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Abstract

The probabilistic roadmap approach is one of the leading motion planning techniques. Over the past decade the technique has been studied
by many different researchers. This has led to a large number of variants of the approach, each with its own merits. It is difficult to compare the
different techniques because they were tested on different types of scenes, using different underlying libraries, implemented by different people
on different machines. In this paper we provide a comparative study of a number of these techniques, all implemented in a single system and
run on the same test scenes and on the same computer. In particular we compare collision checking techniques, sampling techniques, and node
adding techniques. The results were surprising in the sense that techniques often performed differently than claimed by the designers. The study
also showed how difficult it is to evaluate the quality of the techniques. The results should help future users of the probabilistic roadmap planning
approach in deciding which technique is suitable for their situation.
c© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Motion planning can be defined as finding a path for an
object (or kinematic device) from a given start to a given goal
placement in a workspace without colliding with obstacles in
the workspace. Besides the obvious application within robotics,
motion planning also plays an important role in animation,
virtual environments, computer games, computer aided design
and maintenance, and computational chemistry [26].

Over the years, many different approaches to solving the
motion planning problem have been suggested. See the books
of Latombe [25] and LaValle [27] for an extensive overview
of the situation and for example the proceedings of the yearly
IEEE International Conference on Robotics and Automation
(ICRA) or the Workshop on Foundations of Robotics (WAFR)
for many recent results. A popular motion planning technique
is the Probabilistic Roadmap Method (PRM), developed
independently at different sites [3,4,19,20,31,36]. It turns out
to be very efficient, easy to implement, and applicable for many
different types of motion planning problems (see e.g. [9,13,14,
21,24,33,35,36,38,39]).
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Globally speaking, the PRM approach samples the
configuration space (that is, the space of all possible placements
for the moving object) for collision-free placements. These
are added as nodes to a roadmap graph. Pairs of promising
nodes are chosen in the graph and a simple local motion
planner is used to try to connect such placements with a
path. If successful, an edge is added between the nodes in the
graph. This process continues until the graph represents the
connectedness of the space.

The basic PRM approach leaves many details to be filled
in, like how to sample the space, what local planner to use
and how to select promising pairs. Over the past decade
researchers have investigated these aspects and developed
many improvements over the basic scheme (see e.g. [2,6,5,
17,21,30,33,38,40]). Unfortunately, the different improvements
suggested are difficult to compare. Each author used his
or her own implementation of PRM and used different test
scenes, both in terms of environment and the type of moving
device used. Also the effectiveness of one technique sometimes
depends on choices made for other parts of the method. So it
is still rather unclear what is the best technique under which
circumstances. (See [11] for a first study of this issue.)

In [12], we made a first step toward a comparison between
the different techniques developed. In this work, we will
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continue comparing them. We implemented a large number
of the techniques in a single motion planning system and
added software to compare the approaches. In particular we
concentrated on approaches checking local paths for collisions,
the sampling technique and the choice of promising pairs of
nodes. This comparison gives insight in the relative merits
of the techniques and the applicability in particular types of
motion planning problems. Also we hope that in the longer term
our results will lead to improved (combinations of) techniques
and adaptive approaches that choose techniques based on
observed scene properties.

The paper is organized as follows. In Section 2 we review the
basic PRM approach. In Section 3 we describe our experimental
setup and the scenes we use. In Section 4 we compare different
ways of performing collision checks of the paths produced
by the local planner. We conclude that a binary approach
performs best. In Section 5 we consider six different uniform
sampling strategies. We conclude that, except for very special
cases, one best uses a deterministic approach based on Halton
points, although the differences between the methods are
small. In Section 6 we consider six non-uniform sampling
techniques that have been designed to deal with the so-called
narrow passage problem and conclude that these techniques
should only be used in the parts of the workspace containing
narrow passages, i.e., they do handle the test scene with one
very narrow passage faster than uniform sampling but are
considerable slower on all other scenes. In Section 7 we study
different strategies for choosing promising pairs of nodes to
connect. We conclude that one best picks a few nodes in each
connected component of the roadmap. Finally, in Section 8
we study the variation of the running time over different runs
and present a simple technique that can be used to reduce this
variation.

2. The PRM method

The motion planning problem is normally formulated in
terms of the configuration space C, the space of all possible
placements of the moving object. Each degree of freedom of
the object corresponds to a dimension of the configuration
space. Each obstacle in the workspace, in which the object
moves, transforms into an obstacle in the configuration space.
Together they form the forbidden part Cforb of the configuration
space. A path for the moving object corresponds to a curve
in the configuration space connecting the start and the goal
configuration. A path is collision-free if the corresponding
curve does not intersect Cforb, that is, it lies completely in the
free part of the configuration space, denoted with Cfree.

The probabilistic roadmap planner samples the configuration
space for free configurations and tries to connect these
configurations into a roadmap of feasible motions. There are
a number of versions of PRMs, but they all use the same
underlying concepts.

The global idea of PRM is to pick a collection of (useful)
configurations in the free space Cfree. These free configurations
form the nodes of a graph G = (V, E). A number of (useful)
pairs of nodes are chosen and a simple local motion planner
Fig. 1. The roadmap graph we get for the difficult hole test scene used in this
paper. The left image shows the graph using Halton sampling and the right
image uses Gaussian sampling.

is used to try to connect these configurations by a path. When
the local planner succeeds, an edge is added to the graph.
The local planner must be very fast, but is allowed to fail
on difficult instances. A typical choice is to use a simple
interpolation between the two configurations, and then check
whether the path is collision-free. So the path is a straight line
in configuration space.

Once the graph reflects the connectivity of Cfree it can be
used to answer motion planning queries. (See Fig. 1 for an
example of the roadmap graphs computed.) To find a motion
between a start configuration and a goal configuration, both are
added to the graph using the local planner. (Some authors use
more complicated techniques to connect the start and goal to
the graph, e.g., using bouncing motion.) Then a path in the
graph is found which corresponds to a motion for the object.
The pseudo code for the algorithm for constructing the graph is
shown in the Algorithm CONSTRUCTROADMAP. Note that in

Algorithm 1 CONSTRUCTROADMAP

Let: V ← ∅; E ← ∅;
1: loop
2: c← a (useful) configuration in Cfree
3: V ← V ∪ {c}
4: Nc ← a set of (useful) nodes chosen from V
5: for all c′ ∈ Nc, in order of increasing distance from c

do
6: if c′ and c are not connected in G then
7: if the local planner finds a path between c′ and c

then
8: add the edge c′c to E

this version of PRM we only add an edge between nodes if they
are not in the same connected component of the roadmap graph.
This saves time because such a new edge will not help solving
motion planning queries. On the other hand, to get short paths
such extra edges are useful (see e.g. [29]). For this comparative
study we will not add these additional edges.

In this study we concentrate on the various choices for
picking useful samples (line 2 of the algorithm), for picking
useful pairs of nodes for adding edges (that is, on the choice
of Nc in line 4) and for collision checking those edges (line 7).
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Fig. 2. The six scenes used for testing.
These are the most crucial steps and they strongly influence the
running time and the structure of the roadmap graph.

Furthermore, we focus on multiple shot techniques and
will not consider single shot methods such as RRT-based
planners [23].

3. Experimental setup

In this study we restricted ourselves to free-flying objects in
a three-dimensional workspace. Such objects have six degrees
of freedom (three translational and three rotational). In all
experiments, we used the most simple local method that
consists of a straight-line motion in configuration space. For
other types of devices or local planners the results might be
different. We will investigate this in future work.

The PRM approach builds a roadmap which, in the query
phase, is used for motion planning queries. We aim at
computing a roadmap that covers the free space adequately but
this is difficult to test. Instead, in each test scene we defined
a relevant query and continued building the roadmap until the
query configurations were in the same connected component.

All techniques were integrated in a single motion planning
system called SAMPLE (System for Advanced Motion
PLanning Experiments), implemented in Visual C++ under
Windows XP. All experiments were run on a 2.66 GHz
Pentium 4 processor with 1 GB internal memory. We used Solid
as the basic collision checking package [37]. In all experiments
we report the running time in seconds. Because the experiments
were conducted under the same circumstances, the running time
is a good indication of the efficiency of the technique. For those
techniques where there are random choices involved we report
the average time over 30 runs.

For the experiments we used the following six scenes
(see Fig. 2). The cage and wrench scenes are borrowed
from the Motion Strategy Library [27]. Furthermore, to make
extensive experimentation possible, we did not include huge
environments such as those common in CAD environments.

cage: This environment consists of many primitives. The
flamingo (7049 polygons) has to find a route (from a few dozen
possibilities) that leads him out of the cage (1032 triangles).
The complexity of this environment will put a heavy load on
the collision checker but the paths are relatively easy.

clutter: This scene consists of 500 uniformly distributed
tetrahedra. A torus must move among them from one corner to
the other. The configuration space will consist of many narrow
corridors. There are many solutions to the query.

hole: The moving object consists of four legs and must rotate
in a complicated way to get through the hole. The hole is placed
off-center to avoid that certain grid-based methods have an
advantage. The configuration space will have two large open
areas with two narrow winding passages between them.

house: The house is a complicated scene consisting of about
2200 polygons. The moving object (table) is small compared
to the house. Because the walls are thin, the collision checker
must make rather small steps along the paths, resulting in much
higher collision checking times. Because of the many different
parts in the scene the planner can be lucky or unlucky in finding
the relevant part of the roadmap. So we expect a large difference
in the running times of different runs.

rooms: In this scene there are three rooms with lots of
space and with narrow doors between them. So the density of
obstacles is rather non-uniform. The table must move through
the two narrow doors to the other room.

wrench: This environment features a large moving object
(156 triangles) in a small workspace (48 triangles). There are
many different solutions. At the start and goal the object is
rather constrained.
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4. Collision checking

The most time-consuming steps in the probabilistic roadmap
planner are the collision checks that are required to decide
whether a sample lies in Cfree and whether the motion produced
by the local planner is collision-free. In particular the second
type of checks is time consuming. In this section we investigate
some techniques for collision testing of the paths.

As basic collision checking package we use Solid [37]. The
advantage of this package is that it considers objects like blocks,
tetrahedra, spheres, and cylinders as solids rather than boundary
representations. This avoids the generations of samples inside
obstacles. Also it reduces the number of obstacles required to
describe complicated scenes. Solid builds a data structure based
on bounding boxes for fast query answering.

When testing a path for collisions we can use the following
techniques.

incremental: In the incremental method we take small steps
along the path from start to goal. For each placement we check
for collisions with the scene.

binary: In the binary method we start by checking the
middle position along the path. If it is collision-free we recurse
on both halves of the path checking the middle positions
there. In this way we continue until either a collision is found
or the checked placements lie close enough together (again
determined by a given step size) [33].

In early papers on PRM the incremental method was used.
Later papers suggest that the binary method works better [34].
The reason is that the middle position is the one that has the
highest chance of not being collision free. This means that,
when the path is not collision free, this collision will most likely
be found earlier, that is, after fewer collision checks.

It has been suggested that one should try to compute sweep
volumes and use these for collision tests. As a result, a path
check would require just one collision test. The problem is
that it is very difficult to compute sweep volumes for three-
dimensional moving objects with six degrees of freedom. A
much simpler technique is to first check with the sweep volume
introduced by the origin of the object, that is, with a line
segment between start and goal position (see [10]).

line check: In this method we first perform a collision test
with the line segment between the start and goal position in the
workspace. Only if it is collision-free do we perform the binary
method. (This assumes that the origin of the object lies inside
it.)

We would expect that this test will quickly discard many
paths that have a collision, leading to an improvement in
running time.

rotate-at-s: While the previous methods check collisions
along a straight line, the rotate-at-s approach first translates
from start to an intermediary configuration s halfway, then
rotates, and finally translates to the endpoint [1]. We set s to
0.5.

Table 1 summarizes the results (using deterministic Halton
points for sampling and a simple nearest-k node adding
strategy; see below).
Table 1
Running times for different collision checking methods

Collision checking
incremental binary line rotate-at-s

cage 2.4 1.9 1.8 2.7
clutter 1.8 1.3 1.4 3.1
hole 431.9 422.3 436.4 1206.7
house 6.4 4.9 4.7 47.1
rooms 0.5 0.4 0.4 1.1
wrench 0.9 0.5 0.5 1.1

The table shows that in all scenes the binary approach was
faster than the incremental approach although the improvement
varied over the type of scene. The line check only had a
marginal effect, contrary to the claim in [10]. This might be due
to the way Solid performs the collision checking with the line
segment. In [10] it was suggested to only apply the line check
when the distance between the endpoints is large. We tried this
but did not see any significant improvement in performance.

Also the rotate-at-s technique did not give the improvement
suggested in [1]. It should though be noticed that this can
depend on the underlying collision checking package used. For
the rest of the paper we will use the binary approach without
line checks.

5. Uniform sampling

The first papers on PRM used uniform random sampling of
the configuration space to select the nodes that are added to the
graph. In recent years, other uniform sampling approaches have
been suggested to remedy certain disadvantages of the random
behavior. In particular we will study the following techniques.

random: In the random approach a sample is created by
choosing random values for all its degrees of freedom. The
sample is added when it is collision-free.

grid: In this approach we choose samples on a grid. Because
the grid resolution is unknown in advance, we start with a
coarse grid and refine this grid in the process, halving the cell
size. Grid points on the same level of the hierarchy are added in
random order.

Halton: In [7] it has been suggested to use so-called Halton
point sets as samples. Halton point sets have been used in
discrepancy theory to obtain a coverage of a region that is better
than using a grid (see e.g. [8]). It has been suggested in [7] that
this deterministic method is well suited for PRM.

Halton*: In this variant of Halton we choose a random
initial seed instead of setting the seed to zero [41]. The claims
in [7] should still hold because they are independent of the seed.
By choosing a random seed we avoid the situation in which seed
zero is lucky or unlucky.

random Halton: In this approach we use again Halton
points. But when adding the nth sample point we choose an area
around this point (in configuration space) and choose a random
configuration in this area. As size of the area we choose k A/n
where A is the area of (the relevant part of) the configuration
space and k is a small constant. (We set k to 0.2.) So the area
becomes smaller when more and more points are added. This
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Table 2
Comparison of average running times of six basic sampling strategies

Basic sampling strategy
random grid Halton Halton* rnd

halt.
cell-based

cage 2.3 3.2 1.9 2.0 1.5 2.8
clutter 1.2 3.4 1.3 1.5 1.5 1.4
hole 433.9 370.4 422.3 201.4 435.5 279.5
house 78.7 3.2 4.9 10.4 17.9 10.0
rooms 0.7 0.8 0.4 0.7 0.6 0.7
wrench 0.7 0.4 0.5 0.4 0.7 0.4

added randomness is another way suggested to solve cases in
which Halton is unlucky.

cell-based: In this approach we take random configurations
within cells of decreasing size in the workspace. The first
sample is generated randomly in the whole space. Next we split
the workspace in 23 equally sized cells. In a random order we
generate a configuration in each cell. Next we split each cell
into sub-cells and repeat this for each sub-cell. This should lead
to a much better spread of the samples over the configuration
space. A similar approach was employed in [32].

An important question is how to choose random values.
Random values were obtained by the Mersenne Twister [28].
Sampling for the rotational degrees of freedom (SO3) was
performed by choosing random unit quaternions [22]. See [42]
for a more extensive elaboration on sampling methods for SO3.

Table 2 summarizes the results. It can be seen that the results
were rather varying. In general the differences were small, that
is, the slowest method took about twice the time of the fastest
method. But for each scene another technique was the fastest.
There was just one exception. The random approach performed
reasonable well except in the house scene. For this particular
scene there was a huge variation in running times between
different runs. More that a third of the runs took 6 s or less,
while another third took more than 100 s (one run even took
650 s). As a result, conclusions based on average times are
difficult to make. Also the other approaches had a high variation
in running time. Fig. 3 shows a box plot of the different running
times for the rooms scene for the methods. The cell-based
approach seemed to have the lowest variance.

It is interesting to compare Halton and Halton*. In some
sense Halton is simply one particular run of Halton*. We saw
that for example for the house scene it was a lucky run while
for the hole scene it was an unlucky run. Adding a bit of
randomness did not seem to remedy this problem.

In general we must conclude that there is little to win when
using different kinds of uniform sampling in terms of average
running time. There can though be other arguments to use
a particular technique. For example, the Halton approach is
deterministic. Even though it might be unlucky on a particular
scene this still is a favorable property.

6. Advanced sampling

Rather than using uniform sampling, it has been suggested
to add more samples in difficult regions of the environment. In
this section we study a number of these techniques.
Table 3
Comparison of average running times of six advanced sampling strategies

Sampling around obstacles
Gaussian obstacle obstacle* bridge MA NC Halton*

cage 7.3 3.1 5.3 3.3 215.9 5.4 2.0
clutter 2.8 2.0 2.6 3.3 620.4 7.1 1.5
hole 8.8 47.5 7.1 35.4 7.7 2.3 201.4
house 18.0 20.7 13.0 28.8 199.3 15.7 10.4
rooms 0.5 0.4 0.5 1.0 3.5 0.4 0.7
wrench 2.7 0.9 1.9 0.7 11.0 3.8 0.4

Gaussian: Gaussian sampling is meant to add more samples
near obstacles. The idea is to take two random samples,
where the distance between the samples is chosen according
to a Gaussian distribution. Only if one of the samples lies in
Cfree and the other lies in Cforb we add the free sample. This
leads to a favorable sample distribution [5].

obstacle based: This technique, based on [2], has a similar
goal. We pick a random sample. If it lies in Cfree we add it to
the graph. Otherwise, we pick a random direction and move the
sample in that direction with increasing steps until it becomes
free and add the free sample.

obstacle based*: This is a variation of the previous
technique where we throw away a sample if it initially lies in
Cfree. This will avoid many samples in large open regions.

bridge test: The bridge test is a hybrid technique that aims
at better coverage of the free space [15]. The idea is to take
two random samples, where the distance between the samples
is chosen according to a Gaussian distribution. Only if both
samples lie in Cforb and the point in the middle of them lies
in Cfree is the free sample added. (To also get points in open
space, every sixth sample is simply chosen randomly.)

medial axis: This technique generates samples near the
medial axis (MA) of the free space [40]. All samples have two
equidistant nearest points resulting in a large clearance from
obstacles. The method increases the number of samples in small
volume corridors but is relatively expensive to compute.

nearest contact: This method generates samples on the
boundary of the C-space and can be seen as the opposite to
the medial axis technique. First we choose a uniform random
sample c. If c lies in Cfree we discard it, else we calculate
the penetration vector v between c and the environment. Then
we move c in the opposite direction of v and place c on the
boundary of the C-space. Care must be taken not to place c
exactly on the boundary, because then it would be difficult to
make connections between the samples.

We expect these techniques to be useful only in scenes
where there are large open areas (in configuration space) and
some narrow passages. Table 3 shows the results. (The Halton*
approach is shown for comparison.)

As expected, the techniques only performed considerably
better for the hole scene. Also for the rooms scene the methods
worked well but the improvement was not significant. However,
in other situations the methods were up to ten times slower.
The medial axis approach was even worse, due to the expensive
calculations. The method does though give samples that are
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Fig. 3. Box plot for the rooms scene, showing the variation in running time for 30 runs. A vertical line represents the minimum and maximum value of the
experiments and the box represents the middle fifty per cent of the data.
nicely located between the obstacles, which leads to motions
with a higher clearance.

We conclude that special non-uniform techniques should
only be used in specific situation with narrow corridors.
Preferably they should also only be used in the parts of the
workspace where this is relevant; see e.g. [18].

7. Node adding

In this section we will study how to select the set of
neighbors to which we try to make connections. As each test for
a connection is expensive we should try to avoid these as much
as possible. On the other hand, if we try too few connections we
will fail to connect the graph. It is not useful (from a complexity
point of view) to make connections to nodes that are already
in the same connected component, because a new connection
will not help solving motion planning queries. Also, it is not
useful to try to connect to nodes that lie too far away. The
chance of success for such a connection is minimal while the
collision checks required for testing the path are expensive. An
important question here is what we use as a distance measure;
see also [1]. In this paper we use d = dt + dr , where dt denotes
the translational distance of the origin of the object and dr
denotes the rotational distance between two unit quaternions
that represent the start and goal orientation; see [22]. This
measure is easy to compute and gives a reasonable estimate.

We performed a large number of experiments to determine
for each scene the optimal values for the maximal distance
d and for the maximum number of connections k. It turned
out that for most test scenes a value of k between 20 and 25
was best. Only for the clutter scene a much smaller value of
around 10 was required. The reason is that many connections
are invalid due to the large number of obstacles. So even when
there are many connected components it does not help to try to
connect to them. For the maximal distance a similar argument
holds. For large open scenes, like the cage and the wrench,
a large value is best. For more constrained scenes, a smaller
value is required. For the hole scene an even smaller value
works best. The reason is that in the difficult part of the scene
only short connections have a chance of success. We used the
optimal values in this paper. In general, one would like to have
a technique that determines the best values based on (local)
properties of the scene. Such a technique is currently lacking.
Table 4
Comparison between four node adding strategies

Node adding strategy
nearest-k comp comp-k visibility

cage 1.9 3.4 1.6 3.0
clutter 1.3 1.3 1.4 2.3
hole 409.5 7428.2 7554.4 102.5
house 4.9 3.0 13.0 45.5
rooms 0.4 0.2 0.2 6.3
wrench 0.5 0.4 0.4 1.6

We consider the following techniques.
nearest-n: We try to connect the new configuration c to the

nearest n nodes in the graph. The rationale is that nearby nodes
lead to short connections that can be checked efficiently. If
many nearby nodes lie in the same connected component there
is no other component in the neighborhood so it is acceptable
that we only connect to a single component.

component: We try to connect the new configuration to
the nearest node in each connected component that lies close
enough. The rationale is that we prefer to connect to multiple
connected components.

component-n: We try to connect the new configuration to
at most n nodes in each connected component. Still we keep
the total number of connections tried small (the same number
as for nearest-n). The rationale is that when the number of
components is small we prefer to spend some extra time on
trying to make connections. Otherwise the time required for
adding the node will become the dominant factor.

visibility: This method is based on the visibility sampling
technique described in [30]. We try to connect the new
configuration to useful nodes. Usefulness is determined as
follows: when a new node can be connected to no other nodes
it forms a new connected component and is labeled useful. If it
connects two or more components it is also labeled useful. If it
can be connected to just one component it is not labeled useful.
It has been observed in [30] that the number of useful nodes
remains small, making it possible to try connections to all of
them.

Table 4 summarizes the results. Although the visibility
approach pruned the graph a lot, it still performed worse on
most scenes. Only for the hole scene did it perform better.
We feel that the reason is that the approach is too strict in
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Fig. 4. Cumulative percentages of 2000 runs solved in t seconds for the wrench scene.
rejecting nodes. In general, the component-based techniques
were faster except for the hole scene. We must remark that for
the hole scene it is better to use an obstacle-based sampling
technique such as nearest contact. For this technique, nearest-k
was actually three times faster than the visibility approach (and
the components techniques).

8. Variation of running times

An advantage of random sampling techniques is that they
are usually fast and can successfully deal with the diversity
of problems. However, a price has to be paid: the running
times needed to find a solution will vary. We noticed that
some of them were exorbitantly high, increasing the average
considerably. This phenomenon is undesirable for two reasons.
First, a large variation complicates statistical analysis and can
even make it unreliable. Second, it is undesirable from a user’s
point of view; for example, in a virtual environment where real-
time behavior is required, only a particular amount of cpu time
will be scheduled for the motion planner.

A first study of this problem has been reported in [16],
where a bidirectional A∗ search is used, based on parameterized
formulas for increasing the competence of the local planner. We
propose a new simple technique that can be used to decrease the
maximum, average and variance of running times.

restart prm: We run PRM for a particular time t . If no
solution is found within t seconds, the PRM is restarted,
throwing away the roadmap created so far. We repeat this
process until a solution is found. Clearly, t should be a
reasonable guess for the time in which we expect that the
problem can be solved. If no such guess can be made we can
also start with a small value and double the time t in each step.

As an example we apply the approach to the wrench scene.
To make sure our averages make sense we ran the planner 2000
times. Fig. 4 shows the percentage of runs that have been solved
in a particular amount of time. We only show the tail of the chart
because the heads of the two curves are indistinguishable.

Only 1% of the runs that were generated without restarting
had a high running time (between 8.0 and 60.8 s). By restarting
the PRM after 4 s this interval was dramatically improved to
[4.9; 8.2]. This improvement positively changed the average,
maximum and standard deviation of running times, which are
stated in Table 5. We conclude that restarting the PRM makes
Table 5
Average running times for the wrench scene with and without restarting the
PRM

Statistics for the variance problem
minimum average maximum st. dev.

Without restart 0.03 1.01 60.81 2.32
With restart 0.05 0.88 8.20 1.00

random techniques more robust. We plan to investigate this
approach further.

9. Conclusions

In this paper we have presented the results of a comparative
study of various PRM techniques. The results confirm
previously made claims that the binary approach for collision
checking works well. The results showed that many claims
on efficiency of certain sampling approaches could not be
verified, i.e., there was little difference between the various
uniform sampling methods and they were only outperformed
by advanced sampling methods for special (narrow passage)
cases.

For node adding it turned out that visibility sampling did not
perform as well as expected. A technique based on choosing a
number of nodes per component seemed to perform best.

One thing that is clear from the study is that a careful choice
of techniques is important. Also, it is not necessarily true that
a combination of good techniques is good. For example, for
the hole scene one might expect that a combination of nearest
contact and visibility works best. But experiments showed that
this combination is actually about three times worse than the
best combination.

The study also showed the difficulty of evaluating the quality
of the techniques. In particular the variance in the running time
and the influence of certain bad runs were surprisingly large.
We presented a very simple variance killer that seems to be
effective. We are though fairly certain that better techniques
exist. This is an interesting topic for further study. This study
does not provide a final answer as to the best technique. Further
research, in particular into adaptive sampling techniques,
will be required for this. Also, further study for other
robot types such as articulated and car-like robots would be
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interesting since we only compared techniques for free-flying
objects.

We hope that our studies shed some more light on the
questions of what technique to use in which situation. A major
challenge is to create planners that automatically choose the
correct combination of techniques based on scene properties or
that learn the correct settings while running.
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