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Abstract— The last decade, sampling based planners like
the Probabilistic Roadmap Method have proved to be suc-
cessful in solving complex motion planning problems. We give
a reachability based analysis for these planners which leads
to a better understanding of the success of the approach and
enhancements of the techniques suggested. This also enables
us to study the effect of using new local planners.

Index Terms— Reachability analysis, potential field local
planner, PRM, motion planning

I. INTRODUCTION

A central problem in robotics is planning a collision-
free path for a moving object in a rigid environment. In
1979, Reif showed that path planning for a polyhedral
robot among a finite set of polyhedral obstacles was
PSPACE-hard [1]. Four years later, Schwartz and Sharir
proposed a complete general-purpose algorithm based on
an algebraic decomposition of the configuration space of
any fixed dimension d. When the space of collision-free
placements is a set defined by n polynomial constraints
of maximal degree m, a path can be computed by an
algorithm whose time complexity is doubly exponential in
d and polynomial in both n (geometrical complexity) and
m (algebraic complexity) [2]. In 1986, this algorithm was
improved to a single exponential time algorithm [3]. Due to
their complexity, these algorithms have never been used in
practice. In 1988, Canny found a PSPACE algorithm for the
general mover’s problem and showed that it was PSPACE-
complete [4], showing that exact planners have little chance
of solving complicated problems. In 1991, Barraquand cre-
ated the Randomized Path Planner, which was an artificial
potential field planner [5]. This planner did not require the
construction of an explicit description of the configuration
space. Although this planner was much faster than previous
approaches, it could get stuck at a local minimum of
the potential function. One year later, different researchers
independently devised the Probabilistic Roadmap Method
(PRM), which was successfully able to deal with many
motion planning problems [6], [7]. This success is due to
its wide applicability and good performance: if a solution
for a problem is easy, then it seems that the PRM can solve
it very fast.

The probabilistic roadmap method consists of two pha-
ses: a construction and a query phase. In the construction
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phase, a roadmap (graph) is built, approximating the mo-
tions that can be made in the environment. First, a free
random sample (configuration) is created. Such a sample
describes a particular placement of the moving object in
the workspace. Then, a simple local planner is employed to
connect the sample to some useful neighbors. A neighbor
is useful if its distance to the new configuration is less
than a predetermined constant. Samples and connections
are added to the graph until the roadmap is dense enough.
In the query phase, the start and goal samples are connected
to the graph. The path is obtained by a Dijkstra’s shortest
path query. See e.g. [8] for a more extensive elaboration
of the PRM method.

The (analysis of the) complexity of a motion planning
problem is often expressed in terms of geometric complex-
ity (of the obstacles and moving object) and the number of
degrees of freedom (DOFs) of the moving object. This is
reasonable for methods that are based on the geometry of
obstacles such as visibility graphs, Voronoi diagrams and
exact cell decompositions [9]. In practice, these methods
fail when the geometric complexity is high or when there
are many (> 4) DOFs or many primitives involved.

Complexity analysis is also employed for sampling based
planners. Analyses for these planners use the coverage of
the free configuration space (Cfree) with (hyper)spheres
which results in exponential complexity bounds, see e.g.
[10]. In practice though, the PRM can successfully handle
this curse of dimensionality because it is reachability based,
i.e. a sample can often be connected to other samples that
are far away because they can be reached by the local
planner. For example, if each sample ’sees’ a large part
of Cfree, then Cfree will be covered and connected quickly.
This does not follow from the standard analysis that only
allows a sample to be connected to its adjacent neighbors.
Another reason why the PRM method is fast is because
its primitive operations are simple. Checking samples for
collisions does not require an explicit representation of the
configuration space (whose combinatorial complexity can
be very high). When a path or a sample is checked for
collisions, only the obstacles in the vicinity are involved.
As a result, ’redundant’ primitives on the other side of the
scene do not affect the performance. These properties lead
to a favorable performance that is proportional to some
measure of difficulty for the problem to be solved.

In this paper, we will study properties of commonly
used techniques in sampling based planning by performing
a reachability analysis which emphasizes the notions of
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coverage and maximal connectivity. These concepts are
introduced in section II. In section III, we describe the
experimental setup. In sections IV, V and VI we analyze
various techniques, leading to a better understanding of
these techniques. We observe that the main difficulty is
not getting Cfree covered, but getting the nodes connected,
especially when the problem gets more complicated. We
conclude in section VII that a hybrid sampling technique
and a new potential field local planner we propose lead to
a better performance of the PRM approach.

II. COVERAGE AND MAXIMAL CONNECTIVITY

The PRM was designed to be a multiple shot planner
which enables fast querying. This goal can be reached
by creating a graph G = (V, E) that covers Cfree and
captures its connectivity. We define coverage and maximal
connectivity as follows:

Definition 1 (coverage). G covers Cfree when each config-
uration c ∈ Cfree can be connected using the local planner
to at least one vertex v ∈ V .

Definition 2 (maximal connectivity). G is maximally con-
nected when for all vertices v′, v′′ ∈ V , if there exists a
path in Cfree between v′ and v′′, then there exists a path
in G between v′ and v′′.

Coverage ensures that every query (which consists of a
start and goal configuration) can be directly connected to
the graph, as is required to solve the problem. If there exists
a path (in Cfree) between the start and goal configuration,
then maximal connectivity ensures that a path between
them can be found in the graph. Note that the path in the
graph and the path in Cfree do not have to be in the same
homotopic class.

The problem has been solved if both criteria have been
satisfied. Also other criteria are of course imaginable, for
example creating a graph that optimizes path quality (see
e.g. [11]), but we will not consider them here. A number
of authors have studied the use of PRM for solving single
motion planning queries. For single shot problems coverage
does not play an important role and our analysis is less
relevant.

We use coverage and connectivity as an analysis tool
to gain insight in sampling based methods. Our goal is
to determine for the various techniques how long it takes
before Cfree has been covered and connected. Because this
would be rather complex for a continuous (high dimen-
sional) configuration space C, we discretize C (for problems
that arise in 2D and 3D C-spaces): for each cell (whose
dimensions are determined by the step size used by the
local planner) in C we check whether the placement of
the robot for that cell is free and store this information in
an array. When a vertex v is added to V , its discretized
reachability region is calculated by checking for each free
cell c if there exists a local path between v and c. All
free cells that can be connected by the local planner are
labeled with a unique region number. If each free cell has
been covered by at least one region, the coverage criterion

Fig. 1. The coverage and maximal connectivity criteria have been met:
the reachability regions of the white vertices cover the complete free space
and are connected via the black vertex

(a) A star-shaped 2D reach-
ability region

(b) A 3D reachability region for a ma-
nipulator arm with three DOFs

Fig. 2. Complicated 2D and 3D reachability regions

has been met. The connectivity criterion is checked as
follows: for each added vertex v ∈ V we calculate the set
of vertices W ∈ V to which it can be connected through
the grid of free cells. Then we add all combinations of v
with W to a connectivity list. If there exists a path in G
for each connection in the connectivity list then Cfree is
maximally connected. Please realize that these calculations
are only done to compare planning techniques. They should
of course never be used in the actual planners because they
are too slow for this.

Fig. 1 shows an environment whose free space is covered
by two (white) vertices and is connected via one extra
(black) vertex. The reachability region for the upper left
vertex has been drawn. Each configuration in this region
can be connected with a straight-line local planner to the
vertex, so a three-node graph suffices to solve this problem.
The shape of a reachability region can be complicated. Fig.
2(a) shows a region for a 2D environment with many pins
and Fig. 2(b) shows a 3D region for the manipulator arm
of Fig. 6 with three DOFs.

III. EXPERIMENTAL SETUP

All techniques were integrated in a single motion plan-
ning system called SAMPLE (System for Advanced Mo-
tion PLanning Experiments), implemented in Visual C++
under Windows XP. SAMPLE automates conducting exper-
iments, i.e. statistics are automatically generated and pro-
cessed, decreasing the chance for errors. All experiments
were run on a 2.66GHz Pentium 4 processor with 1 GB
internal memory. We used Solid as basic collision checking
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(a) An simple environment
that consists of randomly
created polygons. The robot
is a small square.

(b) A narrow passage in 2D.
The robot is a square that
precisely fits in the narrow
passage.

Fig. 3. Scenes used to test the sampling techniques

package [12].
The statistics were all averaged over 100 independent

runs. When we performed the experiments, we noted that
some had a very large variance which makes results based
on averages less usefull. In such cases we discarded the
experiments and conducted them again. Nevertheless, it is
important to recognize that some PRM choices can lead
to high variances. Fortunately, these can be decreased by
restarting the PRM once a while [13].

For each experiment, we ran the technique until both
coverage and maximal connectivity had been achieved. We
record the following statistical data that will be used below
to compare the approaches. Let n be the number of regions
ri ∈ R discovered so far. We record statistics regarding the
number of regions on the moment that Cfree was covered
and the moment that Cfree was maximally connected (after
the problem has been solved). Furthermore, let |ri| be the
number of cells in region i and |Cfree| the total number of
free cells.

Definition 3 (number of regions). Each v ∈ V implies a
new region. The number of regions is denoted by n.

Definition 4 (average size of regions). The average size
of the regions is the total number of cells contained in
all regions divided by the number of regions; this number
is normalized by dividing it by the number of free cells:
1

n

∑
n

i=1
|ri|/|Cfree|.

Also the construction time, number of samples, number
of collision checks and number of local planner calls are
recorded. Because we are not interested in the time spent
on checking the two criteria, we did not include this amount
of time in the construction time.

IV. SAMPLING

The PRM has been expressed as a sampling based
motion planning method. In this section we will study the
behavior of different sampling techniques. Three categories
of sampling techniques have been proposed: uniform, non-
uniform and hybrid techniques. For each category we
choose a representative, for the uniform technique we
choose ’halton’, for non-uniform ’gaussian’ and for hybrid
we choose ’bridge test’. See e.g. [13] for an extensive elab-
oration on these techniques. We will compare their behavior
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Fig. 4. Statistics for the simple environment of Fig. 3(a)
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Fig. 5. Statistics for the narrow passage environment of Fig. 3(b)

by considering the experiments we performed on the two
environments depicted in Fig. 3. These environments are
representative for many different motion planning problems
so we expect the observations to apply rather general. The
first environment consists of 16 polygons through which
a small robot must navigate. It should be easy to create
a maximally connected roadmap for this environment,
because all possible reachability regions can ’see’ a large
portion of the free space. The second environment has been
designed to be more difficult, i.e. it contains a narrow
passage though which a square robot has to move. The
passage is surrounded by two large open spaces. The results
of the experiment are visualized in Fig. 4 and Fig. 5.

The first category of sampling techniques compromises
the uniform techniques, such as random, grid, cell-based
and halton sampling. It is well known that these techniques
can have difficulties with the narrow passage problem [13].
While halton performed well in the simple environment, it
had troubles in finding its way through the narrow passage:
its uniform distribution created too many samples in the
two wide open areas and too few in the narrow passage.
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Because some samples are needed to cover the space in the
narrow passage and the chance is small to sample there,
the total number of regions was higher for this method
than for the other methods. Many researchers recognized
that an opposite behavior is needed: few samples should
be created in a large open space and more samples in
a narrow passage, which led to the development of non-
uniform sampling techniques.

The second category biases the sampling distribution.
Some techniques try to tackle the narrow passage problem
by adding more samples in difficult regions of the envi-
ronment, i.e. they filter out samples that probably do not
contribute to the coverage and maximal connectivity of the
roadmap. Examples include gaussian and obstacle-based
sampling. The gaussian technique needed fewer samples
than halton in the narrow passage environment. The reason
for this is that relatively more samples are concentrated in
the difficult areas of the C-space, which resulted in faster
coverage. Also, the open space was fewer times covered
(due to the Gaussian distribution of the samples). As this
distribution generates fewer samples in open space and
more near obstacles, it can though be difficult to connect
them. This explains why it took four times as many regions
to connect the space compared to covering it.

Recently, hybrid techniques (such as the bridge test) have
been proposed which combine the strengths of the previous
two categories. The bridge test concentrates samples in
difficult areas but it also generates some samples in open
areas. This results in a faster connectivity. We think that
also other combinations of existing sampling strategies
could be suited to serve as a hybrid technique.

By looking at the charts of Fig. 4 and Fig. 5, we
can make an important observation. For the simple en-
vironment, the difference between the moment that Cfree

is covered and the moment that Cfree is maximally con-
nected is very small. In contrast, for the narrow passage
environment this difference is much larger. It seems that
covering Cfree is not the problem, but getting Cfree max-
imally connected is more difficult when the environment
contains a narrow passage. To make this more clear, we
considered two versions of an environment containing a
narrow passage: the first variant was the 3D manipulator
environment depicted in Fig. 6. The second variant was the
same as the first one, except that we made the passages
narrower by scaling the workspace in the y-direction, i.e.
the workspace became 25% less high. Concerning the first
variant, all sampling strategies needed about 150 regions
to cover the space. Only a few more regions were needed
to connect the space. While the second variant needed the
same number of regions to cover the space, the number
of regions to connect the space now became five times
as large. Hence, connecting samples near or in narrow
passages is more difficult. The important observation that
can be made is that the narrow passage problems is not so
much caused by coverage but by connecting the nodes.
Rather than concentrating on more clever sampling, it
might be beneficial to spend more effort on connecting

Fig. 6. Manipulator arm with three DOFs

nodes in difficult regions. Actually, already one of the first
papers on PRM [7] did this by trying to connect difficult
nodes in a second phase using some bouncing strategy. In
section VI we will show how more powerful local planners
can be used for this as well. The challenge is to apply such
a connection strategy only when and where it is necessary.

Ideal sampling strategy

An ideal sampling strategy should create a small amount
of samples that covers and connects Cfree. The smaller
the number of regions, the less time is needed to connect
those regions which is the most time consuming step in
the PRM. However, some overlap is wanted because this
simplifies creating connections between them. This goal
can be achieved by creating a hybrid technique which filters
out samples that do not contribute to extra coverage or max-
imal connectivity. The visibility sampling technique tries to
achieve this by throwing away nodes [14]. The approach
though is too strict and should probably be combined with
other sampling techniques. We are currently investigating a
different sampling strategy that uses workspace information
as a guide to creating a small set of samples that covers
and maximally connects Cfree.

V. NEIGHBOR SELECTING STRATEGY

The neighbor selecting strategy specifies for a particular
sample how a set of neighbor samples is chosen to which it
is connected. The goal of the strategy is to make the graph
connected as fast as possible. A strategy usually selects
neighbors based on (a combination of) the following crite-
ria: maximal distance and maximal number of connections
tried. We study the effects of different choices for these
criteria.

Because a neighbor strategy selects neighbors to which
a sample must be connected (with a local planner), a
distance metric must be defined. In this paper we use
d = dt + dr where dt denotes the translational distance
of the origin of the moving object and dr denotes the
distance traveled by the point of the robot furthest from
its origin, while performing rotation. It is recognized that
the maximum connection distance should not be too small
nor too large: although making long connections seems to
be important for the PRM, it is in general not useful to
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Fig. 7. Test environment for the neighbor selecting strategy
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Fig. 8. Relation between the maximal connection distance and running
time

make too long connections since the chance of success
for such connections is small while the collision checks
required for testing the local path are expensive. On the
other side, a very small connection distance will always
require an exponential number of samples. In the following
experiment, depicted in Fig. 7, we vary the maximal
connection distance from 5 to 40 (which is the diameter
of the environment). It is clear that, as the maximum
distance gets larger, the average size of the reachability
regions increases and the number of regions needed to
solve the problem decreases. So the number of samples
required to solve the problem decreases while the time
required per sample increases. The relation between the
maximum distance and time is plotted in Fig. 8. It shows
that there is some optimal tradeoff. Unfortunately, this
value is dependent on the environment: if the environment
consists of small rooms, a small connection distance is
preferable and vice versa. When we make the connection
distance very small, PRM starts looking like grid based
techniques in which nodes are only connected to their direct
neighbors. Fig. 8 shows that this considerably increases the
running time. Indeed, the power of PRM is that it can make
longer connections.

The second criterion is the maximal amount of connec-
tions tried in each step. Also for this criterion, there seems
to be an (environment dependent) optimal value. Note that
the number of connections does not influence the coverage,
but has a clear influence on the connectivity. If the number
of connections is too small, it might be hard to get the free
space maximally connected because much luck is needed to
select those few regions to which a connection is possible.
If connections are tried with too many nodes, Cfree will
be maximally connected using less regions, but this might
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Fig. 9. Influence of the maximal number of connections on the number
of regions and running time

negatively influence the running time since testing those
connections is expensive. In our experiments, we varied the
maximum number of connections. The results are shown
in Fig. 9. Indeed, when only a few connections are tried,
more regions are needed to get the roadmap maximally
connected. Making more and more connections does not
seem to be useful, since the number of regions needed to
get Cfree covered and maximally connected is at a certain
point constant while the running time does increase.

In conclusion, the optimal parameters for the connec-
tion distance and maximum number of connections are
dependent of the scene. We expect that sampling based
planners can gain some performance if these parameters
are made adaptive. For example, in the process of sampling
the number of regions increases, so the expected number
of regions within the same distance increases. Hence, a
constant distance results in creating more (useless) connec-
tions which can be avoided by decreasing the connection
distance over time.

VI. LOCAL PLANNERS

In the previous sections we showed that it is sometimes
difficult to connect certain regions while the coverage
criterion has already been met. If we were able to create
a local planner that is more powerful than the straight-
line local planner (SLLP), then we could decrease the
gap between the moment of coverage and maximal con-
nectivity, improving the total running time. Although this
new planner might be more expensive, a careful tradeoff
between the power and speed of the planner should lead
to a better performance of the PRM.

To be successful, this planner should preferably satisfy
the following two criteria. First, it must cover at least the
same volume as the SLLP does, i.e. it must subsume each
reachability region that is created using the SLLP. If the
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regions are larger we expect that the space is covered faster.
More importantly, because of the larger expected overlap
between the regions, they will sooner become maximally
connected. Second, the planner should be fast enough to
be useful in practice. This can be achieved by letting the
planner behave as a SLLP if the connections can be made
in a straight line; if the straight-line connection results in a
collision, then a more clever approach should be employed.
These criteria are satisfied by the simple potential field
local planner (PFLP) we will describe below.

In general, a potential field method calculates distances
between the robot and obstacles to define a force vector on
the robot [9]. These operations make a PFLP expensive in
comparison to the simple SLLP. To mitigate this effect, we
use a modified version of the potential field planner used
in [7].

It is implemented as follows. The planner tries to make
small steps on the straight line towards the goal, as does
the SLLP. This assures that making such connection will
be equally expensive as the SLLP. When the robot walks
into an obstacle, the planner checks a step from the last
collision-free configuration in a number of directions on the
hemisphere oriented towards the goal. The most promising
step is considered first. A local minimum is easily detected
when all possible steps fail.

While this planner is more powerful, it will be more
expensive than the SLLP in terms of consumed time. A
second drawback is that a new parameter is introduced that
has to be optimized, i.e. the number of directions on the
unit sphere has to be chosen. In 2D we choose 8 directions
and in 3D we choose 26 directions on the unit sphere and
select only those that bring the robot closer to the goal. It is
a tradeoff between the accuracy and speed: the higher this
number, the larger the reachability region, but the slower
the planner is. The number of directions we choose seems
to work reasonably, but it is in essence arbitrary.

Fig. 10 shows two different environments for which the
reachability region for a particular node, using the SLLP
and PFLP is drawn. The first environment consists of 40
polygons through which a small square robot must navi-
gate. The first picture shows a region in this environment
that can be reached by a SLLP. While reasonably long
connections can be made by this planner, the reachability
region of the PFLP significantly extends the area to which
connections can be made. This is shown in the second
picture. The second environment consists of a narrow
passage through which the same robot must maneuver.
Besides the advantage of covering larger regions, the PFLP,
in contrary to the SLLP, is able to find its way trough the
narrow passage. This allows connections to be made from
one side of the passage to the other one.

To test this approach further, we created two extra 3D
environments, see Fig. 11. The Hole environment has two
open spaces separated by a wall with a narrow hole in it.
The second environment (Corridor) consists of one long
corridor with four hairpins. In all experiments the robot
is a small cube that can only translate. We expect that

Fig. 10. Reachability regions for straight-line (left column) and potential
field local planner (right column).

(a) Hole (b) Corridor

Fig. 11. Two extra environments used for testing the local planners

the PFLP outperforms the SLLP in the two environments
depicted in Fig. 10 and the Hole environment, because the
reachability regions will be larger than those created with
the SLLP. The PFLP will also be able to easily connect the
two open spaces in the Hole environment. In the Corridor
environment though, the PFLP may only have an advantage
in the hairpins; in other situations, much ineffectual work
might be done before it is concluded that no connections
exist. This is expected to have a negative effect on the
running time.

The results are shown in Table I, II III and IV. It shows
the number of regions and the average size of the regions,
after the moment of coverage (between brackets) and after
maximal connectivity. Also, the running times (in ms) using
the two local planners are stated.

Three observations can be made from these results. First,
for all four environments, the results show, as expected, that
the number of regions needed to cover the space are lower
for the PFLP, which is caused by the regions being larger.
Second, the space was much faster maximally connected.
For example, the Clutter environment contained few local
mimima for the PFLP which resulted is large regions: the
average size of the regions created with the PFLP was 58%
of Cfree, compared to only 6% for the SLLP. In the Hole
environment, the PFLP had no problems connecting the
two open spaces via the narrow passage, i.e. it needed only
four regions on average. The Corridor environment was
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TABLE I
STATISTICS FOR SLLP AND PFLP IN THE 2D CLUTTER

ENVIRONMENT

#regions size region time (ms)
SLLP (173) 185 (0.06) 0.06 507
PFLP (11) 11 (0.58) 0.58 45

TABLE II
STATISTICS FOR SLLP AND PFLP IN THE 2D NARROW PASSAGE

ENVIRONMENT

#regions size region time (ms)
SLLP (51) 184 (0.41) 0.42 3678
PFLP (5) 6 (0.54) 0.55 39

also faster connected (against our expectations), which is
caused by the larger regions whose volume is on average
33% of the free space (compared to 26% for the SLLP).
Third, the difference between the moment of coverage and
moment of maximal connectivity was much smaller for the
PFLP than for the SLLP. This is also caused by the fact that
the regions have a larger size. Because the space is much
faster connected, the PFLP turns out to be an efficient local
planner.

Ideally, a local planner should be simple in an ’easy’ part
of the C-space and more advanced in more ’difficult’ parts.
We have seen that a potential field local planner combines
those requirements: easy connections (i.e. straight-line con-
nections) are made at the expense of a marginal overhead,
while difficult connections (i.e. connections that avoid
obstacles) can actually be made. Experiments showed that
sampling based methods can benefit from more powerful
local planners such as the potential field local planner.
Because the local planner is slower, the time improvement
is in general less dramatic than the improvement in number
of regions required. We believe though that one could im-
prove the time even further. We are currently investigating
techniques that can identify difficult regions in the space,
which can be used by employing the most appropriate local
planner. This should lead to a better performance of the
PRM.

VII. CONCLUSION

While classical complexity analysis ends up with expo-
nential complexity bounds, sampling based planners can
successfully handle this curse of dimensionality in practice
because they are reachability based. In this paper we
presented a reachability analysis for these planners. This
led to the insight that not coverage is the main problem but
getting the nodes connected, especially when the problems
get more complicated, i.e. a narrow passage is present. The
narrow passage problem can be tackled by incorporating a
hybrid sampling strategy that aims at concentrating samples
in difficult areas, but it should also generate some samples
in large open areas. Another strategy to get Cfree faster
maximally connected is to employ a more powerful local
planner. We presented a potential field local planner that
creates larger reachability regions which eases making con-

TABLE III
STATISTICS FOR SLLP AND PFLP IN THE HOLE ENVIRONMENT

#regions size region time (ms)
SLLP (5) 40 (0.51) 0.51 106
PFLP (4) 4 (0.57) 0.57 14

TABLE IV
STATISTICS FOR SLLP AND PFLP IN THE CORRIDOR ENVIRONMENT

#regions size region time (ms)
SLLP (19) 86 (0.22) 0.26 264
PFLP (10) 21 (0.34) 0.33 199

nections. Also this planner is better able to find the entry of
a narrow passage, decreasing the number of regions needed
to get the nodes connected. Experiments showed that this
approach leads to a better performance of sampling based
methods.

We are currently investigating how to best extend the
potential field local planner to higher dimensions and
how to use information of the workspace as a guide to
more clever sampling and neighbor selecting strategies.
Preliminary results show that considerable performance
gains can be achieved.
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[14] C. Nissoux, T. Siméon, and J.-P. Laumond, “Visibility based prob-
abilistic roadmaps,” in IEEE Int. Conf. on Intelligent Robots and
Systems, 1999, pp. 1316–1321.

412


	MAIN MENU

