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Abstract

In the last fifteen years, sampling-based planners like the Probabilistic Roadmap Method (PRM) have proved to be successful in solving
complex motion planning problems. While theoretically, the complexity of the motion planning problem is exponential in the number of degrees
of freedom, sampling-based planners can successfully handle this curse of dimensionality in practice. We give a reachability-based analysis for
these planners which leads to a better understanding of the success of the approach. This analysis compares the techniques based on coverage and
connectivity of the free configuration space. The experiments show, contrary to general belief, that the main challenge is not getting the free space
covered but getting the nodes connected, especially when the problems get more complicated, e.g. when a narrow passage is present. By using
this knowledge, we can tackle the narrow passage problem by incorporating a refined neighbor selection strategy, a hybrid sampling strategy, and
a more powerful local planner, leading to a considerable speed-up.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Motion planning; PRM; Reachability; Sampling; Node adding; Potential field local planner

1. Introduction

A central problem in robotics is planning a collision-free
path for a moving robot in a rigid environment. In 1979, Reif
showed that path planning for a polyhedral robot among a
finite set of polyhedral obstacles was PSPACE-hard [1]. Four
years later, Schwartz and Sharir proposed a complete general-
purpose algorithm based on an algebraic decomposition of the
configuration space of any fixed dimension d. When the space
of collision-free placements is a set defined by n polynomial
constraints of maximal degree m, a path can be computed
by an algorithm whose time complexity is doubly exponential
in d and polynomial in both n (geometrical complexity) and
m (algebraic complexity) [2]. In 1986, this algorithm was
improved to a single exponential time algorithm [3]. Due to
their complexity, these algorithms have never been used in
practice. In 1988, Canny found a PSPACE algorithm for the
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general mover’s problem and showed that it was PSPACE-
complete [4], showing that exact planners have little chance
of solving complicated problems. In 1991, Barraquand created
the Randomized Path Planner, which was an artificial potential
field planner [5]. This planner did not require the construction
of an explicit description of the configuration space. Although
this planner was much faster than previous approaches, it
could get stuck at a local minimum of the potential function.
One year later, different researchers independently devised the
Probabilistic Roadmap Method (PRM), which was successfully
able to deal with many motion planning problems [6–8]. This
success is due to its wide applicability and good performance:
if a solution to a problem is easy, then it seems that the PRM can
solve it very fast.

The PRM consists of two phases: a construction and a query
phase. In the construction phase, a roadmap graph G = (V, E)

is constructed, approximating the motions that can be made
in the (static and known) environment. Globally speaking, the
PRM samples the configuration space C (that is, the space of
all possible placements for the robot in the environment) for
collision-free placements by using a collision checker. These
are added as nodes to the graph. Pairs of promising nodes are
chosen in the graph and a simple local planner is used to try to
connect such placements with a path. If they can be connected,

0921-8890/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2007.06.002



Author's personal copy

R. Geraerts, M.H. Overmars / Robotics and Autonomous Systems 55 (2007) 824–836 825

then an edge between the nodes is added to the graph. This
process continues until the graph reflects the connectivity of the
free configuration space Cfree (that is, the space of all possible
free placements for the robot). In the query phase, the start and
goal placements are connected to the graph. The path is usually
obtained by a Dijkstra’s shortest path query.

The basic PRM leaves many details to be filled in, in
particular how to sample the C-space, which local planner to
use and how to select promising pairs of nodes. Over the past
fifteen years, researchers have investigated these aspects and
developed many improvements over the basic scheme. In [9],
we compared and analyzed many of these aspects.

The (analysis of the) complexity of a motion planning
problem is often expressed in terms of geometric complexity
(of the obstacles and robot) and the number of degrees of
freedom (DOFs) of the robot. This is reasonable for methods
that are based on the geometry of obstacles such as visibility
graphs, Voronoi diagrams and exact cell decompositions [10].
In practice, these methods fail when the geometric complexity
is high, or when many (>4) DOFs or many primitives are
involved.

Complexity analysis is also employed for sampling-based
planners. Analyses for these planners use the coverage
of Cfree with (hyper)spheres which results in exponential
complexity bounds, see e.g. [11]. Yet, in practice, the PRM can
successfully handle this curse of dimensionality because it is
reachability-based, i.e. a sample can often be connected to
other samples that are far away because they can be reached
by the local planner. For example, if each sample can reach a
large part of Cfree by using a local planner, then Cfree will be
covered and connected quickly. This does not follow from the
standard analysis that only allows a sample to be connected to
its adjacent neighbors. Another reason why the PRM is fast is
because its primitive operations are simple. Checking samples
for collisions does not require an explicit representation of the
configuration space (whose combinatorial complexity can be
very high). When a path or a sample is checked for collisions,
only the obstacles in the vicinity are involved. As a result,
‘redundant’ primitives on the other side of the environment do
not affect the performance. These properties lead to a favorable
performance that is proportional to some measure of difficulty
for the problem to be solved.

Another way to analyze sampling-based planners is to
measure the time it takes to solve a relevant witness query [9].
This however does not provide information on the quality of
the roadmap, i.e. there is no guarantee that every possible
query can be solved with this roadmap. In this paper, we
evaluate the planners based on solving every possible query
by performing a reachability analysis which emphasizes the
notions of coverage and maximal connectivity of Cfree. By
inspecting the roadmap when Cfree is covered and when Cfree is
maximally connected, we obtain a better understanding of these
techniques. These concepts are introduced in Section 2. In
Section 3, we describe the experimental setup. In the following
three sections, we analyze neighbor selection, sampling and
local planning techniques. The analysis makes it clear that the
PRM derives its strength by the ability to make long and many

connections. We observe that the main difficulty is not getting
Cfree covered, but getting the nodes connected, especially when
the problem gets more complicated. We tackle the connectivity
problem by proposing a local planner that is more powerful
than the standard straight-line local planner. We conclude in
Section 7 that a refined neighbor selection strategy, a hybrid
sampling technique and a new potential field local planner lead
to a better performance of PRMs.

2. Coverage and maximal connectivity

The PRM was designed to be a multiple shot planner which
enables fast querying. This goal can be achieved by creating
a graph G = (V, E) that covers Cfree and captures its
connectivity. We define coverage and maximal connectivity as
follows:

Definition 1 (Coverage). G covers Cfree when each configura-
tion c ∈ Cfree can be connected using the local planner to at
least one node ν ∈ V .

Definition 2 (Maximal Connectivity). G is maximally con-
nected when for all nodes ν, ν′

∈ V , if there exists a path in
Cfree between ν and ν′, there exists a path in G between ν and
ν′.

Coverage ensures that every query (which consists of a start
and goal configuration) can be connected directly to the graph,
as is required to solve the query. If there exists a path (in
Cfree) between the start and goal configuration, then maximal
connectivity ensures that a path between them can be found in
the graph. Note that the path in the graph and the path in Cfree do
not have to be in the same homotopic class.

If both the criteria are satisfied, then a path can always
be found for every query. Additional criteria are of course
imaginable, for example creating a graph that optimizes path
quality (see e.g. [12]), but we will not consider them here.
Several authors have studied the use of PRM for solving single
motion planning queries. For single shot techniques such as [13,
14], coverage does not play an important role, and, our analysis
is less relevant.

We use coverage and connectivity as an analysis tool to gain
insight into sampling-based methods. Our goal is to determine
for various techniques how long it takes before Cfree has been
covered and connected. Because this would be rather complex
for a continuous (high-dimensional) configuration space C, we
discretize C (for problems that have 2D and 3D C-spaces): for
each cell (whose dimensions are determined by the step size
used by the local planner) in C, we check whether the placement
of the robot for that cell is free and store this information in an
array. When a node ν is added to V , its discretized reachability
region is calculated by checking for each free cell c in the array
whether there exists a local path between ν and c. All free cells
that can be connected by the local planner are labeled with a
unique region number. If each free cell has been covered by
at least one region, the coverage criterion has been met. The
connectivity criterion is verified as follows: for each added node
ν ∈ V we calculate the set of nodes W ⊆ V to which it
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Fig. 1. The coverage and maximal connectivity criteria have been met. The
reachability regions of the white nodes cover the complete free space and are
connected via the black node.

can be connected through the grid of free cells. Then we add
all combinations of ν with W to a connectivity list. If there
exists a path in graph G for each connection in the connectivity
list then Cfree is maximally connected. Please realize that these
calculations are only done to compare planning techniques.
They are not part of the actual motion planning algorithm, and,
hence, are not taken into account when reporting the running
times.

As an example, Fig. 1 shows an environment whose free
space is covered by two (white) nodes and is connected via
one extra (black) node. Hence, this three-node graph suffices
to solve this problem. The reachability region for the upper left
node has been drawn. Each configuration in this region can be
connected with a straight-line local planner to the node. The
shape of a reachability region can be complicated. Fig. 2(a)
shows a region for a 2D environment with many small obstacles
and Fig. 2(b) shows a 3D region for the manipulator arm
depicted in Fig. 3(f) with three rotational DOFs.

3. Experimental setup

All experiments were conducted in a single motion planning
system called SAMPLE (System for Advanced Motion Planning
Experiments), implemented in Visual C++ under Windows XP.
SAMPLE automates the conduction of experiments, i.e. statistics
are automatically generated and processed, decreasing the
chance for errors. The experiments were run on a 3 GHz
Pentium 4 processor with 1 GB internal memory. We used Solid
as basic collision checking package [15].

The statistics were all averaged over 100 independent runs.
We used the six environments depicted in Fig. 3. The

environments have the following properties:

Clutter 1 The 2D cluttered environment consists of 16
polygons through which a small robot must navigate.
It should be easy to create a maximally connected
roadmap for this environment, because each sample
will cover a large portion of the free space. The robot
is a square with two translational degrees of freedom
(DOFs).

Clutter 2 We added 24 polygons to the first environment to
reduce the average size of the regions. Again, the robot
is a translating square.

Table 1
Information on the configuration spaces of the environments

DOF range Step size Number of cells

Clutter 1 40 × 40 0.5 80 × 80
Clutter 2 40 × 40 0.5 80 × 80
Narrow passage 40 × 40 0.5 80 × 80
Hole 40 × 40 × 40 2.0 20 × 20 × 20
Corridor 40 × 8 × 40 2.0 20 × 4 × 20
Manipulator 6.1 × 0.6 × 0.7 0.05 122 × 12 × 14

Narrow passage This environment has been designed to be
more difficult. It contains a narrow passage through
which a square has to move. The passage is surrounded
by two large open spaces. The robot is a translating
square.

Hole The Hole environment has two large open spaces
separated by a wall with a narrow hole in it. The robot
is a small cube that can only translate. Each sample
will cover a large portion of Cfree.

Corridor A small translating cube has to move through a 3D
winding corridor consisting of four hairpins. The walls
of the corridor will limit the size of the reachability
regions.

Manipulator This 3D environment features a robot arm with
three rotational DOFs which operates in a constrained
workspace. The C-space has a long passage.

We discretized the C-space of each environment.1 The level
of discretization can be found in Table 1. Consider for example
the Clutter 1 environment: The ranges of the translational
DOFs of the robot are [0 : 40] × [0 : 40]. The step size used
by the local planner is 0.5. Hence, the C-space is discretized
with 80 × 80 cells.

We calculate the distance between two configurations q and
r by summing the weighted partial distances for each DOF 0 ≤

i < n that describes the configurations, i.e.

d(q, r) =

√√√√n−1∑
i=0

(wi |qi − ri |)2.

We set the weights wi for the translational DOFs to 1 and set the
weights for the rotational DOFs to 6.

For each experiment, we ran the PRM until both coverage
and maximal connectivity had been achieved and recorded the
following statistical data.

Definition 3 (Number of Regions). Each node ν ∈ V in the
graph implies a new region. The number of regions then equals
to the cardinality of V .

Definition 4 (Average Size of the Regions). Let k be the number
of regions ri discovered so far. Furthermore, let |ri | be the
number of cells in region i and |Cfree| the total number

1 We did not use problems with more than three DOFs because the analysis
of coverage and connectivity would require too much memory. However, as the
C-spaces of the environments are representative of many problems, we think
that the results also apply to problems involving more than three DOFs.
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(a) A 2D reachability region. (b) A 3D reachability region for the robot of Fig. 3(f).

Fig. 2. Complicated 2D and 3D reachability regions.

(a) Clutter 1. (b) Clutter 2. (c) Narrow passage.

(d) Hole. (e) Corridor. (f) Manipulator.

Fig. 3. The six test environments.

of free cells. Then the average size of the regions equals:
1
k

∑k
i=1 |ri |/|Cfree|.

We recorded the number of regions and the average size
of the regions at two moments: at the moment that Cfree was
covered and at the moment that Cfree was maximally connected
(after Cfree was covered). We also recorded the running time
after both the criteria had been satisfied. We give an indication
of the dispersion of the running times by a box plot. Each plot
consists of a box, one large and two small horizontal lines and
a vertical line. The box represents the middle 50% of the data,
the large horizontal line represents the average, the small lines
represent the average ± the standard deviation and the vertical
line represents the minimum and maximum value.

4. Neighbor selection strategy

The neighbor selection strategy specifies for a particular
sample how a set of neighbor samples is chosen to which

it is connected. The goal of the strategy is to make the
graph connected as fast as possible. A strategy usually selects
neighbors based on a combination of the following criteria:
the maximum connection distance, the maximum number of
connections tried, and the node adding strategy. We chose
the nearest-k node adding strategy as this method performed
reasonably well in different environments [9]. This strategy
tries to connect the new configuration to the nearest k nodes in
the graph that lie close enough. We used the optimal sampling
strategy for each environment (see below). That is, we used
Bridge sampling for the Narrow passage environment. For the
other ones, we used Halton sampling. We study the effects
of different choices for the first two criteria on the six test
environments.

4.1. Maximum connection distance

The maximum connection distance should not be too
small or too large. A very small connection distance will
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Fig. 4. The average size of the regions corresponding to the optimal neighbor selection parameters.

Fig. 5. Influence of the maximum connection distance on the running time and the number of regions required to get the free space covered and maximally connected
in the 2D environments.

always require an exponential number of samples (in the
number of DOFs) which increases the running times a lot. In
addition, it is not useful to try too long connections since
the chance of success for such connections is small while
the collision checks required for testing the local path are
expensive.

In each of the following experiments, we varied the maxi-
mum connection distance from a small value (close to zero) to
a large value. The maximum number of connections was set to
75 (see below). Fig. 5 shows the results for the 2D environments
and Fig. 6 shows the results for the 3D environments.

When we make the connection distance very small, the
PRM starts looking like grid-based techniques in which samples
are only connected to their direct neighbors. The figures show
that this considerably increases the (average and variance of
the) running time. Furthermore, there is a large difference in the
moment of coverage and the moment of maximal connectivity.
This shows that a small connection distance complicates the
making of connections.

It is clear, as the maximum distance gets larger, that the
average size of the reachability regions will increase (up to
some value), and hence, the number of samples needed to
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Fig. 6. Influence of the maximum connection distance on the running time and the number of regions required to get the free space covered and maximally connected
in the 3D environments.

solve the problem will decrease. In other words, the number of
samples required to solve the problem decreases when the time
required per sample increases. The results show that there is
some optimal trade-off which is dependent on the environment
(and metric). If the size of a region (that corresponds to a
particular sample) is small, then the sample can be connected
to other samples to which the distance is small, and vice versa.
In general, if the average reachability of the samples is low,
then a small connection distance is preferable and vice versa.
See Fig. 4 which shows the average size of the regions for
the six environments corresponding to the optimal neighbor
selection parameters. We can make two observations. First, the
larger the average size of the regions, the smaller the growth
of the running time when the maximum connection distance
increases. Second, the larger the average size of the regions, the
larger the value for the optimal maximum connection distance.
This information can be used to estimate the (local) optimal
maximum connection distance. For example, when a sample
can be connected to other samples at a large distance, then the
average size of its reachability region is large. Hence, using
a large maximum connection distance is a good choice for
choosing neighbors. In addition, few samples should be created
near the sample.

The results confirm that the PRM derives its strength from
making long connections. While a very small connection
distance has a dramatic negative impact on the running time,
a large value has only little impact, especially when the average
size of the reachability regions is large.

4.2. Maximum number of connections

The second analyzed criterion for selecting neighbors is the
maximal number of connections attempted to connect a node.
In this section we will show the relation between the maximal
number of connections and the coverage and connectivity.

The number of attempted connections does not influence the
coverage, but has a clear influence on the connectivity. If the
number of connections is too small, it might be hard to get the
free space maximally connected because the chance is small
that those few samples are selected to which a connection is
possible. If connections are attempted with (too) many nodes,
Cfree will become maximally connected using less regions.
Nevertheless, this might negatively influence the running time
since testing those connections is expensive.

In our experiments, we varied the maximum number of
connections (and used the optimal values for the maximum
connection distance). Fig. 7 shows the results for the 2D
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Fig. 7. Influence of the maximum number of connections on the running time and the number of regions in the 2D environments.

environments and Fig. 8 shows the results for the 3D
environments. Indeed, when only a few connections are tried,
more regions are needed to get the roadmap maximally
connected. Making more and more connections does not seem
to be useful because the number of regions needed to get
Cfree covered and maximally connected remains constant at a
certain maximum number of connections. However, as a large
maximum number of connections (e.g. 75) does not affect the
running time much, we recommend to use such a high value.
This can be explained as follows. First, we observe that setting
the maximum number of connections larger than the expected
number of regions (that satisfies the coverage and connectivity
criteria) has no effect on the running time. Consider for example
the Clutter 1 environment. As it uses a random sampling
strategy, the expected number of samples to which a particular
sample can be connected is the connection area, divided by the
area of the free space, multiplied by the average number of
regions that corresponds to satisfying both criteria: the expected
number of samples equals π ∗152/402

∗40 = 17.7. This means,
if the samples are uniformly random spread and a maximum
connection distance of 15 is used, then the expected number
of samples to which a connection is tried (per sample) is 17.7.
Setting the maximum connection distance higher than this value
will have little effect on the running time. Setting the parameter
slightly smaller than this value will also not have much effect

on the running time as the chances are high that the discarded
samples do already belong to the same connected component.

5. Sampling

The PRM has been expressed as a sampling-based motion
planning method. In this section we will study the behavior of
different sampling techniques. They can be classified into three
categories: uniform, non-uniform and hybrid techniques.

The first category comprises the uniform techniques such as
random, grid, cell-based and Halton sampling [16]. It is well
known that these techniques can have difficulties dealing with
the narrow passage problem. The second category tackles the
narrow passage problem by biasing the sampling distribution.
That is, more samples are added in ‘difficult’ regions of the
environment. A region is difficult if the size of the region (which
corresponds to a particular sample) is small compared to the
total free space. The number of samples that are generated
within these regions can be increased by filtering out samples
that probably do not contribute to the coverage and maximal
connectivity of the roadmap. Examples include Gaussian [17]
and obstacle-based [18] sampling. The third category combines
the strengths of the previous two categories. The Bridge
test [19] for example concentrates samples in difficult areas
but it also generates some samples in open areas. Several
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Fig. 8. Influence of the maximum number of connections on the running time and the number of regions in the 3D environments.

combinations of existing sampling strategies are suited to serve
as a hybrid technique, see the paper of Hsu et al. [20] for an
elaboration.

Experiments

For each category we choose a representative method. For
the uniform technique we choose Halton, for non-uniform
Gaussian and for hybrid we choose Bridge test.

Halton In [16], it has been suggested to use the so-called
Halton point sets as samples. Halton point sets have
been used in discrepancy theory to obtain a coverage
of a region that is better than using a grid (see
e.g. [21]). To avoid this deterministic method being
lucky or unlucky, we choose a random initial seed
instead of setting the seed to 0 [22].

Gaussian Gaussian sampling is intended to add more samples
near obstacles. The idea is to take two random
samples, where the distance σ between the samples
is chosen according to a Gaussian distribution. Only
if one of the samples is in Cfree and the other
one collides we add the free sample. This leads to
a favorable sample distribution [17]. We conducted
preliminary experiments to find the optimal values for

σ . We set σ to {4.0, 4.0, 1.2, 4.0, 4.0, 1.2} for the six
environments, respectively.

Bridge test The Bridge test is a hybrid technique that aims
at better coverage of the free space [19]. The idea is
to take two random samples, where the distance σ

between the samples is chosen according to a Gaussian
distribution. Only if both the samples collide and the
point in the middle of them lies in Cfree the free
sample is added. Also to get points in open space,
every sixth sample is chosen randomly. We set σ to
{4.8, 4.8, 2.4, 5.6, 5.6, 4.0} for the six environments,
respectively.

We will compare their behavior by considering the
experiments we performed on the six environments. These
environments are representative of many different motion
planning problems so we expect the observations to apply rather
generally.

Fig. 9 shows the results for the 2D environments and Fig. 10
shows the results for the 3D environments.

Halton sampling resulted in relatively low running times for
all environments, except for the Narrow passage environment.
This is consistent with the results from [9]. Halton’s uniform
distribution created too many samples in the two wide open
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Fig. 9. Sampling statistics for the 2D environments. The charts in the left column show the average number of regions required to cover and connect the free space.
In the Narrow passage environment, for example, Halton sampling required 275 regions to cover the free space and 1300 regions to connect the free space. The right
column shows box plots corresponding to the time needed to satisfy both criteria.

areas and few in the narrow passage. Since the chance is small
to obtain a set of samples that covers the space in the narrow
passage, the total number of regions required for coverage and
maximal connectivity was higher for this method than for the
other two methods.

The Gaussian technique needed fewer samples than Halton
in the Narrow passage environment. The reason for this is that
relatively more samples are concentrated in the difficult areas of
the C-space, which resulted in faster coverage. In addition, the
ample free space was covered fewer times (due to the Gaussian
distribution of the samples). As this distribution generates fewer
samples in ample free space and more near obstacles, it can
be difficult to connect them. This explains why connecting
Cfree involved more than three times as many regions compared
to covering Cfree.

The Bridge test technique has been designed to combine
the strengths of the previous two categories by concentrating
samples in difficult areas while some samples are also generated
in open areas. This resulted in the lowest average running time
and the lowest number of regions needed to get Cfree connected
in the Narrow passage environment. However, the technique
performed moderately in the other environments. The charts

show that it had difficulties in getting Cfree covered. This can be
explained by looking at the properties of these environments.
As they have no narrow passages, a technique that is designed
to create samples in narrow passages will spend time uselessly.
In the Hole environment, many Bridge samples were created
near the walls while most of them did not increase the
coverage of Cfree. The same argument holds for the Manipulator
environment.

By looking at the charts of Figs. 9 and 10, we can make
an important observation. For the Clutter 1 and Clutter 2
environments, the difference between the moment that Cfree was
covered and the moment that Cfree was maximally connected
is very small. In contrast, for the Narrow passage environment
this difference was much larger. Hence, covering Cfree is not
the problem, but getting Cfree maximally connected is more
difficult when the environment contains a narrow passage. To
clarify this, we considered two versions of the Manipulator
environment. The first variant is the one depicted in Fig. 3(f).
The second variant is the same as the first one, except that we
made the passages narrower by scaling the workspace in the y-
direction, i.e. the workspace became 25% less high. In the first
variant, the Halton sampling strategy needed 271 samples to



Author's personal copy

R. Geraerts, M.H. Overmars / Robotics and Autonomous Systems 55 (2007) 824–836 833

Fig. 10. Sampling statistics for the 3D environments.

cover the space. Only 6% more samples were needed to connect
the space. While the second variant needed the same number
of samples to cover the space, connecting the space required
five times as many samples. Hence, connecting samples near
or in narrow passages is more difficult. The main observation
that can be made is that the narrow passage problem is not
so much caused by coverage but by connecting the nodes.
Rather than concentrating on more clever sampling, it may be
beneficial to spend more effort on connecting nodes in difficult
regions. Actually, already one of the first papers on PRM did
this by trying to connect difficult nodes in a second phase
using a bouncing strategy [8]. In Section 6, we will show how
more powerful local planners can be used for this as well. The
challenge is to apply such a connection strategy only when and
where it is necessary.

Ideal sampling strategy

An ideal sampling strategy should create few samples that
covers and connects Cfree. The smaller the number of samples,
the lesser the time needed to connect those samples which is the
most time-consuming step in the PRM. However, some overlap
between the regions that belong to the samples is required
because this simplifies creating connections between them. This

can be achieved by creating a hybrid technique which filters
out samples that do not contribute to extra coverage or maximal
connectivity. The visibility sampling technique tries to achieve
this by throwing away nodes [23]. It is shown in [24] that this
technique has difficulties satisfying the coverage and maximal
connectivity criteria. The approach is too strict and should
probably be combined with other sampling techniques.

6. Local planners

In the previous sections we showed that it can be difficult to
connect certain nodes while the coverage criterion has already
been met. If we were able to create a local planner that is more
powerful than the straight-line local planner (SLLP) described
below, then we could decrease the gap between the moment
of coverage and maximal connectivity, improving the total
running time. Although this new planner might be more time-
consuming, a careful trade-off between the power and speed of
the planner should lead to a better performance of the PRM.

sllp The planner takes small steps along the path from start
to goal. Let d be the distance between the start and
goal, then the number of steps equals to d divided
by an appropriate step size. We check each step
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(i.e. the placement of the robot) for collisions with the
environment.

To be successful, this planner should preferably satisfy the
following two criteria. First, it must cover at least the same
volume as the SLLP does, i.e. it must subsume each reachability
region that is created using the SLLP. If the regions are larger
we expect that the space is covered faster. More importantly,
because of the larger expected overlap between the regions,
they will sooner become maximally connected. Second, the
planner should be fast enough to be useful in practice. This
can be achieved by letting the planner behave as a SLLP if the
connections can be made in a straight line; if the straight-line
connection results in a collision, then a more clever approach
should be employed. These criteria are satisfied by the simple
potential field local planner (PFLP) we will describe below.

In general, a potential field method calculates distances
between the robot and obstacles to define a force vector on
the robot [10]. These operations make a PFLP expensive in
comparison to the simple SLLP. To mitigate this effect, we use
a modified version of the potential field planner used in [8].

pflp The planner tries to make small steps on the straight
line toward the goal, as does the SLLP. This assures
that the region reached by the PFLP subsumes the
region reached by the SLLP. When the robot walks
into an obstacle, the planner checks a step from the last
collision-free configuration in several directions on the
hemisphere in configuration space oriented toward the
goal. The most promising step is considered first. A
local minimum is easily detected when all possible
steps fail in which case the local planner stops and
reports failure.

Although the PFLP is more powerful, it will be more
expensive than the SLLP in terms of consumed time. A second
drawback is that a new parameter is introduced that has to be
optimized, i.e. the number of directions on the unit sphere has
to be chosen. We choose the axes and diagonals as directions,
i.e. in 2D we choose 8 directions and in 3D we choose 26
directions on the unit sphere and select only those that bring the
robot closer to the goal. It is a trade-off between the accuracy
and speed: the higher this number, the larger the reachability
region, but the slower the planner. The number of directions we
chose seems to work reasonably, but it is in essence arbitrary.

Fig. 11 shows the Clutter 2 and Narrow passage
environments for each of which a reachability region is drawn.
The left pictures show the area that can be reached by the
SLLP from a particular sample. The right pictures correspond
to the PFLP. While reasonably long connections can be made
by the SLLP, the reachability region of the PFLP significantly
extends the area to which connections can be made. Besides the
advantage of covering larger regions, the PFLP, in contrast to the
SLLP, is able to find its way through the narrow passage. This
allows connections to be made from one side of the passage to
the other.

We expect that the PFLP outperforms the SLLP in all
environments except the Corridor environment, because the

Fig. 11. Reachability regions for straight-line (left column) and potential field
local planner (right column) in the Clutter 2 environment (top row) as well as
the Narrow passage environment (bottom row).

reachability regions will be larger than those created with the
SLLP. The PFLP will be able to easily connect the two ample
free spaces in the Narrow passage and Hole environments. In
contrast, in the Corridor environment, the PFLP may only have
an advantage in the hairpins; much ineffectual work might be
done elsewhere before it is concluded that no connections exist.
This is expected to have a negative effect on the running time.

Experiments

We used the optimal sampling strategy in all the
experiments. That is, we used Halton for each environment
except the Narrow passage environment where we used Bridge
sampling. As neighbor selection strategy we used nearest-k,
where k was set to 75.

In the first experiment we study the effect of using the
SLLP or PFLP on the average size of the regions. We set the
maximum connection distance to infinity to reveal the full
potential of the planners. Fig. 12 shows the results. In all the
cases, the PFLP covered larger regions than the SLLP. For the
Clutter 1 environment, the PFLP created regions that were on
an average 86% of Cfree compared to 27% for the SLLP. In the
Clutter 2 environment, the regions of the PFLP were even ten
times as large as the regions of the SLLP. Even in the Corridor
environment, the differences were large.

Next, we conduct experiments to find out whether a
PFLP (which creates larger regions, but takes more time per
region) outperforms a SLLP (which creates smaller regions,
but takes less time per region). To make a fair comparison
possible, we use for both planners the optimal choices. The
SLLP uses the neighbor selection parameters from Table 2.
The maximum connection distances for the PFLP are set to
{∞, ∞, 30, ∞, 20, 2.5} for the different environments. The
PFLP generally requires larger maximum connection distances
as the regions will be larger.
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Fig. 12. The average size of the regions corresponding to the two local planners. The maximum connection distance has been set to infinity.

Fig. 13. Influence of the two local planners on the number of regions.

Fig. 14. Influence of the two local planners on the running time. Each environment was tested with the SLLP (left box plots) and the PFLP (right box plots).

Table 2
The optimal values used in the neighbor selection strategy

Neighbor selection parameters
Max. connection distance Max. number of connections

Clutter 1 15 75
Clutter 2 10 75
Narrow passage 30 75
Hole 40 75
Corridor 15 75
Manipulator 2 75

Fig. 13 shows the average number of regions and Fig. 14
shows the running times for the two local planners. The results
show, as expected, that the number of regions needed to cover
the space are considerably lower for the PFLP, which is due
to the larger average size of the regions. In addition, the
maximal connectivity criterion was satisfied by considerably
less regions. The (absolute) difference between the number of
nodes to achieve coverage and number of nodes to achieve

maximal connectivity was much smaller for the PFLP than
for the SLLP. The PFLP clearly outperformed the SLLP in all
environments, except in the Corridor environment. But for this
environment, the difference of the average running time is
small. Thus, the PFLP turns out to be an efficient local planner.

Ideally, a local planner should be simple in an ‘easy’ part
of the C-space and more advanced in more ‘difficult’ parts.
The potential field local planner combines those requirements:
easy connections (i.e. straight-line connections) are made at
the expense of a marginal overhead, while difficult connections
(i.e. connections that avoid obstacles) can actually be made.
Experiments showed that sampling-based methods can benefit
from more powerful local planners such as the potential field
local planner. Because the local planner is slower, the time
improvement in general is less dramatic than the improvement
in number of regions required. However, we believe that one
could improve the time even further.

In future works, one could investigate techniques that can
identify difficult regions in the space. This information can be
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used to select the most appropriate local planner which should
lead to an even better performance of the PRM.

7. Conclusion

While theoretically, the complexity of the motion planning
problem is exponential in the number of degrees of freedom,
sampling-based planners can successfully handle this curse
of dimensionality in practice because they are reachability-
based. We presented a reachability analysis for these planners
which focused on coverage and maximal connectivity of the
free configuration space Cfree. By inspecting the roadmap when
Cfree was covered and when Cfree was maximally connected, we
obtained a better understanding of these planners. This led to
the insight that not coverage but getting the nodes connected
is the main problem, especially when the problems get more
complicated, i.e. a narrow passage is present. The narrow
passage problem can be tackled by incorporating a hybrid
sampling strategy that aims at concentrating samples in difficult
areas. The strategy must also generate some samples in large
open areas. Other strategies to get the free configuration space
faster connected are to use a refined neighbor selection strategy
which is able to make long and many connections and a more
powerful local planner. We presented a potential field local
planner that creates larger reachability regions and accordingly
eases making connections. This planner is also better able to
find the entry of a narrow passage, decreasing the number
of regions needed to get the nodes connected. Experiments
showed that this approach leads to a better performance of the
sampling-based methods.
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