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Abstract
A numerical algorithm for continuation of stationary solutions to nonlinear evolution problems representable in
the form
Uy = F(Una, Uz, u, 2,0), 0<2z<1,
fo(uziu7a):()’ a::O’
FH (ua, u,0) =0, z=1,

is described as implemented in CONTENT. Here F : R™ xR™ x R™ x R™ — R™ and f! : R* xR™ xR™ —
R™ are sufficiently smooth nonlinear functions. The algorithm is based on the second-order finite-difference
approximation with an adaptive non-uniform mesh selection. Special methods for efficient solution of linear
systems appearing in the continuation are presented. Several examples are given.
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1. INTRODUCTION
Nonlinear evolution problems with partial derivatives

up = Fuge, vz, u,z,0), 0<z<1,
FO(uz,u,a) =0, z =0, (1.1)
fl(uz’u7a):O’ m:]"

where F : R* xR* xR* xRxR™ — R” and %! : R* xR® xR™ — R” are sufficiently smooth nonlinear
functions, appear in numerous applications. For example, so called reaction-diffusion systems with
one spatial variable z € [0, 1],

uy = D(@)ug, + fu,a), 0<z <1, (1.2)

where f : R” x R™ — R" is a smooth function and D(«) is a positive diagonal n x n matrix smoothly
dependent on o € R™, with Neumann boundary conditions

uz(0) = ug(1) =0 (1.3)

belong to the class (1.1). The simplest interesting type of solutions to (1.1) are the stationary solutions
which are independent of time ¢ and, therefore, satisfy the nonlinear boundary-value problem
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F(uz-’ﬂ7u27u’m’a)=0; 0<IE<1,
fO(uz,u,a) =0, x =0, (1.4)
fl(uccauaa)zo, z = 1.

If exists, such a stationary solution usually depends on control parameters o, and this dependence is
of great interest in applications.

The computation of a curve of stationary solutions involves two major ingredients, namely

e discretization;

e continuation.

There are many methods employed in the literature to discretize the problem (1.4): shooting, Galerkin,
finite-element, finite-difference, etc. (see the special issue of SIAM J. Numer. Anal., 14(1), 1977, for
comparision) In all of the above approaches, the problem (1.4) is reduced to a finite-dimensional
continuation problem, i.e. computation of a curve defined by

F(Y)=0, F:RE - RE-L (1.5)

provided the defining function F is smooth and satisfies the standard regularity conditions. Here
Y € RE represents all the discretization data corresponding to the problem (1.4) and the control
parameters. In most of continuation methods (see, for example, [1], [3], [4]), the prediction uses the
tangent vector to the curve, and corrections are performed by Newton-like iterations, each of them
involving solution of linear systems with a matrix

j=<}'¥ ) (1.6)

v

where Fy is the Jacobian matrix of the defining function F(Y') and v € R¥ is a vector. The matrix J
has a special structure that depends upon the discretization scheme. To solve linear systems with 7,
one should derive efficient algorithms taking this particular structure into account, because general
linar algebra algorithms (like LU-decomposition) would be very inefficient if the dimension K of the
discretization system (1.5) is big, since the computational time depends as ~ K3 on K. Moreover,
one should also take the advantage of the special structure of J in its storage and processing.

There are several noninteractive packages to continue numerically a solution to (1.4) with respect
to a parameter after conversion to a first-order system. We mention only AUTO86 [5] based on the
orthogonal collocation, and BPR-Q [7, 8, 9], where a finite-difference discretization is employed.

The aim of this paper is to describe a continuation technique to compute solution curves of (1.4),
which is based on an efiicient finite-difference method (see, for example [16]), and its implementation
in CONTENT [10]. CONTENT is an interactive environment for the arclenth continuation of various
curves defined by finite-dimensional continuation problems like (1.5) and their visialization. A feature
that makes CONTENT particularly useful for the development of continuation algorithms is its built-in
ability to associate specific linear algebra routines to each solution type. Thus, the development of a
continuation method includes only specification of the defining system (1.5) and its Jacobian matrix,
including their possible adaptation along the curve, as well as the development of special routines to
handle linear algebraic problems with matrices of the form (1.6). Problem specification, continuation,
and visualization are interactively supported by CONTENT.

The paper is organized as follow. In Section 2 we describe the second order finite difference ap-
proximation of the problem (1.4), i.e. we define the continuation problem (1.5) and its Jacobian
matrix (1.6). Section 3 is devoted to the description of routines to solve linear systems appearing in
the continuation of the stationary solutions using an efficient block elimination technique. A special
algorithm to compute the determinant of the matrix 7 and its certain submatrix is briefly described.
These determinants are used as test functions to detect possible branching and limit points along



2. FINITE-DIFFERENCE DISCRETIZATION 3

the solution curves. Section 4 presents an algorithm to adapt mesh distribution while continuing the
solution curve. It is based on the requirement for the approximation error of the z-derivatives to be
uniformly distributed over the space interval. Section 5 briefly describes how to specify systems of the
form (1.1) in CONTENT. Finally, in Section 6, several examples of computations made by CONTENT
are presented.

2. FINITE-DIFFERENCE DISCRETIZATION

To approximate (1.4) by a finite-dimensional equation (1.5), introduce a nonuniform mesh
9N2{0:$0<$1<...<.’EN_1<.'BN:].} (21)

with N > 6 and set h; = ¢; — z;—1 for« = 1,..., N. Denote the corresponding mesh values of the
solution u(z;) by u;, ¢ =0,1,...,N.

For the left end point we take

’IL:E(O) ~ ’l]z(O) = (ﬁo’UJg + cﬁlul + @2”2, (22)
where
T T T P
"] hl(hl ¥ hZ), ®1 h1h2 , P2 h2(h1 + h2) -
For each internal mesh point with ¢ =1,2,..., N — 1, introduce
5 1
=z + g(hi-l—l — hi),
and take
w(Z;) = U(T;) = Ni—1Uim1 + Nt + Nig1 Uiy, (2.3)
Ug(Ts) m U (Ts) = Yic1Uic1 + @il + Qir1Uit1, (2.4)
Uze(Zi) R Uga(Ti) = VYic1ui—1 + Vi + Yigp1uiq1, (2.5)
where
o _(hig = h)@Rhigy b)) (2B 4 higy)(Rhiga +hi)  (higy — ha)(2hi + hiya)
T Ohi(hi + hir1) Ohihir: T Ohip1(hi + hit1)
2hz + hf,’+1 hi+1 - h, hl + 2hi+1
Yil =~ Pi = o Pitl = )
3hi(hi + hi+1) 3hihit1 3hi+1(hi + h,’+1)
and

SRV T T
hi(hi + hiy1)” " hihig1’ l+1_hi+1(hi+hi+1).

Finally, for the right end point we take

Y1 =

Up(1) ® Ux(1l) = PN_2uN—2+ PN_1UN—1 + PNUN, (2.6)
where
. _ 2hy+hyo1 _ _hnathy hn
N2 hy(hy—1 + hy)’ PN hy_1hy ’ N hy—1(hy—1+ hn)’

The above approximations have third-order accuracy for the function u(z) and second-order accuracy
for its first and second derivatives (see [2]). More precisely, if u(z) is a smooth vector function, then
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lu(@:) — (@) = O(h*), i=1,2,...,N —1,

while
lluz(0) — @z (0)]| = O(h?), [luz(1) — @z (1)]| = O(h?),

and
lue (&) — s (Z:) | = O(R?), Nuze(E:) — ea(:)ll = O(h?),
fori=1,2,...,N — 1. Here

h = max h;.
i=1,...,N

Substituting the approximations (2.2)-(2.6) into the problem (1.4), we obtain its © y-discretization
in the form G(Y) = 0 with

and

(Zn—2),ZN—2,)
(Zn-1),ZN-1,)

Notice that K = dimY = (N + 1)n + m. To obtain a continuation problem of the general form
(1.5), one has to append (m — 1) scalar equations

g (ug,u1,...,un—1,un,0) =0, i=1,2,...,m—1,

which represent the discretizations of some user-supplied conditions defined by vanishing of m — 1
functionals
g'lul=0, i=1,2,...,m—1,

on the continued solution. In the case of one control parameter, no such extra conditions are required.

Therefore, the continuation problem (1.5) is defined by
G(Y) )
FY)={( , 2.7
v =( 95 (2.7)

where § = (g*,...,§™ )T, Thus, F : RK — RE-1,

Taking into account (2.2)-(2.6), the Jacobian matrix of (2.7) can be written in the form

ag by co o
ag b o 61
ay by c P
Ty = an—2 bn_2 cn—2 on—2 |’
an—1 bv_1 cen—1 On-1
an by cN on

G @ g2 gN-2 gN-1 4N v
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where ag, by, cp, kK =0,1,..., N are nXn matrices, 6, k = 0,1,..., N are nXm matrices, qo,q1,---, 9N
are (m — 1) X n matrices, ¥ is an (m — 1) X m matrix (all undisplayed elements of Fy are zeros).
These matrices are given by the following expressions:

af° _af  af° a0 _af. _ af _ af°

© =t o e Tt T T B T T B
o 6F_8F¢'+6F'+8F_
a; = 6“1’—1 - 8'U/za; i—1 aquOz—l 6u771—1;
b — oF 6F¢_+8F .+6F.
Y Ou; Ougg é)uz% u
OF OF biss + OF +6F
C; = = 5V A Pi a T 3
Ouiy1 OUgy + 8uz(p+1 au"“
oF
b = 4 )
Oa
where i =1,2,...,N — 1,
afl _ afl R 8f1 _ 8f1 . afl _ afl . a—fl 6]01

= = _ b = = — = = 6 e
an Oun_o 6uz¢N 20 ON Oun_1 3uz¢N 1, cN Oupn 3um(pN+ ou N Oa

Finally,

o7 og
L C A
4 8’114 ’ Oa ’
where j = 0,1,...,N.

3. HANDLING OF SPECIAL LINEAR SYSTEMS

As has been pointed out in Section 1, at correction iterations in CONTENT, one has to solve linear

systems of the following form
Fy _
(vT>Y_Z

where v € RX is the tangent vector to the curve at a previous point. Therefore, this system can be
written as

ag by co o Yo Zy
ap by ¢ o1 Y Zy
ay by c P Y, Zy
an—2 bn_2 cn—2 ON—2 Yno | | Zn-2 (3.1)
an—1 by—1 cn-1 SN Yn_1 ZN-1
an by cN On Yn VAN
Po D1 P2 PN—2 PN-1 PN o 0l w

The right-hand side of (3.1) is composed of the given vectors Zy, Z1,...,Zy € R* and p € R™. The so-
lution is Yy, Y3,..., Yy € R and v € R™. The matrix row (ag, bg, co, - --,60) and (an,bn,cn,...,0N)
corresponds to the discretization of the left and right boundary conditions, while the matrix rows
(aiybiyCiy...,6;) with ¢ = 1,2,..., N — 1 are due to the discretization of the differential equations
along the space interval. Finally, the bottom matrix row (pg,p1,...,pn,P) corresponds to the user
conditions and the appended vector v tanget to the continued curve. In CONTENT, each correction
iteration require the solution of two linear systems (3.1) with the same matrix but with different
right-hand sides. Therefore, any solving procedure should be separated into a decomposition and a
backsubstitution.

Since the matrix of the system (3.1) has the special structure, we solve it by a modified block
elimination method (cf., [16], Ch. 2.4). Let us seek the solution of (3.1) in the form
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Yi=AYi41+B;+D;y, i=0,1,...,N -1, (3.2)

where A; and D; are unknown matrices of dimension n X n and n X m, respectively, while B; € R™ is

an unknown vector. Using the representation (3.2) and the regular matric rows of (3.1), one obtains

fori=1,2,...,N -1

[(a;A;—1 +b)A; 4+ ¢)Yig1 + [(a;Ai—1 + ;) D+ (a;Di—1 + 8;)]y + [(a;Ai—1 + b)) Bi — (Z; — a;B;—1)] = 0.

Since this equation must hold for arbitrary Y;;; and 7, we conclude

(a;idi—1 +b))A; = —c
(a;Ai1 +b;))B; = (Z; —a;B;_1) (3.3)
(aidi—1 +b;))D; = —(aiD;—1 + 6;).

Equations (3.3) allow to find the matrices A; and D; and the vector B; if A;_1,D;_; and B;_; are
known. Having in mind (3.3), the problem of finding the coefficients in (3.2) is reduced to determining
Ao, DO and B().

From the top matrix raw in (3.1) and the representation (3.2) for Yy and Y7, follows
[(avo + bo)A1 + Co]Y:q + [(CL()A() + bg)Dl + (a(]DO + 60)]’)’ + [(CL()AO + bo)Bl + (CLOBO — Z(])] = 0
Since this equation must also hold for arbitrary Y5 and -, we should have

(apAo + bo)A; +¢o =0,
(a0 Ao + bo) By + (ag By — Zy) =0,
(agAg + bO)Dl + (aoDo + 60) =0.

Using these equations and (3.3) for ¢ = 1, we obtain the following equations to compute Ay, By and
_D(]:

(CL() — C(]Cl_lal)Ao = (C(]Cl_lbl — bo),
[ao — (aoAg + bo)(alAg + bl)_lal] BO = [ZO — ((J,OA() + bg)(a1A0 + bl)_lZl] ,
[ao - (avo + bg)(alA(] + bl)_lal] -DO N [(50 - (aoAO + bo)(a1A0 + bl)_lél] .

The above formulas allow to compute the coefficients in (3.2).

For the recurrent computation of ¥; via (3.2), the values of Yy and « are required. To find Yy we
notice that (3.1) implies
anYn—2 +bnYn_1 +cnYN +6ny = Zn.

This equation and the representation (3.2) for i = N — 2 and i = N — 1, lead to

[(anAn—2 +bn)AN—1 +cen]Yy = —[(anAn—2+bn)Dn_1+ (anDn—_2+6n)]Y
+ [(Zyv —anBn-2) — (anANn—_2 + bn)Bn_1]

as the equation for Yy. Therefore,
Yy =Upn+ WN’Y; (34)
where vector Uy € R® and n X m-matrix Wy are defined from the equations

[(aNAn—2 +bn)AN—1 +cen|Uny = [(Zy —anBn-2) — (anANn—2 +by)Bn-1],
[(anAn—2 +bn)AN_1 +en]WN = —[(avAN—2 + bN)Dn_1 + (anDn_2 + 6n)]

Similarly to (3.4), we represent the rest of the solution vector as
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Y, =U;+W;y, i=0,1,...,N —1. (35)

Substituting (3.5) into (3.2), we obtain the recurrent relations for U; and W;:

Ui = AiUit1 + B;,
Wi = AW+ D

Finally, the unknown vector v € R™ can be found from the bottom matrix row in (3.1), i.e.
N N
(ZpiWi + @) T=48- ZpiUi-
i=0 i=0

The above solving procedure allows for the separation into the right-hand side independent decom-
position and the backsubstitution with different right-hand sides.

In the manipulations above it is assumed that all matrices appearing in the intermediate linear
systems are nonsingular, as well as the conditions for stability of the reccurent procedure (3.2) are
valid:

167 aall + 167 el < 1

(see [16]). This implicitly defines a class of nonlinear evolution problems (1.1) which stationary
solutions can be continued by the described algorithm using a given mesh O .

One can see that the computational time required to solve the system (3.1) behaves as ~ n®N, i.e.
linearly increases with the number of the mesh points N.

Remark: To detect branching and limit points along the solution curve, one needs to compute the
determinants of the matrix J from (3.1) and its submatrix M obtained by ignoring the bottom
matrix row (pg,p1, - .., PN, @), as well as the right matrix column (6, &1,...,65)7. To compute these
determinants simultaneously, the matrix J is reduced to the upper trianglular form by means of the
Gauss elimination with pivoting, taking into account its block structure. More precisely, first we look
for the dominant pivot element in the submatrix M; if it vanishes, det M = 0, and then the pivot
elements are searched for in the whole matrix 7.

4. MESH ADAPTATION
It is well known that the accuracy of the finite-difference approximation of differential equations on any
mesh strongly depends on the spatial behavior of their solutions. It means that the mesh Oy should
be selected according to this behavior. Since the shape of the solution usually vary with parameters,
the mesh has to be adaptive.

4.1 Mesh point selection criterium
One of the possible criteria for mesh selection is the requirement for the approximation error for the
first derivative to be uniformely distributed over the space interval (see, for example [11], [15]).

The approximation (2.4) on the nonuniform mesh (2.1) leads to the following expression

with the local error 1
R(%;) = Euzzz(iz)(hf + hihiy1 + h12+1)7

where h; = z; —z;_7 >0, 4 =1,...,N. To estimate the spatial dependence of the error, assume
that N is big enough and consider a smooth functiuon h = h(z), h(z;) = h;. Then

h,‘+1 ~ h,[l + hm(.’bz)], i = 1,2,.. .,N— 1.
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Therefore,

1

Clearly, if we take )
h; = C’||uzm(z,)||_5

with a constant C' > 0, the norm of the leading term of the local error R will be uniformely distributed
over the internal points, having the value %02. Note that in this case we have h, = —%[In |ezzel|]zh-
Therefore, for sufficiently smooth functions u(z), |h,| < 1.

Finally, we can write our mesh point selection criterium in the form
S(@i)(i — xi—1) = C, (4.1)

where S(z) = |[tgze()]|Z. In the implementation, we compute ugqeqs(x;) using five-point finite-
difference approximation on the previous mesh and take

1
S(z) = { [uzze ()%, tezz(2)|| > €2,
g, luzea(z)]| < €2,
with some € < 1. This modification is natural, since for small ||uzz|| the equation (4.1) with modified
S(z) is satisfied on the uniform mesh, where the approximation formula (2.4) is exact for polynomial
functions of degree two.

4.2 Numerical procedure
To solve (4.1) for z;, one can use different approaches. The simplest one is to consider (4.1) as
first-order analog of

Y Sy = ¢ = £ 1S(m)dm (4.2)
Ti_1 N 0

(see [15]). Solving the equation (4.2) using the linear interpolation of S(z) between the mesh points,
amounts to solution of a quadric for each z;, ¢ = 1,2,..., N — 1. The linear interpolation guarantees
the monotonicity of the mesh, i.e. z; > z;_1.

Thus obtained solution © 5 to (4.1) may be improved by Newton iterations applied to the nonlinear
system
S((El)fﬂl — S(l‘z)((ﬂz — ZEI) = 0,
S((L'Z)(Ez - mi—l) - S(mi+1)($i+1 - il?z') = 0, = 2, ... ,N — 2,
S(mN—l)(zN—l - ZEN_z) - S(l)(l - zN—l) = 0,

which is another form of the presentaion of (4.1). The Jacobian matrix of this system is tridiagonal,
therefore we can solve the linear systems appearing at the Newton iterations by the standard elimi-
nation method ([16], Ch. 2.1). The condition of stability for this method, as well as the monotonicity
of the resulting mesh, are checked during iterations. The iterations are also aborted when the norm
of the left-hand side happened to increase.

Remark: To recompute the approximate solution of (1.4) using the new mesh, two types of interpola-
tion are employed: either the interpolation by the global cubic spline or the linear interpolation.

5. PROBLEM SPECIFICATION IN CONTENT

To specify a new problem (1.1) in CONTENT, one should open the system specification window and
fill in its fields with the names and formulas describing the system. The following table gives the
correspondence between usual mathematical notations and those used in CONTENT.
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term | specification
Uy u_t
Uy u_x
Ugy U_X_X
I | BC
i1 BC.i

As an example let us specify the following two-dimensional problem which will also be considered
in the next Section:

22 ’
n2
V¢ = Ugz — T7V, (5.)
u(0) =1, v(0) =exp(-2),

Edit Search Help Show |}

Components Iu,v
Parameters Ieps,n
Time It

Space coordinate Ix

Compute derivatives 1st order 2nd order 3rd order 4th order Sth order

- numerically & L4 < ¢ <

- symholically o <& <&

- by aroutine o o & s &
u_t=u_x_z-m#(n+l)/ (epssepa) spom (U, 1+2/1) 5 E
y_t=v_g_z-min/ (epatkeps) tu;

Boundary conditions at the left end of the unit interval
BC_OZuEO% -1; =
BC_1=w(0)-1/exp (nfeps) ;

] ] el

Figure 5.1: Example of system specification

Figure 5.1 shows the system specification window for this example. Four top fields contain the
names u,v,eps,n,t,x of all the variables used: components (v and v), parameters (¢ and n), time
(t), and space corrdinate (z). The equations are specified in the field in the middle of the window.
Note that in CONTENT these are assignment statements in the C programming languge. The boundary
conditions at the left end of the unit interval are specified in the field at the bottom of the window.
The values of components and their derivatives are denoted by u(0), v(0), ux(0), and v_x(0). BC_0
and BC_1 are the artificial names used to refer to the first, second, etc. boundary conditions. Similarly,
the boundary conditions at the right end of the unit interval can be specified after switching to an
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appropriate input field via the window’s menu. Input fields for boundary conditions overlap each
other with only one field visible at a time. The values of the components and their derivatives at the
right end of the interval are denoted by u(1), v(1), ux(1), and vx(1). This allows one to use the
same names (BC_0, BC_1, etc.) for both left and right boundary conditions.

Check boxes in the middle of the window allow one to choose the method CONTENT will use when
computing derivatives of the equations and the boundary conditions. The values of the derivatives
are used to fill in the matrix in (3.1). In our example the first order derivatives will be computed
symbolically, that is by a program for derivatives which CONTENT internally creates using the equations
and boundary conditions. For more information see [12].

6. EXAMPLES

Here we present several examples of computations made by CONTENT.

Debuy Select Window Type Compute Dptions Help Continuation data

InitStepsize 0.01
Class PDE on the unit interval CurrentStepsize 0.0815731
System Hyperhole and exponant MinStepsize 1e-05
Diagram  diagram Discretization data MaxStepsize 01

Curve eshPoints 31 Corrector data
Point type Steady state Jacobian data Maxlter 10
B:ﬁ:;t!';l:r; :t::iynsme nerement  1e-05 MaxNewtonlter 10
Status Ready Monitor singularities YarTolerance 1e-05
Duration  00:00°18 ranching no yas FuncTolerance 1e-05
Message F tpoint no wes TestTolerance 0.001
e . Standard functions MaxIterTest 20
. hotm no was Stop data
Compute Window  Help inéMax  no ;es MaxNumPoints . 1000
Interpolation method BeforeClosureCheck 10
Parameters nterpolation linear BetweenAdaptation 1
eps 00264133 Set initial point Output dgta

n : Edit... || OutLevel

Compute Window Attributes Mouse Help Compute Window Attributes Mouse

; |1.1

Help

Ahscissa |-0.1 . |1.1 Ordinate I-U.I - |1

7

Ahscissa I =01 Ordinate | =01

u ¥

012 < AR Horzb A FA NN

X 3
11]

9 1

01 02 03 04 05 O

i i
0 6 07 08 0

Figure 6.1: Tutorial example
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6.1 Tutorial example
Consider the problem given by (5.1) from the previous Section. It has an explicit stationary solution:

u(z) = (1+§)_", w(z) = exp [M]

[

Clearly, ||uz||? + ||vz]|?> — oo at both ends of the interval [0,1] as € — 0, due to the u-componet at
z = 0 and the v-componet at z = 1, respectively. The figure illustrates the mesh adaptation while
continuing the solution to the problem starting from € = 1 to € = 0.026.... Here the value of the
parameter n = 2 and the number of mesh points is N = 31. As the initial distribution of u(z) and
v(z) at € = 1 we took the corresponding explicit solutions given above. The Figure 6.1 presents the
trajectories of the mesh points as the parameter varies; they visibly accumulate on the ends of the
interval.

Debug Select Window Type Compute Options Help

| Class PDE on the unit interval

| System  Bratau

| Diagram  dgm Compute Window Help Initial point

 Curve t 0

| Pointtype Steady state 0

| Curve type  Steady state Parameters Discretization data

| Derivatives snnnn lambda 4.10136e-06 MeshPoints 51

| Status Ready Jacobian data

. Duration  00:01:36 A | Increment  1e-05

| Message  Limitpotnt Monitor singularities

g Branching nu yes

Limit point s yes
User defined functions

stop ignore

| Abscissa |0 . |4 Ordinate |0 . Standard functions

L2 norm i yes

Min&Max  no s
Interpolation method

Interpolation cubic_spline

Setini oint
etlnitPoint Edit...

Compute Window Attributes Mouse Help

Continuation data
nitStepsize 0.01
urrentStepsize 0302875
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Figure 6.2: Bratu equation

6.2 Bratu equation
As the second example, consider the following scalar boudary-value problem

Uz + A =0, u(0) =u(l)=0.
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At X\ =0, the distribution u(z) = 0 is a regular solution to the problem, which was taken as the initial
point for the continuation. The dependence of the Ly-norm of the solution on A is given in Figure
6.2 with the number of mesh points N = 51. There is a limit (fold) point on the solution curve at
A = 3.51..., that has been detected as det M = 0 (see Remark in Section 3) and is indicated by LP
in the figure. The continuation can be successefully performed up to very small A < 10729,

6.3 A singular-perturbed problem
Next, consider a singular-perturbed boudary-value problem by J. Lorenz [13]

{ EUpy — %)\[(uz -1)?, —u =0,
w(0) = 4, u(1) =7,

where € <« 1. This problem is used as the demo example spb in AUTO94 [6].

1.75

15

>

125 -

0.75 |-

05 -

0.25 -

. AN

-0.25 \ \ \ \ \ \ \ \ \
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Figure 6.3: J. Lorenz’s example: continuation in €.

Figure 6.3 shows the results of the continuation of the solution for fixed

3
A = — = ]_ A == ].
2 b ’y b k)
with respect to € from € = 1 to € = 0.001, starting from the exact solution to the problem at A = 0
and using N = 501. The solutions are plotted for € = 1.0,0.5,0.25,0.1,0.005,0.0025, and 0.001. The
value of € decreases “up down”. The formation of an internal boundary layer near x = 0.1 is clearly
visible.

Taking the solution corresponding to € = 0.0025 as initial, we have continued it with respect to the
parameter . Representative solutions are depicted in Figure 6.4, where the appearance of the second
internal boundary layer is evident. This boundary layer moves from the right to the left as v decreases
and collides with the first boundary layer forming a single layer, which continues to drift to left.
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Figure 6.4: J. Lorenz’s example: continuation in vy

Because of the presense of the internal boundary layers, the linear interpolation was employed to
recompute the solution of (1.4) on the new mesh (see Remark in Section 4).

6.4 Nonlinear elasticity problem
Finally, let us consider the following equation

e [(1 0 e (14 2) 4240 (14 D))+ 20— )1+ )1+ 0) +

%{ur (1+%)(23+ur—Aq)+2q (H%) [A(ur—q)—B(1+q)]} =0,

with the boundary conditions

)
u(l) =6, u(R) = 2.
for R > 1. Here u
q=-.
r

This is a generalization of the classical spherically symmetric linear Lame problem to the case of finite
deformations that can be obtained following Rabotnov [14] (Ch. 7.9). In this case u(r) is a scaled
radial displacement as the function of the radius r,

A
_ X g
A+2u A42p

where A and p are Lame elastic coefficients. In this example the term with the highest derivative can
vanish at the left end point r = 1.

Figure 6.5 presents the continuation of the solution to the above boubdary-value problem with
respect to § at A =1, B =0, that corresponds to the incompressible media.
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Debug Select Window Type Compute Options Help

| Class PDE on the unit interval | Compute Window Help
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Diagram  diagram
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Figure 6.5: Nonlinear elasticity problem

The top curve in the right window represents the dependence of Der = u,(1) on the boundary value
delta = u(1); the bottom curve corresponds to zero of the coefficient of the u,-term at r = 1. Using
N = 51 mesh points, a common point with Der = —1 has been reached.

As can be shown, for A =1, B = 0, the original equation has the first integral
Uy
Uy (1+5) +q(2+q)=0

The mean squared value of this integral over the interval [1, R] was monitored in the é-continuation.
In the present example this value increased from ~ 10~7 at the begining of the curve (6 = 0.02) to
0.0048. .. at the last point of the continuation.

In the left window in Figure 6.5, the dependences u(r) are presented at the last point of the
continuation for the linear approach (top curve) and the nonlinear approach (bottom curve). Note,
that in the linear case (when u, < 1), the function

represents the exact solution to the problem.
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