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— Solutions —

Exercise 1.

(a) G inverts the distance of points to the origin. It preserves all radial rays and
interchanges the sphere of radius r centred at the origin with that of radius %

(b) This can be done in several ways:

1. Let x € U, then by Hadamard’s lemma there exist continuous functions
¢: U — Lin(R™",R) and I': U — Lin(R"™, R™) such that

fy) = f@)+ )y —x) and  Gly) = G(z) +T(y)(y — )
for all y € U. Moreover, ¢(z) = Df(x) and I'(x) = DG(z).

Consequently, we find that

(fG)(y) = f(y) (G(z) + T(y)(y — x))
= f(2) G(x) + d(y)(y — x) G(x) + f(y) T(y)(y — x)
= fG(z) + H(y)(y — ),

where H: U — Lin(R",R") is the function given by
H(z) = f(x) P(y) + G(z) ¢().

Continuity of H follows by application of the sum and product rules for
continuous functions. By applying Hadamard’s lemma again, we conclude
that fG is differentiable at x, with total derivative

D(fG)(z) = H(x) = f(2)T'(z) + G(2)¢(z) = f(z)DG(x) + G(z) D f ().

2. Because f and G are differentiable by assumption, one can write
flx+h)=f(x)+ Df(x)h+ Rs(x+ h)

and
G(z+ h) = G(x) + DG(z)h + Ra(z + h).

Here Ry: U — R and Rg: U — R" satisfy

h
lim M =0 and lim M

= 0.
h=0 |[Al] h=0  [h]]

By working out the product of these two expressions, one obtains

(fG)(z + h) = f(2)G(z) + (f(z)DG(z)h + Df(x)hG(x) ) + Ryc(z + h),



where the final term reads
Ric(x+ h) = Df(x)h DG(x)h + Rs(x + h)G(x) + f(x + h) Rg(x + h).

Since h — G(x) and h +— f(x+ h) are continuous functions, we obviously
have

Re(x + h)

lim Rf(x + h)
il

=0.
h—o Rl

G(r)=0 and }Lir% f(z+h)

For the first term, we can make the estimate

|Df(@)R[|IDG ()R] _ [ Df (@) [IDG (@) 2]

= [[Df @) 1DG ()[R,

Al B Al
so this also vanishes in the limit for A~ — 0. We conclude that
R h
lim UG TR
h—0 Al

Hence, fG is differentiable and its total derivative is given by

D(fG)(x)h = f(2)DG(x)h + Df(2)h G(z)
= (f(#)DG(z) + G(z)Df(x))h.

3. One can use the fact that an R"-valued function is differentiable if and
only if all of its components are.

For 1 < i < n, the i-th component of fG is given by (fG);(x) = f(x)G;(x)
and is a product of scalar functions. Both f and G; are differentiable by
assumption, so one may conclude from the product rule that their product
is as well, with total derivative

D(fG)i(x) = Gi(x) Df(z) + f(x) DG;(x).

Since each of its components are differentiable, the original function fG
is as well and its derivative is given by
D(fG)1(x)h Gi(z) Df(x)h + f(z) DG1(2)h
D(fG)(x)h = : = :
D(fG)u(@)h)  \Gulw) Df(@)h + f(x) DGr(a)h.
More concisely, we read off that D(fG)(x) = G(x)D f(z) + f(z) DG(z).

(b) In our specific case, we have that f(z)G(x) = x for all x € R™ \ {0}, so
fG =id. From this, it follows that

D(fG)=GDf + f DG = Did = id.

We know the derivative of f: 2 + ||z||?> to be Df(z)h = 2 {(x,h) = 22"h, so
the above identity tells us that

DG(x) = f(z)~'(id - G(z) - Df())
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where for z € R\ {0}, A(z) denotes the matrix

zxT
[EdIk

Alx)=1

(c) We recognise A(x) as the matrix representing a reflection in the plane perpen-
dicular to x. We will verify that this is an orthogonal transformation.

Because A" (z) = A(z), we see that

2

zxT zxT zxTx T
=1 - +4

||fEH2> |2 el

A" (2)A(z) = (1 —9

Because 27z = ||x]|?, the last two terms cancel out and we may conclude that
AT(2)A(x) =1? = 1.

Exercise 2.

(a) Introduce g : R? — R by

2 2 2
g(m) ? + b7 + 9

so that M = {z € R? : g(x) = 1}. A simple computation shows that the
derivative of g at z € R3 reads

(1)

21’1 2%2 2:(}3
Do) = (251 52 23,

which is non-zero for all x # 0. Hence g is a submersion at every point z € M
and its geometric tangent space at x is given by

T,M = {y € R* | Dg(z)(y — x) = 0} = {y € R* | Dg(z)y = 2}.

21’1 21’2 2{L‘3
a2 I b2 To +

For this have used that Dg(x)x = x3=2g(x) =2.

2
c
(b) The distance from the origin to the tangent plane at x € M can be found

through either a geometric argument or by applying the method of Lagrange
multipliers.

1. The distance from the origin to the plane will be equal to the length
of the component of z € T, M orthogonal to it. Since we know that
grad g(x) = [Dg(z)]" is orthogonal to the tangent space T, M, this length
will be given by

a(0. 7, 00) = Sgrade(@) - Do(x)e

lgrad (=)l [[Dg(x)]

We have already computed the numerator Dg(z)x = 2, and the denomi-
nator can be read off from equation (1). We thus obtain




2. One may also arrive at this answer through the method of Lagrange
multipliers. The distance d(0, T, M) is then obtained by minimising the
function f: z — ||z||? on the geometric tangent plane T, M. Since the
plane T, M C is a closed subset of R3, f assumes a minimum on it at some
point yo € T, M and the distance from the origin to the plane will be the
square root of this minimum. (NB: The intersection T, M N B(0, R) is
compact and non-empty for an appropriately chosen R > 0. The norm
assumes a minimum on it, which is in fact a global minimum.)

The point yo € T, M will necessarily be a critical point for f, which
means that grad f(yo) = 2yp is orthogonal to T, M, hence parallel to
grad g(x). Let A € R be such that yo = A grad g(x), then we see that
(since yo € T, M)

Dg(x)yo = (grad g(z), A grad g(z)) = A || grad g(«)||* =
We derive that A = 2| grad g(x)|| =2 and that therefore

9 1‘% 2 2 _%
il = Wllmtstol = = (542 )
lyoll = |AL ()|l | grad g(z)||

This confirms our earlier conclusion.

3. The critical point described in part 2 also corresponds to a critical point
for the Lagrange function

L:R*xR—R, (¥, A) = f(y) — Xh(y),

where f(y) = ||y||* and h(y) = Dg(z)y — 2.

Since Df(y) = 2y" and Dh(y) = Dg(z), the equation DL(y,\) = 0
becomes

DL(y) = (Df(y) — ADh(y),h(y)) = 2y" — A Dg(x), Dg(x)y — 2) = 0.

Solving this system of equations essentially comes down to following the
steps from option 2.

Exercise 3.

(a) The function ® is clearly C°°, and we can explicitly compute its derivative

B(0,1) = (9p(0,1) 8,9(6,1))

—ﬂfsin(%@) cos — (2+tcos(30))sind cos(30) cos 6
= stsin(56)sind 4 (2 + tcos(56)) cosf cos(50) siné
$tcos(36) sin(30)

There are at least three ways to verify that D®(6,t) is injective for all (0,t) €
D, so that ® is an immersion.



1. One can compute the determinant of the upper 2 x 2 block of D®(6,1t).
This determinant equals

—(2 + tcos(30)) cos(36).

This is non-zero for all (0,¢) € D, meaning that D®(#,¢) has rank 2 and
that ® is an immersion.

2. One can also decompose

cosf —sinf 0 —$tsin(30) cos(36)
D®(9,t) = [ sind cos6 0] [2+tcos(30) 0
0 0 1 Ftcos(36)  sin(30)

Since 2+t cos(36) > 0 for (6,t) € D, the two columns of the 3 x 2-matrix
on the second line are linearly independent. Because the square matrix
that was factored out is invertible, we conclude that D®(0,t) is injective
and that ® is therefore an immersion.

3. Another option is calculating the cross product Jg®(0,t) x 0;®(6,t). The
third component of this cross product is

—(2 + tcos(36)) cos(360)(sin? @ + cos? 0) = —(2 + t cos(36)) cos(36).

This is non-zero for all (6,¢) € D, which means that the columns of
D®(6,t) are linearly independent. We conclude that D®(6,¢) has rank 2
and that ® is an immersion.

(b) For (z,y) € R? of the form (z,y) = p (cos ¢,sin ¢) with p > 0 and ¢ €] — m, [,
one can recover p = \/z2 +y? and ¢ = 2 arctan(p%z). We therefore define

p:RQ\{(O,O)} —]0,00[, and  ¢: RQ\{(:B,O) | z <0} =] —m,7[

by setting
p(x,y) = Va2 +y? and ¢(x,y) = 2arctan (y) .
p(z,y) +
Since all functions involved are smooth on their domain, p and ¢ are C* as
well.

If (z,y,2) = ®(0,t), then we see that § = ¢(z,y) and 2 + tcos(36) = p(z,y),
from which ¢ can also be obtained since COS(%Q) # 0. This leads us to conclude
that the map ¥: R\ {(z,0,2) € R? | z < 0} —] — 7, 7[xR such that

o(z,y)
\IJ(x,y7 Z) = < p(z,y)—2
cos(3(z,y))

is a left-inverse of @, i.e. Vo ® =id: D — D. We deduce that ® is injective
and that its inverse is the restriction ¥|g(p): (D) — D.

Since we have described it as a composition of continuous functions, V¥ is also
continuous, as is the restriction W|gpy: ®(D) — D. We conclude that ® is
a C* embedding and that its image ®(D) is therefore a 2-dimensional C'*°
submanifold of R3.



(c) Notice that each term in g has factor (2 + tcos(36)). This implies

g = (2+tcos(30)) [4sinf + 4t cosOsin(10) — sin 6 (4 + 4t cos(36) + t2)
+ 2tsin(10) (2 + tcos(16))]
= (2+tcos(30)) [4t (cos@sin(30) — sin 6 cos(30))
— t%sinf + 4t sin(36) + 212 sin(£6) cos(30)]
= (2+tcos(30)) [—4tsin(36) — t*sin 6 + 4tsin(360) + t*sinf] = 0,
since
2sin($6) cos(36) = sin
and
cos fsin(36) — sin cos(360) = sin(360 — 0) = —sin(36).
We conclude that g(®(0,t)) =0 for all (0,¢) € D.
(d) One can parametrise the circle S by f: ] — m, 7] — R3,0 + (2cos,2sin6,0).
Note that f(] — m,7[) C ®(D) because f(0) = ®(6,0) for 6 €] — 7, «[.

The fact that f is continuous then tells us that

fQ=mm) = f(T=mrl) SFT-maD €V =M,

where | — m, w[ =] — 7, 7] denotes the closure of | — w, 7| in | — 7, 7.

One way to derive this is by writing 7 = lim,,_,« a,, for some sequence (ay)nen
with a,, €] —m, 7|, so that f(7) = lim, 00 f(ay) by the continuity of f. From
this we conclude that f(7) is a limit point of f(] — m,w[) C V and is therefore
in the closure M = V.

The gradient of g can easily be computed, and reads
4xg —2x1 10 + 421 X3
gradg(z) = [4— (23 + 23+ 23) — 223 + 42329
4y — 2wy w3 + 2 (22 + 23)

By plugging in = = f(#), we obtain the expression

—8cosfsinf —sin(20)
gradg(f(0) = [4—4—8sin?0 | =4 | cos(26) — 1
8cosf + 8 2(cosf+1)

The last component is non-zero for all § €|r, 7[, while for # = 7 all components
vanish. Thus, g is a submersion at every point of S except for f(m) = (—2,0,0).

This shows that V' is a submanifold at every point in SNV, corroborating the
conclusion from part (b).

(e) Here again several approaches are possible.

1. Since we have shown that the function g is a submersion at x = ®(6,0) =
f(9) for 6 €] — m,7w[ and V C g~1({0}), we also know that the gradient



grad g(z) is normal to the tangent space T (9,0)V. Because grad g(f(0)) =
(0,0,16), it follows that also ng = (0,0, 1) is orthogonal to T o)V

The function n described in the exercise is obtained by normalising the
vectors grad g(f(0)) for 6 €] — 7, w[ and setting

—sin(20)
o eadg(fe) 1 [ w2
O Tarad o FO ~ 1leos G \5omg 1)

A few trigonometric identities have been applied to obtain the final, sim-
plified expression:

sin?(26) + (cos(26) — 1)% 4+ 4 (cos§ + 1)?
= sin%(260) 4 cos®(260) — 2cos(26) + 1 + 4 cos? O + 8cos f + 4
=6 — 2(cos? 0 — sin? ) + 4 cos? 0 + 8 cos
= 8+ 8cosf = 16 cos*(36).
We note that |cos(36)| = cos(36) for —r < 6 < m, so that the limits
limp_, 1 n(6) can be obtained by applying I’'Hopital’s rule:
—sin(20)

1
lim n(f) = lim ——— [ cos(26) —1
0 tr 6—Em 4cos(%9) 2(cosf+1)
. —sin(20)
= lim ————— [ cos(20) — 1
d

o—xr fdcos(50)do | (cos® + 1)

—2cos(26)

= lim ————— | —2sin(20)

O—tm —2 sm(%g) —2sinf

This is just the limit of a continuous function, so we read off that

1 1
limn(@) = |0 and lim n(@)=—-1{0
0—m 0 0——m 0

. A somewhat different approach involves the cross product dy®(6,t) x
0;®(0,t) of the partial derivatives of part (a). Because ® is an immersion,
this cross-product is non-vanishing for every (,t) € D, and is orthogonal
to the tangent space Tgg,)-

Since at 9p®(0,0) = (0,2,0) and 9,P(0,0) = (1,0,0), we have 9pP(0,0) x
0:®(0,0) = (0,0,—2) and we can again conclude that no = (0,0,1) is
orthogonal to T )V -

Because 9yp®(0,0) x 9;®(0,0) and ng are pointing in opposite directions,
an additional minus sign needs to be introduced in the definition of n, so

that
_ —0p®(0,0) x 0;2(0,0)

0) = .
0) = 15,50.0) x 5,9(0.0)]
This will lead to the same answer.




(f) The Mobius strip M is a smooth 2-dimensional connected manifold with
boundary in R3. It is similar to a cylinder in the sense that it can be de-
scribed as the union of a continuous family of line segments over the circle,
but these line segments are gradually twisted as one goes around the circle.
This happens in such a way that if one follows a line segment around the circle
once, its end points are interchanged. (It is a non-trivial fibre bundle.)

The M&bius strip is non-orientable, which can be expressed by saying that it
has only ‘one side’. This was demonstrated in part (e), where a vector normal
to the surface was continuously transported around the loop once and ended
up on the ‘other side’.




