside each two-dimensional
region [14]. This flexibility also makes it much easier for
virtual characters to avoid other moving virtual characters.

There are many popular approaches for partitioning a
two-dimensional polygonal environment into walkable ar-
eas. Wein et al. [24] show how to construct a Visibility
Voronoi Complex in O(n? log n) time. Their approach com-
bines visibility information with the two-dimensional areas
of a Voronoi diagram. The structure also encodes clearance
information that describes the nearest obstacle to each point
in the environment. Although their technique is designed
for two-dimensional polygonal environments, it could be ex-
tended to a multi-layered environment by using our new al-
gorithm.

Kallmann [12] uses a special triangulation to construct a
navigation mesh in O(nlogn) time. The amount of clear-

ance along a path in this triangulation is based on the radius
of the largest empty disk along the path. Such a triangulation
has linear complexity and encodes clearance information for
many points in the environment.

A linear-sized medial axis can also be used to encode
clearance information for all points in the environment. Such
a medial axis is the set of all points in the environment that
have more than one distinct closest point on the boundary of
the environment [21]. Geraerts [5] uses a special type of me-
dial axis called the Explicit Corridor Map to partition a two-
dimensional environment into walkable areas in O(nlogn)
time.

An advantage of navigation meshes that encode clearance
information is that A* search [8] can quickly determine a
reasonably short path that for the most part follows the edges
of the navigation mesh yet still manages to stay far away
from obstacles. Force-based approaches can then be used to
ensure that this path is smooth and visually convincing [13].
Local schemes can also ensure that virtual characters make
small course adjustments when they avoid other moving en-
tities [2, 14, 15]. Such techniques have been used to suc-
cessfully simulate thousands of moving characters in a two-
dimensional environment [2, 6].

1.2 Related Work in a Multi-Layered Environment

The goal of this paper is to permit realistic paths to be ef-
ficiently computed in a non-planar environment that cannot
be described in two dimensions. Specifically, we consider
an environment such as a multi-storey building or an airport
that can be described by a set of two-dimensional polygons.

As illustrated in Figure 2, a multi-layered environment is
composed of a set of two-dimensional polygonal /ayers and
a set of connections between these layers. A layer is a set
of two-dimensional polygons that all lie in the same plane.
Thus, a layer typically represents one floor of a building. A
connection is a line segment that provides a means of mov-
ing from one layer to another layer. Each connection is di-
rected in the sense that it has two sides: the access side al-
lows movement between layers, and the obstacle side is an
impassable obstacle.

Throughout this paper, we assume that a multi-layered en-
vironment is realistic and walkable. A realistic environment
is one that could be constructed in the real world; thus, a con-

318

ASCI — IPA — SIKS tracks, ICT.OPEN, Veldhoven, November 14-15, 2011

nection cannot magically transport a virtual character to an
arbitrary location. A walkable environment is one in which
a human could successfully traverse; hence, a virtual charac-
ter should never walk on a very steep layer and should never
defy gravity by walking along the bottom of a layer.

Several researchers have studied how a multi-layered en-
vironment should be represented in order to best facilitate
high-quality path planning. Tsetsos et al. [23] describe a se-
mantic model for indoor scenes that encodes junctions, room
exits, and corridor sections. Jiang et al. [11] describe a multi-
layered environment as a set of interconnected objects plus a
height component for staircases and ramps.

Deusdado et al. [4] show how to decompose an existing
polygonal environment into a set of layers and connections,
and Whiting et al. [25] show how to extract a graph from a
multi-layered CAD drawing. Since these automated decom-
position techniques exist, we will assume throughout this
paper that the given multi-layered environment has already
been decomposed into layers and connections.

Existing path planning techniques for a multi-layered en-
vironment rely on approximations and parameter tuning.
Pettré et al. [20] use a set of overlapping disks to describe the
walkable space. Most software packages such as Mononen’s
[18] open-source Recast Navigation project work similarly.
The software typically discretizes the world into cubic vox-
els, extracts the walkable surfaces, and connects all adjacent
cells.

Although the above approaches can often be fine-tuned
to produce good results for a given environment, none of
them provides an exact and compact description of the walk-
able space. The main advantage of our technique is that we
produce a mathematical description of all walkable surfaces
without requiring parameter tuning or voxel-like approxima-
tions. Note that we do not currently include a height com-
ponent with each layer because we assume that a realistic
multi-layered environment will not contain any layers that
are very steep. We also assume that the environment will not
contain any low ceilings that would give a headache to a very
tall virtual character. For now, such scenarios could be ex-
plicitly modeled by placing an obstacle below a low ceiling.
In the future, we plan to add height information to the mesh.

1.3 Results

Given a multi-layered environment that contains n vertices
and k connections, this paper shows how to construct a
multi-layered data structure in O(kn logn) time and O(kn)
space. Our multi-layered data structure combines the bene-
fits of both a medial axis and a navigation mesh. Like a me-
dial axis, the data structure produces high-clearance paths
because it encodes the nearest obstacle(s) to every point in
the multi-layered environment. Like a navigation mesh, the
data structure partitions the environment into a set of walka-
ble areas. The result is a simple navigation mesh that mathe-
matically describes all walkable surfaces. This data structure
can easily be used by existing path planners such as the In-

Figure 3: The medial axis of a two-dimensional environment is shown in
blue. Obstacles are shown in gray. The dashed line segments make it easy

to determine the nearest obstacle in the environment.

dicative Route Method [14] and the Reciprocal Velocity Ob-
stacles technique [2] to generate visually convincing paths
for thousands of virtual characters in real-time.

The remainder of this paper is organized as follows. In
Section 2, we formally describe the medial axis and review
the traditional methods of computing this structure. Section
3 contains an algorithm to compute a medial axis in a multi-
layered environment. Section 4 discusses an implementation
that uses this medial axis to compute visually convincing
paths through a multi-layered environment. Section 5 de-
scribes some experiments that demonstrate the feasibility of
our approach.

2 Preliminaries

The medial axis is the set of all points in an environment that
have more than one distinct closest point on the boundary
of the environment [21]. Figure 3 illustrates the medial axis
of a two-dimensional environment that contains a U-shaped
obstacle and a bounding square obstacle.

The medial axis of a two-dimensional environment with
n vertices can be computed exactly in O(nlogn) time and
O(n) space using plane sweep techniques [3]. Alternatively,
the medial axis can be approximated by using graphics hard-
ware to project distance functions onto an orthogonal plane
[10]. Note that the projection technique inherently requires
an environment that is planar because it requires that the en-
tire traversable space is visible from above.

The medial axis has the same complexity as a traditional
triangulation, but it contains more information. In particular,
a medial axis encodes clearance information for every point
in the environment. This permits the efficient computation of
minimum clearance paths that stay far away from obstacles
[5].

The medial axis is also well-defined for three-dimensional
environments. However, it is extremely difficult to mathe-
matically describe and implement the surface patches that
define this structure. Consequently, it is impractical to com-
pute the medial axis in three-dimensional environments [10].

319

ASCI — IPA — SIKS tracks, ICT.OPEN, Veldhoven, November 14—15, 2011

Cy

access side

(a) Multi-layered environment (b) Partial medial axes for L; and L;

access side.

Cj pips PIANP2
Cyj

(c) Connection scene S;; (d) Updated medial axes for L; and L;

Figure 4: The medial axis of a simple multi-layered environment. The influence zone Z;; is highlighted in blue. The intersection of M; and M; with C;;

is denoted by the points p1, p2 € Cjj.

3 Computing the Medial Axis of a Multi-Layered
Environment

A multi-layered environment F consists of a set L =
{L1,..., Ly} of two-dimensional layers and a set C of con-
nections. Throughout this paper, a connection C;; € C al-
ways denotes a line segment that connects two layers L; € L
and L; € L. Please refer to Figure 4a.

Let Mg denote the medial axis of the multi-layered envi-
ronment E. Since we are interested in using Mg to compute
paths that are entirely contained on the surfaces in L, we de-
fine the medial axis Mg as the set of all points in L that have
more than one closest point on the boundary of E. The main
goal of this paper is to show how to compute the medial axis
MEg.

At a high-level, Mg is computed as follows. The tradi-
tional two-dimensional medial axis is initially constructed
for each layer in L under the assumption that every connec-
tion is an impassable obstacle. Each connection C; € Cis
then iteratively opened so that paths can start to pass through
it. When this occurs, we update the affected medial axes M;
and M; to account for the new paths. Once all the connec-
tions have been opened, the medial axes in L will collectively
encode the medial axis Mg for the multi-layered environ-
ment.

3.1 Opening a Connection

The process of opening a connection C;; € C will now be
described in detail. Consider two layers L; and L; that are
connected by a line segment connection Cj; as in Figure 4a.
Let M; be the two-dimensional medial axis of layer L; € L
under the temporary assumption that the connection C}; is
an impassable obstacle.

The following definitions will be useful. The influence
zone Z,; is the set of all points in the multi-layered environ-
ment that have an interior point of the access side of C;; as
a nearest obstacle. The boundary of the influence zone con-
sists of medial axis edges plus orthogonal line segments that
connect these medial axis edges to the endpoints of the con-
nection. The connection scene S;; is the set of all obstacles
(excluding the access side of C;) that are closest to at least
one point in the influence zone Z;;. Note that the medial

axes My, ..., M, for the layers in L encode exactly the infor-
mation that is needed to determine both the influence zone
Z;; and the connection scene S;;.

When a connection Cj; is opened, paths can begin to pass
through the access side of C;;. This means that we are ef-
fectively removing the obstacle from the environment that
corresponds to the access side of C;;. Consequently, we will
need to determine a new closest obstacle for all points that
were previously closest to the access side of C;;. All of these
points are by definition in the influence zone Z;;. No other
points need to have their nearest obstacle information up-
dated. This follows because points that are not in Z;; must
be closer to some other obstacle than to C;; thus, no obstacle
that could be reached by passing through C’;; could possibly
define a nearest obstacle. The above arguments immediately
imply the following lemma:

Lemma 1 When a connection Cjj is opened, only the points
in the influence zone Z;; need to have their nearest obstacle
information updated.

The next task is to determine how to update the closest
obstacle information for the points in the influence zone Z;;.
The below lemma proves that a nearest obstacle for every
point in Z;; must be in the connection scene ;.

Lemma 2 A nearest obstacle for every point in the influence
zone Z;; is in the connection scene Sj;.

Proof. An obstacle that is not in the connection scene .S;; is
by definition not optimally close to any point on C;;. There-
fore, this obstacle will never be optimally close to any point
that can only be reached by passing through C};. (]

Lemma 1 ensures that when a connection C}; is opened,
we only need to update the edges of the medial axes
My, ..., M, that are inside the influence zone Z;;. Lemma
2 guarantees that these edges can be updated solely based on
the obstacles in the connection scene .S;;.

Figure 4 illustrates the process of constructing the medial
axis of a multi-layered environment that contains two layers
L;, L; and one connection C;;. The medial axes M; and M;
are initially constructed under the assumption that C;; is an
impassable obstacle. When the connection C}; is eventually

320

ASCI — IPA — SIKS tracks, ICT.OPEN, Veldhoven, November 14-15, 2011

opened so that paths can pass through its access side, we only
need to update the medial axes edges inside the highlighted
influence zone Z;; (see Figure 4b).

The connection scene .S;; is the set of all obstacle points in
the environment that are closest to the access side of C;; (see
Figure 4c¢). Since we want to use a standard two-dimensional
algorithm to update the medial axes edges in the influence
zone, we first need to place all of the obstacle points in the
connection scene S;; into a common plane. This can be
achieved (in a heuristic sense) by projecting all of the points
in S;; onto the plane supporting the layer L;.!

Once all of the obstacles in the connection scene S;; lie
in a common plane, the medial axis of the two-dimensional
connection scene can be computed using a traditional two-
dimensional algorithm. The resulting medial axis precisely
defines all of the medial axis edges in the influence zone Z;;
(see Figure 4c). Inserting these edges into the affected me-
dial axes will logically merge these structures together based
on their common intersections with the line segment C;; (see
Figure 4d).

An iterative algorithm is now described that can construct
the medial axis Mg for any multi-layered environment E.

3.2 Algorithm

1. Construct the traditional two-dimensional medial axes
My, ..., M, for each layer Lq,...,L, € L under the
temporary assumption that every connection is an im-
passable obstacle.

2. For each connection Cj; in the environment £

e Determine the influence zone Z;; and the connec-
tion scene S;; using the medial axes My, ..., M.

e Project all of the obstacles in the connection scene
S;; onto the plane supporting layer L;. Let Mg
be the two-dimensional medial axis of these pro-
jected obstacles.

e Use the medial axis Mg to update the edges and
vertices of My, ..., M, inside the influence zone
SU

e Mark the connection Cj; as fully processed.

One advantage of the above iterative approach is that a single
obstacle is correctly permitted to influence the medial axes of
an arbitrary number of layers. For example, the bottom-left
polygonal obstacle in Figure 5 influences the medial axis on
three layers (including the stairs as a layer). The connec-
tions can also be processed in an arbitrary order because all
affected medial axes are corrected each time a connection is
processed.

!'This technique is a heuristic because projective transformations do not
preserve Euclidean distances. Alternatively, one could rotate all of the ob-
stacles about a connection until they become coplanar [1, 19]. The reason
we use a projective transformation is that a realistic environment should not
contain any layer that is exceptionally steep. In such a setting, projected
distances reasonably approximate Euclidean distances.

3.3 Complexity Analysis

We now analyze the complexity of the above algorithm.

Lemma 3 The medial axis Mg for one connection scene has
O(n) complexity and can be constructed in O(nlogn) time.

Proof. Although the O(n) obstacles in a connection scene
may lie in many different layers, these obstacles will never
overlap when we project them onto the plane supporting
layer L;. This follows because a realistic and walkable multi-
layered environment must have a 360° turn in order for pro-
jected obstacles to overlap. However, some obstacle point
along such a turn must always be closer than a point after
the turn. This means that the medial axis Mg is constructed
from O(n) disjoint obstacles. It has O(n) complexity and
can be constructed in O(nlogn) time [3]. O

We can now state our main result.

Theorem 4 The medial axis of a multi-layered environment
with n vertices and k connections has O(kn) complexity and
can be constructed in O(knlogn) time.

Proof. Construct the medial axes My, ..., M, for each of the
two-dimensional layers {L1,...,L,} € L under the tempo-
rary assumption that all connections are impassable obsta-
cles. This can easily be achieved in O(nlogn) total time
and O(n) total space using traditional two-dimensional tech-
niques.

For each connection C};, use the medial axes Mj, ..., M,
to determine the influence zone Z;; and the connection scene
S;; in O(n) time. Project all of the obstacles in .S;; onto the
plane supported by layer L;. Compute the medial axis Mg
for these obstacles in O(n log n) time as described in Lemma
3. The edges in Mg can then easily be used to update all of
the edges of M7y, ..., M, inside the influence zone. Note that
the intersections of these edges with C;; provide a natural
means of merging these medial axes together into a single
structure.

Processing all connections in this fashion is sufficient to
construct the medial axis of a multi-layered environment.
Each connection takes O(nlogn) time and O(n) space to
process by Lemma 3, so all k& connections can be processed
in O(kn logn) total time.

As illustrated in Figure 4d, an edge of the medial axis can
intersect a connection. If we add a vertex at each such in-
tersection point (so that each edge is associated with a single
layer), then the total space requirement for the medial axis of
a multi-layered environment is O(kn). This follows because
each of the O(n) edges of the medial axis could intersect
O(k) line segment connections. O

4 Implementation

We have implemented an algorithm to compute the medial
axis Mg of a multi-layered environment . Each two-

321

ASCI — IPA — SIKS tracks, ICT.OPEN, Veldhoven, November 14—15, 2011

dimensional medial axis is computed by using graphics hard-
ware to project distance functions onto an orthogonal plane
as in [5] and [10].

By annotating each edge in the medial axis with its defin-
ing layer and with closest obstacle information [5], we par-
tition the multi-layered environment E into a set of two-
dimensional walkable areas. These two-dimensional areas
encode a navigation mesh that can be used to construct
a visually convincing path between any two query points
s,g € E as follows. Retract s and g onto nearby points on
the medial axis Mg. Using A* search [8], calculate a back-
bone path through the medial axis that connects these two
points [6]. The walkable areas in the environment that are
adjacent to this backbone path define an explicit corridor [5].
Force-based steering techniques such as the Indicative Route
Method [14] and Reciprocal Velocity Obstacles [2] can then
be used to very quickly steer a virtual character through this
corridor while avoiding obstacles and other moving virtual
characters. Figure 5 illustrates that this technique can be
used to construct a corridor that can guide a virtual character
along a visually convincing path in a multi-layered environ-
ment.

5 Experiments

In this section, we will describe the experiments we have
conducted on multi-layered navigation meshes. All of the
experiments were performed on a PC with an NVIDIA GT
240 graphics card and an Intel Core2 Duo CPU (3.0 GHz)
with 4 GB memory. Only one core was used. The application
was implemented in Visual C++ under Windows 7.

The multi-layered navigation mesh in Figures 1 and 5 was
computed in 46ms. The original environment has 230 ob-
stacle vertices distributed over 8 connections and 7 layers
(three floors and four staircases). The navigation mesh has
64 edges and 212 pairs of closest points.

Figure 6 shows the same 7 layers and 8 connections as in
Figure 5; however, 53 additional obstacles have been added.
The total number of obstacle vertices in this environment
is 637. The navigation mesh was computed in 58ms. This
mesh has 280 edges and 1084 pairs of closest points.

Figure 7 illustrates what happens when the number of con-
nections is varied in a multi-layered environment. Figure 7a
shows our navigation mesh when only 1 connection exists
between two layers. Figure 7b illustrates the mesh when 5
connections are available. Figure 7c shows the mesh when
28 connections exist. Table 1 illustrates the time to compute
this navigation mesh when various numbers of connections
are present. The number of edges and pairs of closest points
in the mesh are also reported. These experiments show that
our technique is fast and scales well when obstacles or con-
nections are added to an environment.

Goallgll-

Start$ /

Figure 5: Our navigation mesh can be input into an existing path planner

such as the Corridor Map Method [5] to generate a visually convincing path
through a multi-layered environment. The above figures illustrate 3D and

2D views of the same multi-layered environment.

Figure 6: Many obstacles can be added to each layer.

6 Conclusion

Many modern virtual environments can be described by a
set of two-dimensional polygonal layers and a set of connec-
tions between these layers. In this paper, we have proposed
and implemented an algorithm to compute the medial axis
in such an environment. The algorithm is simple and fast
because it first computes a two-dimensional medial axis of
each two-dimensional layer. Next, all of these medial axes
are iteratively merged together into a single structure. By
annotating edges in this merged structure with nearest obsta-
cle information, a navigation mesh is obtained for the multi-
layered environment. Such a navigation mesh can be input
into existing path planners to generate visually convincing

322

ASCI — IPA — SIKS tracks, ICT.OPEN, Veldhoven, November 14-15, 2011

N
111

11
11
17

(2) (b) (c)

Figure 7: Many connections can exist between a pair of layers. The first
layer is the area between the outer and inner rectangles. The second layer is

the area inside the inner rectangle.

Table 1: Varying numbers of connections

Connections Time Mesh Edges,
Pairs of Closest Points

1 7ms 15,42

2 9ms 19, 55

3 11ms 23, 68

5 14ms 31,94

8 19ms 43,133

14 30ms 66, 208
20 43ms 88, 281
28 60ms 119, 382

paths for thousands of virtual characters in real-time.

As future work, the multi-layered data structure should be
extended to support dynamic updates in a local and efficient
manner. Dynamic updates would allow modeling connec-
tions that are only accessible at certain times (e.g., the doors
of most buildings are locked at the end of each business day).
Dynamic updates would also permit routes to be locally up-
dated each time a new road/building was created.

In addition to dynamic updates, it would be interesting to
add height information to the layers so that they could more
accurately encode the three-dimensional structure of an en-
vironment. Finally, it sometimes makes more sense to hop
over small obstacles than to go around them. For example, a
hiker might choose to jump over holes and puddles along a
rugged trail. These powerful extensions provide both a the-
oretical and practical basis for efficiently computing highly
realistic paths in a multi-layered environment.

References

[1] PK. Agarwal, B. Aronov, J. O’Rourke, and C.A. Schevon. Star un-
folding of a polytope with applications. SIAM Journal on Computing,
26(6):1689-1713, 1997.

[2] J.P. van den Berg, M.C. Lin, and D. Manocha. Reciprocal Velocity
Obstacles for real-time multi-agent navigation. [EEE International
Conference on Robotics and Automation, pages 1928—1935, 2008.

[3] M. de Berg, O. Cheong, M. van Kreveld, and M.H. Overmars. Com-
putational Geometry: Algorithms and Applications. Springer, 3rd edi-
tion, 2008.

[4] L.Deusdado, A.R. Fernandes, and O. Belo. Path planning for complex
3D multilevel environments. 24th Spring Conference on Computer
Graphics, pages 187-194, 2008.

(5]

(6]

(71

(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

323

R. Geraerts. Planning short paths with clearance using Explicit Cor-
ridors. IEEE International Conference on Robotics and Automation,
pages 1997-2004, 2010.

R. Geraerts and M.H. Overmars. Enhancing corridor maps for real-
time path planning in virtual environments. Computer Animation and
Social Agents, pages 64-71, 2008.

S.K. Ghosh and D.M. Mount. An output-sensitive algorithm for com-
puting visibility graphs. SIAM Journal on Computing, 20(5):888-910,
1991.

P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100-107, 1968.

J. Hershberger and S. Suri. An optimal algorithm for Euclidean short-
est paths in the plane. STAM Journal on Computing, 28(6):2215-2256,
1999.

K.E. Hoff III, T. Culver, J. Keyser, M.C. Lin, and D. Manocha. Fast
computation of generalized Voronoi diagrams using graphics hard-
ware. International Conference on Computer Graphics and Interac-
tive Techniques, pages 277-286, 1999.

H. Jiang, W. Xu, T. Mao, C. Li, S. Xia, and Z. Wang. A semantic
environment model for crowd simulation in multilayered complex en-
vironment. 16th ACM Symposium on Virtual Reality Software and
Technology, pages 191-198, 2009.

M. Kallmann. Path planning in triangulations. IJCAI Workshop on
Reasoning, Representation, and Learning in Computer Games, pages
49-54, 2005.

1. Karamouzas, R. Geraerts, and M.H. Overmars. Indicative routes for
path planning and crowd simulation. 4th International Conference on
Foundations of Digital Games, pages 113—120, 2009.

1. Karamouzas, P. Heil, P. van Beek, and M.H. Overmars. A predic-
tive collision avoidance model for pedestrian simulation. 2nd Interna-
tional Workshop on Motion in Games, pages 41-52, 2009.

I. Karamouzas and M.H. Overmars. A velocity-based approach for
simulating human collision avoidance. [Intelligent Virtual Agents,
6356:180-186, 2010.

L.E. Kavraki, P. Svestka, J.C. Latombe, and M.H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12:566-580,
1996.

J.J. Kuffner and S.M. LaValle. RRT-connect: An efficient approach
to single-query path planning. [EEE International Conference on
Robotics and Automation, pages 995-1001, 2000.

M. Mononen. Recast navigation.
http://code.google.com/p/recastnavigation, 2011.

Google Project:

D.M. Mount. The number of shortest paths on the surface of a poly-
hedron. SIAM Journal on Computing, 19(4):593-611, 1990.

J. Pettré, J.P. Laumond, and D. Thalmann. A navigation graph for
real-time crowd animation on multilayered and uneven terrain. /st
International Workshop on Crowd Simulation, pages 1-9, 2005.

F. Preparata. The medial axis of a simple polygon. In Mathemat-
ical Foundations of Computer Science, volume 53, pages 443-450.
Springer, 1977.

S. Rabin. AI game programming wisdom 2. Charles River Media
Inc., Hingham, 2004.

V. Tsetsos, C. Anagnostopoulos, P. Kikiras, P. Hasiotis, and S. Had-
jiefthymiades. A human-centered semantic navigation system for in-
door environments. International Conference on Pervasive Services,
pages 146-155, 2005.

R. Wein, J.P. van den Berg, and D. Halperin. The Visibility-Voronoi
Complex and its applications. Computational Geometry: Theory and
Applications, 36(1):66-78, 2007.

E. Whiting, J. Battat, and S. Teller. Topology of urban environments:
Graph construction from multi-building floor plan data. 12th Inter-
national Conference on Computer-Aided Architectural Design, pages
115-128, 2007.

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 303.02, 20.86 Width 34.48 Height 17.90 points
 Origin: bottom left

 1
 0
 BL

 Both
 AllDoc

 CurrentAVDoc

 303.0206 20.8556 34.4794 17.9028

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0b
 Quite Imposing Plus 3
 1

 0
 7
 6
 7

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 282.47, 20.86 Width 43.10 Height 17.24 points
 Origin: bottom left

 1
 0
 BL

 Both
 AllDoc

 CurrentAVDoc

 282.4656 20.8556 43.0992 17.2397

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0b
 Quite Imposing Plus 3
 1

 1
 7
 6
 7

 1

 HistoryItem_V1
 AddNumbers

 Range: all pages
 Font: Times-Roman 12.0 point
 Origin: bottom centre
 Offset: horizontal 18.00 points, vertical 18.00 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 1
 0

 BC

 1
 317
 TR
 1
 0
 451
 249

 0
 1
 12.0000

 Both
 3
 AllDoc
 44

 CurrentAVDoc

 18.0000
 18.0000

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0b
 Quite Imposing Plus 3
 1

 0
 7
 6
 7

 1

 HistoryList_V1
 qi2base

