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Some notations

Consider the (local) flow ϕt generated by a smooth ODE

du

dt
= f(u, α), f : R

n × R
p → R

n.

Let O− be a hyperbolic limit cycle with dimW u
− = m−

u .

Let O+ be a hyperbolic limit cycle with dimW s
+ = m+

s .

Let x±(t) be periodic solutions (with minimal periods T±)
corresponding to O± and

M± = DxϕT±

(x)
∣

∣

∣

x=x±(0)
(monodromy matrices).

Then m+
s = n+

s + 1 and m−
u = n−

u + 1, where n+
s and n−

u are the
numbers of eigenvalues of M± satisfying |µ| < 1 and |µ| > 1, resp.
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Isolated families of connecting orbits

Necessary condition: p = n − m+
s − m−

u + 2 (Beyn, 1994).

The cycle-to-cycle connections in R
3:

O
±

W u
±W

u
+

W
s
+

O+O
−

W
s
−

W
u
−

W s
±

(a) heteroclinic (b) homoclinic

L.P. Shilnikov [1967] “On a Poincaré-Birkhoff problem," Math.

USSR-Sb. 3, 353-371.
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Truncated BVP

The connecting solution u(t) is truncated to an interval [τ−, τ+].

The points u(τ+) and u(τ−) are required to belong to the linear
subspaces that are tangent to the stable and unstable invariant
manifolds of O+ and O−, respectively:







L+(u(τ+) − x+(0)) = 0,

L−(u(τ−) − x−(0)) = 0.

Generically, the truncated BVP composed of the ODE, the above
projection BC’s, and a phase condition on u, has a unique solution
family (û, α̂), provided that the ODE has a connecting solution
family satisfying the pahase condition and Beyn’s equality.
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family (û, α̂), provided that the ODE has a connecting solution
family satisfying the pahase condition and Beyn’s equality.

HET – p. 7/21



Truncated BVP

The connecting solution u(t) is truncated to an interval [τ−, τ+].

The points u(τ+) and u(τ−) are required to belong to the linear
subspaces that are tangent to the stable and unstable invariant
manifolds of O+ and O−, respectively:







L+(u(τ+) − x+(0)) = 0,

L−(u(τ−) − x−(0)) = 0.

Generically, the truncated BVP composed of the ODE, the above
projection BC’s, and a phase condition on u, has a unique solution
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Error estimate

If u is a generic connecting solution to the ODE at parameter value α, then
the following estimate holds:

‖(u|[τ−,τ+], α) − (û, α̂)‖ ≤ Ce−2 min(µ−|τ−|,µ+|τ+|),

where

‖ · ‖ is an appropriate norm in the space C1([τ−, τ+], Rn) × R
p,

u|[τ−,τ+] is the restriction of u to the truncation interval,

µ± are determined by the eigenvalues of the monodromy matrices
M±.

(Pampel, 2001; Dieci and Rebaza, 2004)
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3. The defining BVP in 3D

O−

x−

u(0)

f−

0

x−

0

w−(0)

w−

u

w+

O+

f+

0

w+(0)

x+

u(1)x+

0

It has cycle- and connection-related parts.
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Cycle-related equations

Periodic solutions:






ẋ± − f(x±, α) = 0 ,

x±(0) − x±(T±) = 0 .

Adjoint eigenfunctions: µ+ = 1
µ+

u
, µ− = 1

µ−
s

.


















ẇ± + fT
u (x±, α)w± = 0 ,

w±(T±) − µ±w±(0) = 0 ,

〈w±(0), w±(0)〉 − 1 = 0 ,

Projection BC: 〈w±(0), u(τ±) − x±(0)〉 = 0.
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Connection-related equations

The equation for the connection:

u̇ − f(u, α) = 0 .

We need the base points x±(0) to move freely and independently
upon each other along the corresponding cycles O±.

We require the end-point of the connection to belong to a plane
orthogonal to the vector f(x+(0), α), and the starting point of the
connection to belong to a plane orthogonal to the vector f(x−(0), α):

〈f(x±(0), α), u(τ±) − x±(0)〉 = 0 .
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The defining BVP in 3D: λ± = ln |µ±|, s± = signµ±















































































































ẋ± − T±f(x±, α) = 0,

x±(0) − x±(1) = 0,

ẇ± + T±fT
u (x±, α)w± + λ±w± = 0,

w±(1) − s±w±(0) = 0,

〈w±(0), w±(0)〉 − 1 = 0,

u̇ − Tf(u, α) = 0,

〈f(x+(0), α), u(1) − x+(0)〉 = 0,

〈f(x−(0), α), u(0) − x−(0)〉 = 0,

〈w+(0), u(1) − x+(0)〉 = 0,

〈w−(0), u(0) − x−(0)〉 = 0,

‖u(0) − x−(0)‖2 − ε2 = 0.

HET – p. 12/21



4. Finding starting solutions with homopoty

Adjoint scaled eigenfunctions.

Homotopy to connection.

References to homotopy techniques for point-to-point connections:

E.J. Doedel, M.J. Friedman, and A.C. Monteiro [1994] “On locating
connecting orbits", Appl. Math. Comput. 65, 231–239.

E.J. Doedel, M.J. Friedman, and B.I. Kunin [1997] “Successive
continuation for locating connecting orbits", Numer. Algorithms 14 ,
103–124.
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Adjoint scaled eigenfunctions

For fixed α and any λ, x±(τ) = x±
old(τ), w±(τ) ≡ 0, and h± = 0

satisfy


















































ẋ± − T±f(x±, α) = 0,

x±(0) − x±(0) = 0,
∫ 1
0 〈ẋ

±
old(τ), x±(τ)〉 = 0,

ẇ± + T±fT
u (x±, α)w± + λw± = 0,

w±(1) − s±w±(0) = 0,

〈w±(0), w±(0)〉 − h± = 0,

A branch point at λ±
1 corresponds to the adjoint multiplier

µ± = s±eλ±

1 . Branch switching and continuation towards h± = 1

gives the eigenfunction w±.
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Homotopy to connection in (T, hjk)















































































































ẋ± − T±f(x±, α) = 0,

x±(0) − x±(1) = 0,

Φ±[x±] = 0,

ẇ± + T±fT
u (x±, α)w± + λ±w± = 0,

w±(1) − s±w±(0) = 0,

〈w±(0), w±(0)〉 − 1 = 0,

u̇ − Tf(u, α) = 0,

〈f(x+(0), α), u(1) − x+(0)〉 − h11 = 0,

〈f(x−(0), α), u(0) − x−(0)〉 − h12 = 0,

〈w+(0), u(1) − x+(0)〉 − h21 = 0,

〈w−(0), u(0) − x−(0)〉 − h22 = 0.
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5. Implementation in AUTO

U̇(τ) − F (U(τ), β) = 0, τ ∈ [0, 1],

b(U(0), U(1), β) = 0,
∫ 1

0
q(U(τ), β)dτ = 0,

where

U(·), F (·, ·) ∈ R
nd , b(·, ·) ∈ R

nbc , q(·, ·) ∈ R
nic , β ∈ R

nfp ,

The number nfp of free parameters β is

nfp = nbc + nic − nd + 1.

In our primary BVPs: nd = 15, nic = 0, and nbc = 19 so that nfp = 5.
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6. Example: Poincaré homoclinic structure in ecology

The standard tri-trophic food chain model:






















ẋ1 = x1(1 − x1) −
a1x1x2

1 + b1x1
,

ẋ2 =
a1x1x2

1 + b1x1
−

a2x2x3

1 + b1x2
− d1x2,

ẋ3 =
a2x2x3

1 + b1x2
− d2x3,

with a1 = 5, a2 = 0.1, b1 = 3, and b2 = 2.

M.P. Boer, B.W. Kooi, and S.A.L.M. Kooijman [1999] “Homoclinic
and heteroclinic orbits to a cycle in a tri-trophic food chain,” J. Math.

Biol. 39, 19–38.
Yu.A. Kuznetsov, O. De Feo, and S. Rinaldi [2001] “Belayakov
homoclinic bifurcations in a tritrophic food chain model,” SIAM J.

Appl. Math. 62, 462–487.
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Continuation of cycle-to-cycle connections

Homoclinic orbit to the cycle at (d1, d2) = (0.25, 0.0125):
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�� �
��� �

�� �

Limit points: d1 = 0.2809078 and d1 = 0.2305987.
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Homoclinic tangency curve
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Detailed bifurcation diagram
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Open questions

n > 3 ?

Should all this be integrated in AUTO ?
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