Analysis in several variables

Additional exercise

A real symmetric matrix $A \in \operatorname{Mat}(n, \mathbf{R})$ is said to be positive definite if $\langle v, A v\rangle>0$ for all $v \in \mathbf{R}^{n} \backslash\{0\}$.
a) Show that for any $B \in \operatorname{Mat}(n, \mathbf{R})$ symmetric and positive definite, there exists a unique symmetric positive definite matrix $A \in \operatorname{Mat}(n, \mathbf{R})$ such that $A^{2}=B^{3}$.
Hint: any symmetric matrix is diagonalisable.
From now on, let $A, B \in \operatorname{Mat}(n, \mathbf{R})$ be two fixed positive definite symmetric matrices such that $A^{2}=B^{3}$.
The goal of this exercise is to use the implicit function theorem to show that for any matrix Y sufficiently close to B there exists a unique matrix X near A such that $X^{2}=Y^{3}$ and that, moreover, this matrix X depends smoothly on Y. To this end, consider the function

$$
F: \operatorname{Mat}(n, \mathbf{R}) \times \operatorname{Mat}(n, \mathbf{R}) \rightarrow \operatorname{Mat}(n, \mathbf{R}),
$$

given by $F(X, Y)=X^{2}-Y^{3}$.
By identifying $\operatorname{Mat}(n, \mathbf{R}) \simeq \mathbf{R}^{n^{2}}$, we can interpret F as a function from $\mathbf{R}^{n^{2}} \times \mathbf{R}^{n^{2}}$ to $\mathbf{R}^{n^{2}}$ and try to apply the implicit function theorem. In terms of the matrix entries $X_{i j}$ and $Y_{i j}$, the function F is a polynomial and it will therefore in particular be C^{∞}.
b) Calculate the (total) derivative

$$
\mathrm{D} F(A, B) \in \operatorname{Lin}(\operatorname{Mat}(n, \mathbf{R}) \times \operatorname{Mat}(n, \mathbf{R}), \operatorname{Mat}(n, \mathbf{R}))
$$

by working out $F(A+H, B+K)$ for $(H, K) \in \operatorname{Mat}(n, \mathbf{R}) \times \operatorname{Mat}(n, \mathbf{R})$.
c) For $H \in \operatorname{Mat}(n, \mathbf{R})$ arbitrary and $M=\mathrm{D} F(A, B)(H, 0) \in \operatorname{Mat}(n, \mathbf{R})$, show that the trace of $H^{T} M$ can be expressed as

$$
\operatorname{tr}\left(H^{T} M\right)=\operatorname{tr}\left(H^{T} A H\right)+\operatorname{tr}\left(H A H^{T}\right) .
$$

d) Use the fact that A is positive definite to show that $\operatorname{tr}\left(H^{T} A H\right)>0$ whenever $H \neq 0$. Then prove that $\mathrm{D}_{A} F(A, B):=\left.\mathrm{D} F(A, B)\right|_{\operatorname{Mat}(n, \mathbf{R}) \times\{0\}}$ is an invertible linear map from $\operatorname{Mat}(n, \mathbf{R}) \simeq \mathbf{R}^{n^{2}}$ to itself.
e) Prove that there exist open neighbourhoods $U \subseteq \operatorname{Mat}(n, \mathbf{R})$ of A and $V \subseteq \operatorname{Mat}(n, \mathbf{R})$ of B and a unique C^{∞} function $f: V \rightarrow U$ such that for $(X, Y) \in U \times V$

$$
X^{2}=Y^{3} \Longleftrightarrow X=f(Y)
$$

