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— Solutions —

Exercise 1.

(a) G inverts the distance of points to the origin. It preserves all radial rays and
interchanges the sphere of radius r centred at the origin with that of radius 1

r .

(b) This can be done in several ways:

1. Let x ∈ U , then by Hadamard’s lemma there exist continuous functions
φ : U → Lin(Rn, R) and Γ: U → Lin(Rn, Rn) such that

f(y) = f(x) + φ(y)(y − x) and G(y) = G(x) + Γ(y)(y − x)

for all y ∈ U . Moreover, φ(x) = Df(x) and Γ(x) = DG(x).

Consequently, we find that

(fG)(y) = f(y) (G(x) + Γ(y)(y − x))
= f(x) G(x) + φ(y)(y − x) G(x) + f(y) Γ(y)(y − x)
= fG(x) + H(y)(y − x),

where H : U → Lin(Rn, Rn) is the function given by

H(x) = f(x) Γ(y) + G(x) φ(x).

Continuity of H follows by application of the sum and product rules for
continuous functions. By applying Hadamard’s lemma again, we conclude
that fG is differentiable at x, with total derivative

D(fG)(x) = H(x) = f(x)Γ(x) + G(x)φ(x) = f(x)DG(x) + G(x)Df(x).

2. Because f and G are differentiable by assumption, one can write

f(x + h) = f(x) + Df(x)h + Rf (x + h)

and
G(x + h) = G(x) + DG(x)h + RG(x + h).

Here Rf : U → R and RG : U → Rn satisfy

lim
h→0

Rf (x + h)
‖h‖

= 0 and lim
h→0

RG(x + h)
‖h‖

= 0.

By working out the product of these two expressions, one obtains

(fG)(x + h) = f(x)G(x) +
(
f(x)DG(x)h + Df(x)h G(x)

)
+ RfG(x + h),
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where the final term reads

RfG(x + h) = Df(x)h DG(x)h + Rf (x + h)G(x) + f(x + h) RG(x + h).

Since h 7→ G(x) and h 7→ f(x+h) are continuous functions, we obviously
have

lim
h→0

Rf (x + h)
‖h‖

G(x) = 0 and lim
h→0

f(x + h)
RG(x + h)

‖h‖
= 0.

For the first term, we can make the estimate

|Df(x)h| ‖DG(x)h‖
‖h‖

≤ ‖Df(x)‖ ‖DG(x)‖ ‖h‖2

‖h‖
= ‖Df(x)‖ ‖DG(x)‖ ‖h‖,

so this also vanishes in the limit for h → 0. We conclude that

lim
h→0

RfG(x + h)
‖h‖

= 0.

Hence, fG is differentiable and its total derivative is given by

D(fG)(x)h = f(x)DG(x)h + Df(x)h G(x)
=
(
f(x)DG(x) + G(x)Df(x)

)
h.

3. One can use the fact that an Rn-valued function is differentiable if and
only if all of its components are.

For 1 ≤ i ≤ n, the i-th component of fG is given by (fG)i(x) = f(x)Gi(x)
and is a product of scalar functions. Both f and Gi are differentiable by
assumption, so one may conclude from the product rule that their product
is as well, with total derivative

D(fG)i(x) = Gi(x) Df(x) + f(x) DGi(x).

Since each of its components are differentiable, the original function fG
is as well and its derivative is given by

D(fG)(x)h =

D(fG)1(x)h
...

D(fG)n(x)h

 =

G1(x) Df(x)h + f(x) DG1(x)h
...

Gn(x) Df(x)h + f(x) DGn(x)h.


More concisely, we read off that D(fG)(x) = G(x)Df(x) + f(x) DG(x).

(b) In our specific case, we have that f(x) G(x) = x for all x ∈ Rn \ {0}, so
fG = id. From this, it follows that

D(fG) = G Df + f DG = Did = id.

We know the derivative of f : x 7→ ‖x‖2 to be Df(x)h = 2 〈x, h〉 = 2 xth, so
the above identity tells us that

DG(x) = f(x)−1(id−G(x) ·Df(x))

=
1

‖x‖2

(
id− x

‖x‖2
· 2 xt

)
=

1
‖x‖2

A(x),
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where for x ∈ R \ {0}, A(x) denotes the matrix

A(x) = I − 2
xxt

‖x‖2
.

(c) We recognise A(x) as the matrix representing a reflection in the plane perpen-
dicular to x. We will verify that this is an orthogonal transformation.

Because At(x) = A(x), we see that

At(x)A(x) =
(

I − 2
xxt

‖x‖2

)2

= I2 − 4
xxt

‖x‖2
+ 4

xxtxxt

‖x‖4
.

Because xtx = ‖x‖2, the last two terms cancel out and we may conclude that
At(x)A(x) = I2 = I.

Exercise 2.

(a) Introduce g : R3 → R by

g(x) =
x2

1

a2
+

x2
2

b2
+

x2
3

c2
,

so that M = {x ∈ R3 : g(x) = 1}. A simple computation shows that the
derivative of g at x ∈ R3 reads

Dg(x) =
(

2 x1

a2

2 x2

b2

2 x3

c2

)
, (1)

which is non-zero for all x 6= 0. Hence g is a submersion at every point x ∈ M
and its geometric tangent space at x is given by

T̃xM = {y ∈ R3 | Dg(x)(y − x) = 0} = {y ∈ R3 | Dg(x)y = 2}.

For this have used that Dg(x)x =
2 x1

a2
x1 +

2 x2

b2
x2 +

2 x3

c2
x3 = 2 g(x) = 2.

(b) The distance from the origin to the tangent plane at x ∈ M can be found
through either a geometric argument or by applying the method of Lagrange
multipliers.

1. The distance from the origin to the plane will be equal to the length
of the component of x ∈ T̃xM orthogonal to it. Since we know that
grad g(x) = [Dg(x)]t is orthogonal to the tangent space TxM , this length
will be given by

d(0, T̃xM) =
〈x, grad g(x)〉
‖ grad g(x)‖

=
Dg(x)x
‖Dg(x)‖

.

We have already computed the numerator Dg(x)x = 2, and the denomi-
nator can be read off from equation (1). We thus obtain

d(0, T̃xM) =
(

x2
1

a4
+

x2
2

b4
+

x2
3

c4

)− 1
2

.
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2. One may also arrive at this answer through the method of Lagrange
multipliers. The distance d(0, T̃xM) is then obtained by minimising the
function f : x 7→ ‖x‖2 on the geometric tangent plane T̃xM . Since the
plane T̃xM ⊆ is a closed subset of R3, f assumes a minimum on it at some
point y0 ∈ T̃xM and the distance from the origin to the plane will be the
square root of this minimum. (NB: The intersection T̃xM ∩ B(0, R) is
compact and non-empty for an appropriately chosen R > 0. The norm
assumes a minimum on it, which is in fact a global minimum.)

The point y0 ∈ T̃xM will necessarily be a critical point for f , which
means that grad f(y0) = 2 y0 is orthogonal to T̃xM , hence parallel to
grad g(x). Let λ ∈ R be such that y0 = λ grad g(x), then we see that
(since y0 ∈ T̃xM)

Dg(x)y0 = 〈grad g(x), λ grad g(x)〉 = λ ‖ grad g(x)‖2 = 2.

We derive that λ = 2 ‖ grad g(x)‖−2 and that therefore

‖y0‖ = |λ| ‖ grad g(x)‖ =
2

‖ grad g(x)‖
=
(

x2
1

a4
+

x2
2

b4
+

x2
3

c4

)− 1
2

.

This confirms our earlier conclusion.

3. The critical point described in part 2 also corresponds to a critical point
for the Lagrange function

L : R3 × R → R, (y, λ) 7→ f(y)− λ h(y),

where f(y) = ‖y‖2 and h(y) = Dg(x)y − 2.

Since Df(y) = 2 yt and Dh(y) = Dg(x), the equation DL(y, λ) = 0
becomes

DL(y) = (Df(y)− λ Dh(y), h(y)) = (2 yt − λ Dg(x), Dg(x)y − 2) = 0.

Solving this system of equations essentially comes down to following the
steps from option 2.

Exercise 3.

(a) The function Φ is clearly C∞, and we can explicitly compute its derivative

DΦ(θ, t) = (∂θΦ(θ, t) ∂tΦ(θ, t))

=

−1
2 t sin(1

2θ) cos θ − (2 + t cos(1
2θ)) sin θ cos(1

2θ) cos θ
−1

2 t sin(1
2θ) sin θ + (2 + t cos(1

2θ)) cos θ cos(1
2θ) sin θ

1
2 t cos(1

2θ) sin(1
2θ)


There are at least three ways to verify that DΦ(θ, t) is injective for all (θ, t) ∈
D, so that Φ is an immersion.
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1. One can compute the determinant of the upper 2 × 2 block of DΦ(θ, t).
This determinant equals

−(2 + t cos(1
2θ)) cos(1

2θ).

This is non-zero for all (θ, t) ∈ D, meaning that DΦ(θ, t) has rank 2 and
that Φ is an immersion.

2. One can also decompose

DΦ(θ, t) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

−1
2 t sin(1

2θ) cos(1
2θ)

2 + t cos(1
2θ) 0

1
2 t cos(1

2θ) sin(1
2θ)

 .

Since 2+ t cos(1
2θ) > 0 for (θ, t) ∈ D, the two columns of the 3×2-matrix

on the second line are linearly independent. Because the square matrix
that was factored out is invertible, we conclude that DΦ(θ, t) is injective
and that Φ is therefore an immersion.

3. Another option is calculating the cross product ∂θΦ(θ, t)×∂tΦ(θ, t). The
third component of this cross product is

−(2 + t cos(1
2θ)) cos(1

2θ)(sin2 θ + cos2 θ) = −(2 + t cos(1
2θ)) cos(1

2θ).

This is non-zero for all (θ, t) ∈ D, which means that the columns of
DΦ(θ, t) are linearly independent. We conclude that DΦ(θ, t) has rank 2
and that Φ is an immersion.

(b) For (x, y) ∈ R2 of the form (x, y) = ρ (cos φ, sinφ) with ρ > 0 and φ ∈]− π, π[,
one can recover ρ =

√
x2 + y2 and φ = 2arctan( y

ρ+x). We therefore define

ρ : R2 \ {(0, 0)} →]0,∞[, and φ : R2 \ {(x, 0) | x ≤ 0} →]− π, π[

by setting

ρ(x, y) =
√

x2 + y2 and φ(x, y) = 2 arctan
(

y

ρ(x, y) + x

)
.

Since all functions involved are smooth on their domain, ρ and φ are C∞ as
well.

If (x, y, z) = Φ(θ, t), then we see that θ = φ(x, y) and 2 + t cos(1
2θ) = ρ(x, y),

from which t can also be obtained since cos(1
2θ) 6= 0. This leads us to conclude

that the map Ψ: R3 \ {(x, 0, z) ∈ R3 | x ≤ 0} →]− π, π[×R such that

Ψ(x, y, z) =

(
φ(x, y)
ρ(x,y)−2

cos( 1
2
φ(x,y))

)
is a left-inverse of Φ, i.e. Ψ ◦ Φ = id: D → D. We deduce that Φ is injective
and that its inverse is the restriction Ψ|Φ(D) : Φ(D) → D.

Since we have described it as a composition of continuous functions, Ψ is also
continuous, as is the restriction Ψ|Φ(D) : Φ(D) → D. We conclude that Φ is
a C∞ embedding and that its image Φ(D) is therefore a 2-dimensional C∞

submanifold of R3.

5



(c) Notice that each term in g has factor (2 + t cos(1
2θ)). This implies

g =
(
2 + t cos(1

2θ)
) [

4 sin θ + 4t cos θ sin(1
2θ)− sin θ

(
4 + 4t cos(1

2θ) + t2
)

+ 2t sin(1
2θ)
(
2 + t cos(1

2θ)
)]

=
(
2 + t cos(1

2θ)
) [

4t
(
cos θ sin(1

2θ)− sin θ cos(1
2θ)
)

− t2 sin θ + 4t sin(1
2θ) + 2t2 sin(1

2θ) cos(1
2θ)
]

=
(
2 + t cos(1

2θ)
) [
−4t sin(1

2θ)− t2 sin θ + 4t sin(1
2θ) + t2 sin θ

]
= 0,

since
2 sin(1

2θ) cos(1
2θ) = sin θ

and
cos θ sin(1

2θ)− sin θ cos(1
2θ) = sin(1

2θ − θ) = − sin(1
2θ).

We conclude that g(Φ(θ, t)) = 0 for all (θ, t) ∈ D.

(d) One can parametrise the circle S by f : ]− π, π] → R3, θ 7→ (2 cos θ, 2 sin θ, 0).
Note that f(]− π, π[) ⊆ Φ(D) because f(θ) = Φ(θ, 0) for θ ∈]− π, π[.

The fact that f is continuous then tells us that

f(]− π, π]) = f
(
]− π, π[

)
⊆ f(]− π, π[) ⊆ V = M,

where ]− π, π[ =]− π, π] denotes the closure of ]− π, π[ in ]− π, π].

One way to derive this is by writing π = limn→∞ an for some sequence (an)n∈N
with an ∈]−π, π[, so that f(π) = limn→∞0 f(an) by the continuity of f . From
this we conclude that f(π) is a limit point of f(]− π, π[) ⊆ V and is therefore
in the closure M = V .

The gradient of g can easily be computed, and reads

grad g(x) =

 4x3 − 2 x1 x2 + 4 x1 x3

4− (x2
1 + x2

2 + x2
3)− 2 x2

2 + 4 x3 x2

4 x1 − 2 x2 x3 + 2 (x2
1 + x2

2)


By plugging in x = f(θ), we obtain the expression

grad g(f(θ) =

 −8 cos θ sin θ
4− 4− 8 sin2 θ

8 cos θ + 8

 = 4

 − sin(2 θ)
cos(2θ)− 1
2 (cos θ + 1)

 .

The last component is non-zero for all θ ∈]π, π[, while for θ = π all components
vanish. Thus, g is a submersion at every point of S except for f(π) = (−2, 0, 0).

This shows that V is a submanifold at every point in S ∩V , corroborating the
conclusion from part (b).

(e) Here again several approaches are possible.

1. Since we have shown that the function g is a submersion at x = Φ(θ, 0) =
f(θ) for θ ∈] − π, π[ and V ⊆ g−1({0}), we also know that the gradient
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grad g(x) is normal to the tangent space TΦ(θ,0)V . Because grad g(f(0)) =
(0, 0, 16), it follows that also n0 = (0, 0, 1) is orthogonal to TΦ(0,0)V .

The function n described in the exercise is obtained by normalising the
vectors grad g(f(θ)) for θ ∈]− π, π[ and setting

n(θ) =
grad g(f(θ))
‖ grad g(f(θ))‖

=
1

4 | cos(1
2θ)|

 − sin(2 θ)
cos(2 θ)− 1
2 (cos θ + 1)

 .

A few trigonometric identities have been applied to obtain the final, sim-
plified expression:

sin2(2 θ) + (cos(2 θ)− 1)2 + 4 (cos θ + 1)2

= sin2(2θ) + cos2(2θ)− 2 cos(2θ) + 1 + 4 cos2 θ + 8 cos θ + 4

= 6− 2(cos2 θ − sin2 θ) + 4 cos2 θ + 8 cos θ

= 8 + 8 cos θ = 16 cos2(1
2θ).

We note that | cos(1
2θ)| = cos(1

2θ) for −π ≤ θ ≤ π, so that the limits
limθ→±π n(θ) can be obtained by applying l’Hôpital’s rule:

lim
θ→±π

n(θ) = lim
θ→±π

1
4 cos(1

2θ)

 − sin(2 θ)
cos(2 θ)− 1
2 (cos θ + 1)


= lim

θ→±π

1
d
dθ4 cos(1

2θ)
d
dθ

 − sin(2 θ)
cos(2 θ)− 1
2 (cos θ + 1)


= lim

θ→±π

1
−2 sin(1

2θ)

−2 cos(2 θ)
−2 sin(2 θ)
−2 sin θ

 .

This is just the limit of a continuous function, so we read off that

lim
θ→π

n(θ) =

1
0
0

 and lim
θ→−π

n(θ) = −

1
0
0

 .

2. A somewhat different approach involves the cross product ∂θΦ(θ, t) ×
∂tΦ(θ, t) of the partial derivatives of part (a). Because Φ is an immersion,
this cross-product is non-vanishing for every (θ, t) ∈ D, and is orthogonal
to the tangent space TΦ(θ,t).

Since at ∂θΦ(0, 0) = (0, 2, 0) and ∂tΦ(0, 0) = (1, 0, 0), we have ∂θΦ(0, 0)×
∂tΦ(0, 0) = (0, 0,−2) and we can again conclude that n0 = (0, 0, 1) is
orthogonal to TΦ(0,0)V .

Because ∂θΦ(0, 0)× ∂tΦ(0, 0) and n0 are pointing in opposite directions,
an additional minus sign needs to be introduced in the definition of n, so
that

n(θ) =
−∂θΦ(θ, 0)× ∂tΦ(θ, 0)
‖∂θΦθ, 0)× ∂tΦ(θ, 0)‖

.

This will lead to the same answer.
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(f) The Möbius strip M is a smooth 2-dimensional connected manifold with
boundary in R3. It is similar to a cylinder in the sense that it can be de-
scribed as the union of a continuous family of line segments over the circle,
but these line segments are gradually twisted as one goes around the circle.
This happens in such a way that if one follows a line segment around the circle
once, its end points are interchanged. (It is a non-trivial fibre bundle.)

The Möbius strip is non-orientable, which can be expressed by saying that it
has only ‘one side’. This was demonstrated in part (e), where a vector normal
to the surface was continuously transported around the loop once and ended
up on the ‘other side’.
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