MIDTERM MULTIDIMENSIONAL REAL ANALYSIS

APRIL 16 2012, 13:30-16:30

- Solutions -

Exercise 1.

(a) G inverts the distance of points to the origin. It preserves all radial rays and interchanges the sphere of radius r centred at the origin with that of radius $\frac{1}{r}$.
(b) This can be done in several ways:

1. Let $x \in U$, then by Hadamard's lemma there exist continuous functions $\phi: U \rightarrow \operatorname{Lin}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ and $\Gamma: U \rightarrow \operatorname{Lin}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ such that

$$
f(y)=f(x)+\phi(y)(y-x) \quad \text { and } \quad G(y)=G(x)+\Gamma(y)(y-x)
$$

for all $y \in U$. Moreover, $\phi(x)=D f(x)$ and $\Gamma(x)=D G(x)$.
Consequently, we find that

$$
\begin{aligned}
(f G)(y) & =f(y)(G(x)+\Gamma(y)(y-x)) \\
& =f(x) G(x)+\phi(y)(y-x) G(x)+f(y) \Gamma(y)(y-x) \\
& =f G(x)+H(y)(y-x),
\end{aligned}
$$

where $H: U \rightarrow \operatorname{Lin}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ is the function given by

$$
H(x)=f(x) \Gamma(y)+G(x) \phi(x) .
$$

Continuity of H follows by application of the sum and product rules for continuous functions. By applying Hadamard's lemma again, we conclude that $f G$ is differentiable at x, with total derivative

$$
D(f G)(x)=H(x)=f(x) \Gamma(x)+G(x) \phi(x)=f(x) D G(x)+G(x) D f(x) .
$$

2. Because f and G are differentiable by assumption, one can write

$$
f(x+h)=f(x)+D f(x) h+R_{f}(x+h)
$$

and

$$
G(x+h)=G(x)+D G(x) h+R_{G}(x+h) .
$$

Here $R_{f}: U \rightarrow \mathbb{R}$ and $R_{G}: U \rightarrow \mathbb{R}^{n}$ satisfy

$$
\lim _{h \rightarrow 0} \frac{R_{f}(x+h)}{\|h\|}=0 \quad \text { and } \quad \lim _{h \rightarrow 0} \frac{R_{G}(x+h)}{\|h\|}=0 .
$$

By working out the product of these two expressions, one obtains

$$
(f G)(x+h)=f(x) G(x)+(f(x) D G(x) h+D f(x) h G(x))+R_{f G}(x+h),
$$

where the final term reads

$$
R_{f G}(x+h)=D f(x) h D G(x) h+R_{f}(x+h) G(x)+f(x+h) R_{G}(x+h)
$$

Since $h \mapsto G(x)$ and $h \mapsto f(x+h)$ are continuous functions, we obviously have

$$
\lim _{h \rightarrow 0} \frac{R_{f}(x+h)}{\|h\|} G(x)=0 \quad \text { and } \quad \lim _{h \rightarrow 0} f(x+h) \frac{R_{G}(x+h)}{\|h\|}=0
$$

For the first term, we can make the estimate

$$
\frac{|D f(x) h|\|D G(x) h\|}{\|h\|} \leq \frac{\|D f(x)\|\|D G(x)\|\|h\|^{2}}{\|h\|}=\|D f(x)\|\|D G(x)\|\|h\|,
$$

so this also vanishes in the limit for $h \rightarrow 0$. We conclude that

$$
\lim _{h \rightarrow 0} \frac{R_{f G}(x+h)}{\|h\|}=0
$$

Hence, $f G$ is differentiable and its total derivative is given by

$$
\begin{aligned}
D(f G)(x) h & =f(x) D G(x) h+D f(x) h G(x) \\
& =(f(x) D G(x)+G(x) D f(x)) h
\end{aligned}
$$

3. One can use the fact that an \mathbb{R}^{n}-valued function is differentiable if and only if all of its components are.

For $1 \leq i \leq n$, the i-th component of $f G$ is given by $(f G)_{i}(x)=f(x) G_{i}(x)$ and is a product of scalar functions. Both f and G_{i} are differentiable by assumption, so one may conclude from the product rule that their product is as well, with total derivative

$$
D(f G)_{i}(x)=G_{i}(x) D f(x)+f(x) D G_{i}(x)
$$

Since each of its components are differentiable, the original function $f G$ is as well and its derivative is given by

$$
D(f G)(x) h=\left(\begin{array}{c}
D(f G)_{1}(x) h \\
\vdots \\
D(f G)_{n}(x) h
\end{array}\right)=\left(\begin{array}{c}
G_{1}(x) D f(x) h+f(x) D G_{1}(x) h \\
\vdots \\
G_{n}(x) D f(x) h+f(x) D G_{n}(x) h .
\end{array}\right)
$$

More concisely, we read off that $D(f G)(x)=G(x) D f(x)+f(x) D G(x)$.
(b) In our specific case, we have that $f(x) G(x)=x$ for all $x \in \mathbb{R}^{n} \backslash\{0\}$, so $f G=$ id. From this, it follows that

$$
D(f G)=G D f+f D G=D \mathrm{id}=\mathrm{id}
$$

We know the derivative of $f: x \mapsto\|x\|^{2}$ to be $D f(x) h=2\langle x, h\rangle=2 x^{\mathrm{T}} h$, so the above identity tells us that

$$
\begin{aligned}
D G(x) & =f(x)^{-1}(\mathrm{id}-G(x) \cdot D f(x)) \\
& =\frac{1}{\|x\|^{2}}\left(\mathrm{id}-\frac{x}{\|x\|^{2}} \cdot 2 x^{\mathrm{T}}\right)=\frac{1}{\|x\|^{2}} A(x)
\end{aligned}
$$

where for $x \in \mathbb{R} \backslash\{0\}, A(x)$ denotes the matrix

$$
A(x)=I-2 \frac{x x^{\mathrm{T}}}{\|x\|^{2}}
$$

(c) We recognise $A(x)$ as the matrix representing a reflection in the plane perpendicular to x. We will verify that this is an orthogonal transformation.

Because $A^{\mathrm{T}}(x)=A(x)$, we see that

$$
A^{\mathrm{T}}(x) A(x)=\left(I-2 \frac{x x^{\mathrm{T}}}{\|x\|^{2}}\right)^{2}=I^{2}-4 \frac{x x^{\mathrm{T}}}{\|x\|^{2}}+4 \frac{x x^{\mathrm{T}} x x^{\mathrm{T}}}{\|x\|^{4}}
$$

Because $x^{\mathrm{T}} x=\|x\|^{2}$, the last two terms cancel out and we may conclude that $A^{\mathrm{T}}(x) A(x)=I^{2}=I$.

Exercise 2.

(a) Introduce $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by

$$
g(x)=\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}+\frac{x_{3}^{2}}{c^{2}},
$$

so that $M=\left\{x \in \mathbb{R}^{3}: g(x)=1\right\}$. A simple computation shows that the derivative of g at $x \in \mathbb{R}^{3}$ reads

$$
D g(x)=\left(\begin{array}{lll}
\frac{2 x_{1}}{a^{2}} & \frac{2 x_{2}}{b^{2}} & \frac{2 x_{3}}{c^{2}} \tag{1}
\end{array}\right)
$$

which is non-zero for all $x \neq 0$. Hence g is a submersion at every point $x \in M$ and its geometric tangent space at x is given by

$$
\tilde{T}_{x} M=\left\{y \in \mathbb{R}^{3} \mid D g(x)(y-x)=0\right\}=\left\{y \in \mathbb{R}^{3} \mid D g(x) y=2\right\}
$$

For this have used that $D g(x) x=\frac{2 x_{1}}{a^{2}} x_{1}+\frac{2 x_{2}}{b^{2}} x_{2}+\frac{2 x_{3}}{c^{2}} x_{3}=2 g(x)=2$.
(b) The distance from the origin to the tangent plane at $x \in M$ can be found through either a geometric argument or by applying the method of Lagrange multipliers.

1. The distance from the origin to the plane will be equal to the length of the component of $x \in \tilde{T}_{x} M$ orthogonal to it. Since we know that $\operatorname{grad} g(x)=[D g(x)]^{\mathrm{T}}$ is orthogonal to the tangent space $T_{x} M$, this length will be given by

$$
d\left(0, \tilde{T}_{x} M\right)=\frac{\langle x, \operatorname{grad} g(x)\rangle}{\|\operatorname{grad} g(x)\|}=\frac{D g(x) x}{\|D g(x)\|}
$$

We have already computed the numerator $D g(x) x=2$, and the denominator can be read off from equation (1). We thus obtain

$$
d\left(0, \tilde{T}_{x} M\right)=\left(\frac{x_{1}^{2}}{a^{4}}+\frac{x_{2}^{2}}{b^{4}}+\frac{x_{3}^{2}}{c^{4}}\right)^{-\frac{1}{2}}
$$

2. One may also arrive at this answer through the method of Lagrange multipliers. The distance $d\left(0, \tilde{T}_{x} M\right)$ is then obtained by minimising the function $f: x \mapsto\|x\|^{2}$ on the geometric tangent plane $\tilde{T}_{x} M$. Since the plane $\tilde{T}_{x} M \subseteq$ is a closed subset of \mathbb{R}^{3}, f assumes a minimum on it at some point $y_{0} \in \tilde{T}_{x} M$ and the distance from the origin to the plane will be the square root of this minimum. (NB: The intersection $\tilde{T}_{x} M \cap \overline{B(0, R)}$ is compact and non-empty for an appropriately chosen $R>0$. The norm assumes a minimum on it, which is in fact a global minimum.)
The point $y_{0} \in \tilde{T}_{x} M$ will necessarily be a critical point for f, which means that $\operatorname{grad} f\left(y_{0}\right)=2 y_{0}$ is orthogonal to $\tilde{T}_{x} M$, hence parallel to $\operatorname{grad} g(x)$. Let $\lambda \in \mathbb{R}$ be such that $y_{0}=\lambda \operatorname{grad} g(x)$, then we see that (since $y_{0} \in \tilde{T}_{x} M$)

$$
D g(x) y_{0}=\langle\operatorname{grad} g(x), \lambda \operatorname{grad} g(x)\rangle=\lambda\|\operatorname{grad} g(x)\|^{2}=2 .
$$

We derive that $\lambda=2\|\operatorname{grad} g(x)\|^{-2}$ and that therefore

$$
\left\|y_{0}\right\|=|\lambda|\|\operatorname{grad} g(x)\|=\frac{2}{\|\operatorname{grad} g(x)\|}=\left(\frac{x_{1}^{2}}{a^{4}}+\frac{x_{2}^{2}}{b^{4}}+\frac{x_{3}^{2}}{c^{4}}\right)^{-\frac{1}{2}}
$$

This confirms our earlier conclusion.
3. The critical point described in part 2 also corresponds to a critical point for the Lagrange function

$$
L: \mathbb{R}^{3} \times \mathbb{R} \rightarrow \mathbb{R}, \quad(y, \lambda) \mapsto f(y)-\lambda h(y),
$$

where $f(y)=\|y\|^{2}$ and $h(y)=D g(x) y-2$.
Since $D f(y)=2 y^{\mathrm{T}}$ and $D h(y)=D g(x)$, the equation $D L(y, \lambda)=0$ becomes

$$
D L(y)=(D f(y)-\lambda D h(y), h(y))=\left(2 y^{\mathrm{T}}-\lambda D g(x), D g(x) y-2\right)=0 .
$$

Solving this system of equations essentially comes down to following the steps from option 2.

Exercise 3.

(a) The function Φ is clearly C^{∞}, and we can explicitly compute its derivative

$$
\begin{aligned}
D \Phi(\theta, t) & =\left(\begin{array}{ll}
\partial_{\theta} \Phi(\theta, t) & \partial_{t} \Phi(\theta, t)
\end{array}\right) \\
& =\left(\begin{array}{cc}
-\frac{1}{2} t \sin \left(\frac{1}{2} \theta\right) \cos \theta-\left(2+t \cos \left(\frac{1}{2} \theta\right)\right) \sin \theta & \cos \left(\frac{1}{2} \theta\right) \cos \theta \\
-\frac{1}{2} t \sin \left(\frac{1}{2} \theta\right) \sin \theta+\left(2+t \cos \left(\frac{1}{2} \theta\right)\right) \cos \theta & \cos \left(\frac{1}{2} \theta\right) \sin \theta \\
\frac{1}{2} t \cos \left(\frac{1}{2} \theta\right) & \sin \left(\frac{1}{2} \theta\right)
\end{array}\right)
\end{aligned}
$$

There are at least three ways to verify that $D \Phi(\theta, t)$ is injective for all $(\theta, t) \in$ D, so that Φ is an immersion.

1. One can compute the determinant of the upper 2×2 block of $D \Phi(\theta, t)$. This determinant equals

$$
-\left(2+t \cos \left(\frac{1}{2} \theta\right)\right) \cos \left(\frac{1}{2} \theta\right)
$$

This is non-zero for all $(\theta, t) \in D$, meaning that $D \Phi(\theta, t)$ has rank 2 and that Φ is an immersion.
2. One can also decompose

$$
D \Phi(\theta, t)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{cc}
-\frac{1}{2} t \sin \left(\frac{1}{2} \theta\right) & \cos \left(\frac{1}{2} \theta\right) \\
2+t \cos \left(\frac{1}{2} \theta\right) & 0 \\
\frac{1}{2} t \cos \left(\frac{1}{2} \theta\right) & \sin \left(\frac{1}{2} \theta\right)
\end{array}\right)
$$

Since $2+t \cos \left(\frac{1}{2} \theta\right)>0$ for $(\theta, t) \in D$, the two columns of the 3×2-matrix on the second line are linearly independent. Because the square matrix that was factored out is invertible, we conclude that $D \Phi(\theta, t)$ is injective and that Φ is therefore an immersion.
3. Another option is calculating the cross product $\partial_{\theta} \Phi(\theta, t) \times \partial_{t} \Phi(\theta, t)$. The third component of this cross product is

$$
-\left(2+t \cos \left(\frac{1}{2} \theta\right)\right) \cos \left(\frac{1}{2} \theta\right)\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=-\left(2+t \cos \left(\frac{1}{2} \theta\right)\right) \cos \left(\frac{1}{2} \theta\right)
$$

This is non-zero for all $(\theta, t) \in D$, which means that the columns of $D \Phi(\theta, t)$ are linearly independent. We conclude that $D \Phi(\theta, t)$ has rank 2 and that Φ is an immersion.
(b) For $(x, y) \in \mathbb{R}^{2}$ of the form $(x, y)=\rho(\cos \phi, \sin \phi)$ with $\rho>0$ and $\left.\phi \in\right]-\pi, \pi[$, one can recover $\rho=\sqrt{x^{2}+y^{2}}$ and $\phi=2 \arctan \left(\frac{y}{\rho+x}\right)$. We therefore define

$$
\left.\rho: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow\right] 0, \infty\left[, \quad \text { and } \quad \phi: \mathbb{R}^{2} \backslash\{(x, 0) \mid x \leq 0\} \rightarrow\right]-\pi, \pi[
$$

by setting

$$
\rho(x, y)=\sqrt{x^{2}+y^{2}} \quad \text { and } \quad \phi(x, y)=2 \arctan \left(\frac{y}{\rho(x, y)+x}\right) .
$$

Since all functions involved are smooth on their domain, ρ and ϕ are C^{∞} as well.

If $(x, y, z)=\Phi(\theta, t)$, then we see that $\theta=\phi(x, y)$ and $2+t \cos \left(\frac{1}{2} \theta\right)=\rho(x, y)$, from which t can also be obtained since $\cos \left(\frac{1}{2} \theta\right) \neq 0$. This leads us to conclude that the map $\left.\Psi: \mathbb{R}^{3} \backslash\left\{(x, 0, z) \in \mathbb{R}^{3} \mid x \leq 0\right\} \rightarrow\right]-\pi, \pi[\times \mathbb{R}$ such that

$$
\Psi(x, y, z)=\binom{\phi(x, y)}{\frac{\rho(x, y)-2}{\cos \left(\frac{1}{2} \phi(x, y)\right)}}
$$

is a left-inverse of Φ, i.e. $\Psi \circ \Phi=\mathrm{id}: D \rightarrow D$. We deduce that Φ is injective and that its inverse is the restriction $\left.\Psi\right|_{\Phi(D)}: \Phi(D) \rightarrow D$.
Since we have described it as a composition of continuous functions, Ψ is also continuous, as is the restriction $\left.\Psi\right|_{\Phi(D)}: \Phi(D) \rightarrow D$. We conclude that Φ is a C^{∞} embedding and that its image $\Phi(D)$ is therefore a 2-dimensional C^{∞} submanifold of \mathbb{R}^{3}.
(c) Notice that each term in g has factor $\left(2+t \cos \left(\frac{1}{2} \theta\right)\right)$. This implies

$$
\begin{aligned}
g= & \left(2+t \cos \left(\frac{1}{2} \theta\right)\right)\left[4 \sin \theta+4 t \cos \theta \sin \left(\frac{1}{2} \theta\right)-\sin \theta\left(4+4 t \cos \left(\frac{1}{2} \theta\right)+t^{2}\right)\right. \\
& \left.\quad+2 t \sin \left(\frac{1}{2} \theta\right)\left(2+t \cos \left(\frac{1}{2} \theta\right)\right)\right] \\
= & \left(2+t \cos \left(\frac{1}{2} \theta\right)\right)\left[4 t\left(\cos \theta \sin \left(\frac{1}{2} \theta\right)-\sin \theta \cos \left(\frac{1}{2} \theta\right)\right)\right. \\
= & \quad\left(2+t \operatorname{tas}\left(\frac{1}{2} \theta\right)\right)\left[-4 t \sin \theta+4 t \sin \left(\frac{1}{2} \theta\right)+2 t^{2} \sin \left(\frac{1}{2} \theta\right) \cos \left(\frac{1}{2} \theta\right)\right] \\
& \left.=t^{2} \sin \theta+4 t \sin \left(\frac{1}{2} \theta\right)+t^{2} \sin \theta\right]=0,
\end{aligned}
$$

since

$$
2 \sin \left(\frac{1}{2} \theta\right) \cos \left(\frac{1}{2} \theta\right)=\sin \theta
$$

and

$$
\cos \theta \sin \left(\frac{1}{2} \theta\right)-\sin \theta \cos \left(\frac{1}{2} \theta\right)=\sin \left(\frac{1}{2} \theta-\theta\right)=-\sin \left(\frac{1}{2} \theta\right)
$$

We conclude that $g(\Phi(\theta, t))=0$ for all $(\theta, t) \in D$.
(d) One can parametrise the circle S by $f:]-\pi, \pi] \rightarrow \mathbb{R}^{3}, \theta \mapsto(2 \cos \theta, 2 \sin \theta, 0)$. Note that $f(]-\pi, \pi[) \subseteq \Phi(D)$ because $f(\theta)=\Phi(\theta, 0)$ for $\theta \in]-\pi, \pi[$.

The fact that f is continuous then tells us that
where $\overline{]-\pi, \pi[}=]-\pi, \pi]$ denotes the closure of $]-\pi, \pi[$ in $]-\pi, \pi]$.
One way to derive this is by writing $\pi=\lim _{n \rightarrow \infty} a_{n}$ for some sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ with $\left.a_{n} \in\right]-\pi, \pi\left[\right.$, so that $f(\pi)=\lim _{n \rightarrow \infty 0} f\left(a_{n}\right)$ by the continuity of f. From this we conclude that $f(\pi)$ is a limit point of $f(]-\pi, \pi[) \subseteq V$ and is therefore in the closure $M=\bar{V}$.

The gradient of g can easily be computed, and reads

$$
\operatorname{grad} g(x)=\left(\begin{array}{c}
4 x_{3}-2 x_{1} x_{2}+4 x_{1} x_{3} \\
4-\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)-2 x_{2}^{2}+4 x_{3} x_{2} \\
4 x_{1}-2 x_{2} x_{3}+2\left(x_{1}^{2}+x_{2}^{2}\right)
\end{array}\right)
$$

By plugging in $x=f(\theta)$, we obtain the expression

$$
\operatorname{grad} g\left(f(\theta)=\left(\begin{array}{c}
-8 \cos \theta \sin \theta \\
4-4-8 \sin ^{2} \theta \\
8 \cos \theta+8
\end{array}\right)=4\left(\begin{array}{c}
-\sin (2 \theta) \\
\cos (2 \theta)-1 \\
2(\cos \theta+1)
\end{array}\right) .\right.
$$

The last component is non-zero for all $\theta \in] \pi, \pi[$, while for $\theta=\pi$ all components vanish. Thus, g is a submersion at every point of S except for $f(\pi)=(-2,0,0)$. This shows that V is a submanifold at every point in $S \cap V$, corroborating the conclusion from part (b).
(e) Here again several approaches are possible.

1. Since we have shown that the function g is a submersion at $x=\Phi(\theta, 0)=$ $f(\theta)$ for $\theta \in]-\pi, \pi\left[\right.$ and $V \subseteq g^{-1}(\{0\})$, we also know that the gradient
$\operatorname{grad} g(x)$ is normal to the tangent space $T_{\Phi(\theta, 0)} V$. Because $\operatorname{grad} g(f(0))=$ $(0,0,16)$, it follows that also $n_{0}=(0,0,1)$ is orthogonal to $T_{\Phi(0,0)} V$.
The function n described in the exercise is obtained by normalising the vectors $\operatorname{grad} g(f(\theta))$ for $\theta \in]-\pi, \pi[$ and setting

$$
n(\theta)=\frac{\operatorname{grad} g(f(\theta))}{\|\operatorname{grad} g(f(\theta))\|}=\frac{1}{4\left|\cos \left(\frac{1}{2} \theta\right)\right|}\left(\begin{array}{c}
-\sin (2 \theta) \\
\cos (2 \theta)-1 \\
2(\cos \theta+1)
\end{array}\right)
$$

A few trigonometric identities have been applied to obtain the final, simplified expression:

$$
\begin{aligned}
\sin ^{2}(2 \theta) & +(\cos (2 \theta)-1)^{2}+4(\cos \theta+1)^{2} \\
& =\sin ^{2}(2 \theta)+\cos ^{2}(2 \theta)-2 \cos (2 \theta)+1+4 \cos ^{2} \theta+8 \cos \theta+4 \\
& =6-2\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+4 \cos ^{2} \theta+8 \cos \theta \\
& =8+8 \cos \theta=16 \cos ^{2}\left(\frac{1}{2} \theta\right) .
\end{aligned}
$$

We note that $\left|\cos \left(\frac{1}{2} \theta\right)\right|=\cos \left(\frac{1}{2} \theta\right)$ for $-\pi \leq \theta \leq \pi$, so that the limits $\lim _{\theta \rightarrow \pm \pi} n(\theta)$ can be obtained by applying l'Hôpital's rule:

$$
\begin{aligned}
& \lim _{\theta \rightarrow \pm \pi} n(\theta)=\lim _{\theta \rightarrow \pm \pi} \frac{1}{4 \cos \left(\frac{1}{2} \theta\right)}\left(\begin{array}{c}
-\sin (2 \theta) \\
\cos (2 \theta)-1 \\
2(\cos \theta+1)
\end{array}\right) \\
&=\lim _{\theta \rightarrow \pm \pi} \frac{1}{\mathrm{~d} \theta} 4 \cos \left(\frac{1}{2} \theta\right) \\
& \frac{\mathrm{d}}{\mathrm{~d} \theta}\left(\begin{array}{c}
-\sin (2 \theta) \\
\cos (2 \theta)-1 \\
2(\cos \theta+1)
\end{array}\right) \\
&=\lim _{\theta \rightarrow \pm \pi} \frac{1}{-2 \sin \left(\frac{1}{2} \theta\right)}\left(\begin{array}{c}
-2 \cos (2 \theta) \\
-2 \sin (2 \theta) \\
-2 \sin \theta
\end{array}\right) .
\end{aligned}
$$

This is just the limit of a continuous function, so we read off that

$$
\lim _{\theta \rightarrow \pi} n(\theta)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad \text { and } \quad \lim _{\theta \rightarrow-\pi} n(\theta)=-\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) .
$$

2. A somewhat different approach involves the cross product $\partial_{\theta} \Phi(\theta, t) \times$ $\partial_{t} \Phi(\theta, t)$ of the partial derivatives of part (a). Because Φ is an immersion, this cross-product is non-vanishing for every $(\theta, t) \in D$, and is orthogonal to the tangent space $T_{\Phi(\theta, t)}$.
Since at $\partial_{\theta} \Phi(0,0)=(0,2,0)$ and $\partial_{t} \Phi(0,0)=(1,0,0)$, we have $\partial_{\theta} \Phi(0,0) \times$ $\partial_{t} \Phi(0,0)=(0,0,-2)$ and we can again conclude that $n_{0}=(0,0,1)$ is orthogonal to $T_{\Phi(0,0)} V$.
Because $\partial_{\theta} \Phi(0,0) \times \partial_{t} \Phi(0,0)$ and n_{0} are pointing in opposite directions, an additional minus sign needs to be introduced in the definition of n, so that

$$
n(\theta)=\frac{-\partial_{\theta} \Phi(\theta, 0) \times \partial_{t} \Phi(\theta, 0)}{\left.\| \partial_{\theta} \Phi \theta, 0\right) \times \partial_{t} \Phi(\theta, 0) \|}
$$

This will lead to the same answer.
(f) The Möbius strip M is a smooth 2-dimensional connected manifold with boundary in \mathbb{R}^{3}. It is similar to a cylinder in the sense that it can be described as the union of a continuous family of line segments over the circle, but these line segments are gradually twisted as one goes around the circle. This happens in such a way that if one follows a line segment around the circle once, its end points are interchanged. (It is a non-trivial fibre bundle.)

The Möbius strip is non-orientable, which can be expressed by saying that it has only 'one side'. This was demonstrated in part (e), where a vector normal to the surface was continuously transported around the loop once and ended up on the 'other side'.

