Performing multicut on walkable environments

Arne Hillebrand Marjan van den Akker Roland Geraerts Han Hoogeveen

Department of Information and Computing Sciences Utrecht University, the Netherlands

10th Annual International Conference on Combinatorial Optimization and Applications, December 16, 2016

1 Obtain a 3D-model of a building;
2 Filter and repair to obtain the walkable environment;
3 Obtain a multi-layered environment;
4 Do something useful (e.g. generate a navigation mesh).

What?

1 Obtain a 3D-model of a building;
2 Filter and repair to obtain the walkable environment;
3 Obtain a multi-layered environment;
4 Do something useful (e.g. generate a navigation mesh).

Definition (Multi-layered environment [1])

A multi-layered environment (MLE) is a set $\mathbf{L}=\left\{L_{1}, \ldots, L_{l}\right\}$ of layers and a set \mathbf{C} of connections, such that:

- No two polygons P and Q in a layer L_{i} overlap;
- Iff polygons P and Q are connected and in different layers, the shared edge between P and Q is a connection in \mathbf{C};
- Every polygon P is assigned to exactly one layer.

[^0]
Definition (Multi-layered environment [1])

A multi-layered environment (MLE) is a set $\mathbf{L}=\left\{L_{1}, \ldots, L_{l}\right\}$ of layers and a set \mathbf{C} of connections, such that:

- No two polygons P and Q in a layer L_{i} overlap;
- Iff polygons P and Q are connected and in different layers, the shared edge between P and Q is a connection in \mathbf{C};
- Every polygon P is assigned to exactly one layer.

[^1]
Definition (Multi-layered environment [1])

A multi-layered environment (MLE) is a set $\mathbf{L}=\left\{L_{1}, \ldots, L_{l}\right\}$ of layers and a set \mathbf{C} of connections, such that:

- No two polygons P and Q in a layer L_{i} overlap;
- Iff polygons P and Q are connected and in different layers, the shared edge between P and Q is a connection in \mathbf{C};
- Every polygon P is assigned to exactly one layer.

[^2]

Definition (Multi-layered environment [1])

A multi-layered environment (MLE) is a set $\mathbf{L}=\left\{L_{1}, \ldots, L_{l}\right\}$ of layers and a set \mathbf{C} of connections, such that:

- No two polygons P and Q in a layer L_{i} overlap;
- Iff polygons P and Q are connected and in different layers, the shared edge between P and Q is a connection in \mathbf{C};
- Every polygon P is assigned to exactly one layer.

[^3]Minimally connected multi-layered environment

Definition (Minimally connected multi-layered environment)
A minimally connected multi-layered environment (MICLE) is a multi-layered environment where the number of connections is minimal.

Walkable environment graph

Definition (Walkable environment graph)
A walkable environment graph (WEG) is a graph representing a walkable environment with:

- A vertex for every polygon;
- An edge between every distinct pair of connected polygons;
- An overlap annotation between every distinct pair of overlapping polygons.

Definition (Walkable environment graph)
A walkable environment graph (WEG) is a graph representing a walkable environment with:

- A vertex for every polygon;
- An edge between every distinct pair of connected polygons;
- An overlap annotation between every distinct pair of overlapping polygons.

Definition (Walkable environment graph)
A walkable environment graph (WEG) is a graph representing a walkable environment with:

- A vertex for every polygon;
- An edge between every distinct pair of connected polygons;
- An overlap annotation between every distinct pair of overlapping polygons.

Definition (Walkable environment graph)
A walkable environment graph (WEG) is a graph representing a walkable environment with:

- A vertex for every polygon;
- An edge between every distinct pair of connected polygons;
- An overlap annotation between every distinct pair of overlapping polygons.

Finding a MICLE can be formulated as a MULTICUT problem [1].
1 Create source s_{x} and sink t_{x} for a vertex v with overlaps;
2 Connect s_{x} to v;
3 Connect vertices overlapped by v to t_{x} and remove overlaps;
4 Repeat while there are still overlaps.

[^4]Finding a MICLE can be formulated as a MULTICUT problem [1].

Unfortunately:

- MULTICUT is NP-Hard;
- MULTICUT is APX-Hard.

[^5]In this paper we have proven that finding a MICLE is NP-Hard. This proof is based on earlier work of Dahlhaus et al. [1]

[^6]
How hard can it be? (2/2)

In this paper we have proven that finding a MICLE is NP-Hard. This proof is based on earlier work of Dahlhaus et al. [1]

[^7]
How hard can it be? (2/2)

In this paper we have proven that finding a MICLE is NP-Hard. This proof is based on earlier work of Dahlhaus et al. [1]

[^8]Observations:

- A WEG can contain a very large number of edges, vertices and overlaps.
- In some situations, vertices will always be part of the same layer.
- Some overlaps are redundant since their "constraint" is already enforced by other overlaps.

Try to efficiently detect these situations and remove them from a WEG. After each operation, keep track of possible new candidate vertices.

1-CONTRACT

Detection: $O(1)$
Resolution: $O(p)$
Candidates: $O(1)$

2-CONTRACT

Detection: $O(1)$
Resolution: $O(p)$
Candidates: $O(1)$

- p is the number of polygons a vertex represents.

1-CONTRACT

Detection: $O(1)$
Resolution: $O(p)$
Candidates: $O(1)$

2-CONTRACT

Detection: $O(1)$
Resolution: $O(p)$
Candidates: $O(1)$

- p is the number of polygons a vertex represents.

Vertex and edge reductions

1-CONTRACT

Detection: $O(1)$
Resolution: $O(p)$
Candidates: $O(1)$

2-CONTRACT

Detection: $O(1)$
Resolution: $O(p)$
Candidates: $O(1)$

- p is the number of polygons a vertex represents.

Vertex and edge reductions

1-CONTRACT

Detection: $O(1)$
Resolution: $O(p)$
Candidates: $O(1)$

2-CONTRACT

Detection: $O(1)$
Resolution: $O(p)$
Candidates: $O(1)$

- p is the number of polygons a vertex represents.

Overlap removal

In general:
An overlap (v, w) can be removed if for every path connecting v and w there is a pair of overlapping vertices on that path.
! Very expensive to check

d-REMOVE

- Look at all sub-paths of length d originating in v
- For each sub-path register the overlaps
- Perform BFS from the end of each sub-path and search for w

Environments

Environment	Type	Tri.	$\|V\|$	$\|E\|$	$\|O\|$
As_oilrig	V	\checkmark	2077	2399	10717
Halo	V	\checkmark	179	184	346
Cliffsides	V	\checkmark	748	764	162
Hexagon	V	\checkmark	2368	2419	20207
Library	R	\boldsymbol{X}	298	420	775
Tower	R	\boldsymbol{X}	5932	8033	116983
Station 1	R	\checkmark	206	209	1026
Station 2	R	\checkmark	82	86	115

Results

|V|

|O|

|티

Duration

Library

\qquad Station 1
Station 2

Results

Conclusion

We have:

- Identified a common (sub-)problem: finding a MICLE;
- Proven this problem to be NP-Hard;
- Implemented and tested algorithms to shrink the problem size.

In the future:

- Work on the first step in the pipeline (extracting a WE);
- Extend 2D algorithms to multi-layered environments.

Thanks!

A.Hillebrand@uu.nl
http://www.cs.uu.nl/staff/hillebra.html

[^0]: [1] van Toll, Cook IV, and Geraerts, "Navigation meshes for realistic multi-layered environments"

[^1]: [1] van Toll, Cook IV, and Geraerts, "Navigation meshes for realistic multi-layered environments"

[^2]: [1] van Toll, Cook IV, and Geraerts, "Navigation meshes for realistic multi-layered environments"

[^3]: [1] van Toll, Cook IV, and Geraerts, "Navigation meshes for realistic multi-layered environments"

[^4]: [1] Schrijver, Combinatorial Optimization - Polyhedra And Efficiency

[^5]: [1] Schrijver, Combinatorial Optimization - Polyhedra And Efficiency

[^6]: [1] Dahlhaus et al., "The Complexity of Multiterminal Cuts"

[^7]: [1] Dahlhaus et al., "The Complexity of Multiterminal Cuts"

[^8]: [1] Dahlhaus et al., "The Complexity of Multiterminal Cuts"

