MIDTERM MULTIDIMENSIONAL REAL ANALYSIS

APRIL 16 2013, 13:30-16:30

- Put your name and studentnummer on every sheet you hand in.
- When you use a theorem, show that the conditions are met.
- You can give your answers either in English or in Dutch.
- The exam consists of three exercises and amounts for 40% of the total grade.

Exercise 1. (30 pt) In this exercise, we will compute the total derivative of the inversion mapping $G: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}^{n}$ defined by

$$
\begin{equation*}
G(x)=\frac{1}{\|x\|^{2}} x \tag{1}
\end{equation*}
$$

where $\|x\|$ is the standard norm in \mathbb{R}^{n}, i.e. $\|x\|^{2}=\langle x, x\rangle=x^{\mathrm{T}} x$.
(a) (5 pt) Describe the action of the mapping (1) geometrically.
(b) (10 pt) Let $U \subset \mathbb{R}^{n}$ be open and let $f: U \rightarrow \mathbb{R}$ and $G: U \rightarrow \mathbb{R}^{n}$ be two differentiable mappings. Define $f G: U \rightarrow \mathbb{R}^{n}$ via $(f G)(x)=$ $f(x) G(x), x \in U$. Prove that $f G$ is differentiable and

$$
\begin{equation*}
D(f G)(x)=f(x) D G(x)+G(x) D f(x), \quad x \in U . \tag{2}
\end{equation*}
$$

(c) (5 pt) Using (2) with $f(x)=\|x\|^{2}$, compute the total derivative $D G(x)$ of the mapping (1) for $x \in U$, where $U=\mathbb{R}^{n} \backslash\{0\}$.
(d) (10 pt) Show that for $x \in U$ holds $D G(x)=\|x\|^{-2} A(x)$, where $A(x)$ is represented by an orthogonal matrix, i.e. $A^{\mathrm{T}}(x) A(x)=I$.

Exercise $2(30 \boldsymbol{p t})$. Let $a, b, c>0$ and let M be the ellipsoid in \mathbb{R}^{3} defined as

$$
M=\left\{x \in \mathbb{R}^{3}: \frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}+\frac{x_{3}^{2}}{c^{2}}=1\right\} .
$$

(a) (10 pt) Find the tangent space of M at $x \in M$.
(b) (20 pt) Compute the distance from the origin to the geometric tangent plane to M at an arbitrary point $x \in M$.

Turn the page!

Exercise 3. (40 pt) Here, we will study a representation of the Möbius Strip in \mathbb{R}^{3}.
(a) (5 pt) Let $D=\left\{(\theta, t) \in \mathbb{R}^{2}:-\pi<\theta<\pi,-1<t<1\right\}$ and let $\Phi: D \rightarrow \mathbb{R}^{3}$ be defined by

$$
\Phi(\theta, t)=\left(\begin{array}{c}
\left(2+t \cos \left(\frac{\theta}{2}\right)\right) \cos \theta \\
\left(2+t \cos \left(\frac{\theta}{2}\right)\right) \sin \theta \\
t \sin \left(\frac{\theta}{2}\right)
\end{array}\right) .
$$

Prove that Φ is an immersion at any point in D.
(b) (10 pt) Show that $\Phi: D \rightarrow \Phi(D)$ is invertible and that the inverse mapping is continuous. Use this to conclude that $V=\Phi(D)$ is a C^{∞} submanifold in \mathbb{R}^{3} of dimension 2.
(c) (5 pt) Prove that any point $x \in V$ satisfies $g(x)=0$, where $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is defined by

$$
\begin{equation*}
g(x)=4 x_{2}+4 x_{1} x_{3}-x_{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)+2 x_{3}\left(x_{1}^{2}+x_{2}^{2}\right) . \tag{3}
\end{equation*}
$$

(d) (10 pt) The Möbius strip is the closure $M=\bar{V}$ of V in \mathbb{R}^{3}. Verify that the circle $S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}^{2}+x_{2}^{2}=4\right.$ and $\left.x_{3}=0\right\}$ belongs to M. Give a parametrization of S by $\theta \in]-\pi, \pi]$. Prove that g introduced by (3) is a submersion at any point $x \in S$ except for $x=(-2,0,0)$.
(e) (10 pt) Show that $n_{0}=(0,0,1) \in \mathbb{R}^{3}$ is orthogonal to the tangent space $T_{\Phi(0,0)} V$. Compute a continuous vector-valued function $\left.n:\right]-\pi, \pi[\rightarrow$ \mathbb{R}^{3} such that $n(0)=n_{0}$ and for all $-\pi<\theta<\pi$ the vector $n(\theta) \in \mathbb{R}^{3}$ is orthogonal to $T_{\Phi(\theta, 0)} V$ while $\|n(\theta)\|=1$. Verify that

$$
\lim _{\theta \rightarrow \pi} n(\theta)=-\lim _{\theta \rightarrow-\pi} n(\theta) .
$$

(f) (Bonus: 5 pt) Sketch the set M and describe its geometry.

