Introduction	Finding MICLEs	WEG reductions	Experiments 00	Conclusion

Performing multicut on walkable environments

Arne Hillebrand Marjan van den Akker Roland Geraerts Han Hoogeveen

> Department of Information and Computing Sciences Utrecht University, the Netherlands

10th Annual International Conference on Combinatorial Optimization and Applications, December 16, 2016

Introduction ●○○	Finding MICLEs	WEG reductions	Experiments 00	Conclusion
What?				

- Obtain a 3D-model of a building;
- 2 Filter and repair to obtain the walkable environment;
- 3 Obtain a multi-layered environment;
- 4 Do something useful (e.g. generate a navigation mesh).

Introduction ●○○	Finding MICLEs	WEG reductions	Experiments 00	Conclusion
What?				

- 1 Obtain a 3D-model of a building;
- 2 Filter and repair to obtain the walkable environment;
- 3 Obtain a multi-layered environment;
- I Do something useful (e.g. generate a navigation mesh).

Introduction •••	Finding MICLEs	WEG reductions	Experiments 00	Conclusion 00
Multi-layered en	vironment			

- ▶ No two polygons *P* and *Q* in a layer *L_i* overlap;
- Iff polygons P and Q are connected and in different layers, the shared edge between P and Q is a connection in C;
- Every polygon *P* is assigned to exactly one layer.

^[1] van Toll, Cook IV, and Geraerts, "Navigation meshes for realistic multi-layered environments"

Introduction ○●○	Finding MICLEs	WEG reductions	Experiments 00	Conclusion
Multi-layered en	vironment			

- ▶ No two polygons *P* and *Q* in a layer *L_i* overlap;
- Iff polygons P and Q are connected and in different layers, the shared edge between P and Q is a connection in C;
- Every polygon *P* is assigned to exactly one layer.

^[1] van Toll, Cook IV, and Geraerts, "Navigation meshes for realistic multi-layered environments"

Introduction	Finding MICLEs	WEG reductions	Experiments	Conclusion
000				
Multi-layered	l environment			

- ▶ No two polygons *P* and *Q* in a layer *L_i* overlap;
- Iff polygons P and Q are connected and in different layers, the shared edge between P and Q is a connection in C;
- Every polygon *P* is assigned to exactly one layer.

^[1] van Toll, Cook IV, and Geraerts, "Navigation meshes for realistic multi-layered environments"

Introduction •••	Finding MICLEs	WEG reductions	Experiments 00	Conclusion 00
Multi-layered en	vironment			

- ▶ No two polygons *P* and *Q* in a layer *L_i* overlap;
- Iff polygons P and Q are connected and in different layers, the shared edge between P and Q is a connection in C;
- Every polygon *P* is assigned to exactly one layer.

^[1] van Toll, Cook IV, and Geraerts, "Navigation meshes for realistic multi-layered environments"

Introduction	Finding MICLEs	WEG reductions	Experiments	Conclusion
000				
Minimally connected multi-layered environment				

Definition (Minimally connected multi-layered environment)

A minimally connected multi-layered environment (MICLE) is a multi-layered environment where the number of connections is minimal.

Introduction	Finding MICLEs	WEG reductions	Experiments	Conclusion
	000			
Walkable env	vironment graph			

- A vertex for every polygon;
- An edge between every distinct pair of connected polygons;
- An overlap annotation between every distinct pair of overlapping polygons.

Introduction 000	Finding MICLEs ●○○	WEG reductions	Experiments 00	Conclusion
Walkable enviror	nment graph			

- A vertex for every polygon;
- An edge between every distinct pair of connected polygons;
- An overlap annotation between every distinct pair of overlapping polygons.

Introduction 000	Finding MICLEs ●○○	WEG reductions	Experiments 00	Conclusion
Walkable enviror	nment graph			

- A vertex for every polygon;
- An edge between every distinct pair of connected polygons;
- An overlap annotation between every distinct pair of overlapping polygons.

Introduction 000	Finding MICLEs ●○○	WEG reductions	Experiments 00	Conclusion
Walkable enviror	nment graph			

- A vertex for every polygon;
- An edge between every distinct pair of connected polygons;
- An overlap annotation between every distinct pair of overlapping polygons.

Introduction	Finding MICLEs	WEG reductions	Experiments	Conclusion
	000			
How hard can	it be? (1/2)			

Finding a MICLE can be formulated as a **MULTICUT** problem [1].

- **1** Create source s_x and sink t_x for a vertex v with overlaps;
- **2** Connect s_x to v;
- **3** Connect vertices overlapped by v to t_x and remove overlaps;
- 4 Repeat while there are still overlaps.

[1] Schrijver, Combinatorial Optimization - Polyhedra And Efficiency

Introduction	Finding MICLEs	WEG reductions	Experiments	Conclusion
000	000	000	00	00
How hard can it	be? (1/2)			

Finding a MICLE can be formulated as a **MULTICUT** problem [1].

Unfortunately:

- MULTICUT is NP-Hard;
- MULTICUT is APX-Hard.

[1] Schrijver, Combinatorial Optimization - Polyhedra And Efficiency

Introduction 000	Finding MICLEs ○○●	WEG reductions	Experiments 00	Conclusion
How hard can it	be? (2/2)			

In this paper we have proven that finding a MICLE is NP-Hard. This proof is based on earlier work of Dahlhaus et al. [1]

^[1] Dahlhaus et al., "The Complexity of Multiterminal Cuts"

In this paper we have proven that finding a MICLE is NP-Hard. This proof is based on earlier work of Dahlhaus et al. [1]

^[1] Dahlhaus et al., "The Complexity of Multiterminal Cuts"

In this paper we have proven that finding a MICLE is NP-Hard. This proof is based on earlier work of Dahlhaus et al. [1]

^[1] Dahlhaus et al., "The Complexity of Multiterminal Cuts"

Introduction	Finding MICLEs	WEG reductions	Experiments	Conclusion
		000		
The general idea				

Observations:

- A WEG can contain a very large number of edges, vertices and overlaps.
- In some situations, vertices will always be part of the same layer.
- Some overlaps are redundant since their "constraint" is already enforced by other overlaps.

Try to efficiently **detect** these situations and remove them from a WEG. After each operation, keep track of possible new **candidate** vertices.

Introduction 000	Finding MICLEs	WEG reductions ○●○	Experiments 00	Conclusion
Vertex and edge reductions				

Detection: O(1)Resolution: O(p)Candidates: O(1)

2-CONTRACT

Detection: O(1)Resolution: O(p)Candidates: O(1)

Introduction	Finding MICLEs	WEG reductions	Experiments	Conclusion
Vertex and edge reductions				

1-CONTRACT

Detection: O(1)Resolution: O(p)Candidates: O(1)

2-CONTRACT

Detection: O(1)Resolution: O(p)Candidates: O(1)

Introduction	Finding MICLEs	WEG reductions	Experiments	Conclusion
Vertex and edge reductions				

Detection: O(1)Resolution: O(p)Candidates: O(1)

2-CONTRACT

Detection: O(1)Resolution: O(p)Candidates: O(1)

Introduction	Finding MICLEs	WEG reductions	Experiments	Conclusion
Vertex and edge reductions				

Detection: O(1)Resolution: O(p)Candidates: O(1)

2-CONTRACT

Detection: O(1)Resolution: O(p)Candidates: O(1)

Introduction 000	Finding MICLEs	WEG reductions	Experiments 00	Conclusion
Overlap removal				

In general:

An overlap (v, w) can be removed if for every path connecting v and w there is a pair of overlapping vertices on that path.

! Very expensive to check

d-REMOVE

- Look at all sub-paths of length d originating in v
- For each sub-path register the overlaps
- ▶ Perform BFS from the end of each sub-path and search for *w*

Introduction 000	Finding MICLEs		WEG reduc		Expe ●○	riments	Conclusion 00
Environme	ents						
	Environment	Туре	Tri.	V	<i>E</i>	<i>O</i>	
	As₋oilrig	V	1	2077	2399	10717	
	Halo	V	1	179	184	346	
	Cliffsides	V	1	748	764	162	
	Hexagon	V	1	2368	2419	20207	
	Library	R	X	298	420	775	
	Tower	R	X	5932	8033	116983	
	Station 1	R	1	206	209	1026	
	Station 2	R	1	82	86	115	
							11 / 14

Introduction 000	Finding MICLEs	WEG reductions	E×periments ○●	Conclusion
Results				

Introduction 000	Finding MICLEs	WEG reductions	Experiments ○●	Conclusion 00
Results				

Original WEG

d = 1

d = 2

d = 4

Introduction	Finding MICLEs	WEG reductions	Experiments	Conclusion
000	000	000	00	0
Conclusion				

We have:

- Identified a common (sub-)problem: finding a MICLE;
- Proven this problem to be NP-Hard;
- Implemented and tested algorithms to shrink the problem size.

In the future:

- Work on the first step in the pipeline (extracting a WE);
- Extend 2D algorithms to multi-layered environments.

Introduction 000	Finding MICLEs	WEG reductions	Experiments 00	Conclusion ○●
Thanks!				

A.Hillebrand@uu.nl http://www.cs.uu.nl/staff/hillebra.html