Continuation of cycle-to-cycle connections in 3D ODEs
 Yuri A. Kuznetsov

joint work with E.J. Doedel, B.W. Kooi, and G.A.K. van Voorn

Contents

- Previous works
- Truncated BVP's with projection BC's
- The defining BVP in 3D
\square Finding starting solutions with homopoty
\square Implementation in AUTO
Example
\square Open questions

Previous works

- W.J. Beyn [1994] "On well-posed problems for connecting orbits in dynamical systems." In Chaotic Numerics (Geelong, 1993), volume 172 of Contemp. Math. Amer. Math. Soc., Providence, RI, 131-168.
\square T. Pampel [2001] "Numerical approximation of connecting orbits with asymptotic rate," Numer: Math. 90, 309-348.
- L. Dieci and J. Rebaza [2004] "Point-to-periodic and periodic-to-periodic connections," BIT Numerical Mathematics 44, 41-62.
- L. Dieci and J. Rebaza [2004] "Erratum: "Point-to-periodic and periodic-to-periodic connections"," BIT Numerical Mathematics 44, 617-618.

2. Truncated BVP's with projection BC's

\square Some notations
Isolated families of connecting orbits
\square Truncated BVP
\square Error estimate

Some notations

- Consider the (local) flow φ^{t} generated by a smooth ODE

$$
\frac{d u}{d t}=f(u, \alpha), \quad f: \mathbb{R}^{n} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}
$$

Some notations

- Consider the (local) flow φ^{t} generated by a smooth ODE

$$
\frac{d u}{d t}=f(u, \alpha), \quad f: \mathbb{R}^{n} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}
$$

Let O^{-}be a hyperbolic limit cycle with $\operatorname{dim} W_{-}^{u}=m_{u}^{-}$.

Some notations

\square Consider the (local) flow φ^{t} generated by a smooth ODE

$$
\frac{d u}{d t}=f(u, \alpha), \quad f: \mathbb{R}^{n} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}
$$

Let O^{-}be a hyperbolic limit cycle with $\operatorname{dim} W_{-}^{u}=m_{u}^{-}$.
Let O^{+}be a hyperbolic limit cycle with $\operatorname{dim} W_{+}^{s}=m_{s}^{+}$.

Some notations

\square Consider the (local) flow φ^{t} generated by a smooth ODE

$$
\frac{d u}{d t}=f(u, \alpha), \quad f: \mathbb{R}^{n} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}
$$

Let O^{-}be a hyperbolic limit cycle with $\operatorname{dim} W_{-}^{u}=m_{u}^{-}$.
Let O^{+}be a hyperbolic limit cycle with $\operatorname{dim} W_{+}^{s}=m_{s}^{+}$.
\square Let $x^{ \pm}(t)$ be periodic solutions (with minimal periods $T^{ \pm}$) corresponding to $O^{ \pm}$and

$$
M^{ \pm}=\left.D_{x} \varphi^{T^{ \pm}}(x)\right|_{x=x^{ \pm}(0)} \quad(\text { monodromy matrices })
$$

Some notations

\square Consider the (local) flow φ^{t} generated by a smooth ODE

$$
\frac{d u}{d t}=f(u, \alpha), \quad f: \mathbb{R}^{n} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}
$$

\square Let O^{-}be a hyperbolic limit cycle with $\operatorname{dim} W_{-}^{u}=m_{u}^{-}$.
Let O^{+}be a hyperbolic limit cycle with $\operatorname{dim} W_{+}^{s}=m_{s}^{+}$.
\square Let $x^{ \pm}(t)$ be periodic solutions (with minimal periods $T^{ \pm}$) corresponding to $O^{ \pm}$and

$$
M^{ \pm}=\left.D_{x} \varphi^{T^{ \pm}}(x)\right|_{x=x^{ \pm}(0)} \quad \text { (monodromy matrices) }
$$

Then $m_{s}^{+}=n_{s}^{+}+1$ and $m_{u}^{-}=n_{u}^{-}+1$, where n_{s}^{+}and n_{u}^{-}are the numbers of eigenvalues of $M^{ \pm}$satisfying $|\mu|<1$ and $|\mu|>1$, resp.

Universiteit Utrecht

Isolated families of connecting orbits

\square Necessary condition: $p=n-m_{s}^{+}-m_{u}^{-}+2$ (Beyn, 1994).

Isolated families of connecting orbits

\square Necessary condition: $p=n-m_{s}^{+}-m_{u}^{-}+2$ (Beyn, 1994).
\square The cycle-to-cycle connections in \mathbb{R}^{3} :

(a) heteroclinic

(b) homoclinic

Isolated families of connecting orbits

\square Necessary condition: $p=n-m_{s}^{+}-m_{u}^{-}+2$ (Beyn, 1994).
\square The cycle-to-cycle connections in \mathbb{R}^{3} :

(a) heteroclinic

(b) homoclinic
L. L.P. Shilnikov [1967] "On a Poincaré-Birkhoff problem," Math. USSR-Sb. 3, 353-371.

Truncated BVP

The connecting solution $u(t)$ is truncated to an interval $\left[\tau_{-}, \tau_{+}\right]$.

Truncated BVP

\square The connecting solution $u(t)$ is truncated to an interval $\left[\tau_{-}, \tau_{+}\right]$.
The points $u\left(\tau_{+}\right)$and $u\left(\tau_{-}\right)$are required to belong to the linear subspaces that are tangent to the stable and unstable invariant manifolds of O^{+}and O^{-}, respectively:

$$
\left\{\begin{array}{l}
L^{+}\left(u\left(\tau_{+}\right)-x^{+}(0)\right)=0 \\
L^{-}\left(u\left(\tau_{-}\right)-x^{-}(0)\right)=0 .
\end{array}\right.
$$

Truncated BVP

\square The connecting solution $u(t)$ is truncated to an interval $\left[\tau_{-}, \tau_{+}\right]$.
\square The points $u\left(\tau_{+}\right)$and $u\left(\tau_{-}\right)$are required to belong to the linear subspaces that are tangent to the stable and unstable invariant manifolds of O^{+}and O^{-}, respectively:

$$
\left\{\begin{array}{l}
L^{+}\left(u\left(\tau_{+}\right)-x^{+}(0)\right)=0 \\
L^{-}\left(u\left(\tau_{-}\right)-x^{-}(0)\right)=0
\end{array}\right.
$$

- Generically, the truncated BVP composed of the ODE, the above projection $B C$'s, and a phase condition on u, has a unique solution family ($\hat{u}, \hat{\alpha}$), provided that the ODE has a connecting solution family satisfying the pahase condition and Beyn's equality.

Error estimate

If u is a generic connecting solution to the ODE at parameter value α, then the following estimate holds:

$$
\left\|\left(\left.u\right|_{\left[\tau_{-}, \tau_{+}\right]}, \alpha\right)-(\hat{u}, \hat{\alpha})\right\| \leq C \mathrm{e}^{-2 \min \left(\mu_{-}\left|\tau_{-}\right|, \mu_{+}\left|\tau_{+}\right|\right)}
$$

where
$\square\|\cdot\|$ is an appropriate norm in the space $C^{1}\left(\left[\tau_{-}, \tau_{+}\right], \mathbb{R}^{n}\right) \times \mathbb{R}^{p}$,
$\left.\square u\right|_{\left[\tau_{-}, \tau_{+}\right]}$is the restriction of u to the truncation interval,
$\square \mu_{ \pm}$are determined by the eigenvalues of the monodromy matrices $M^{ \pm}$.
(Pampel, 2001; Dieci and Rebaza, 2004)

Universiteit Utrecht

3. The defining BVP in 3D

It has cycle- and connection-related parts.

Cycle-related equations

\square Periodic solutions:

$$
\left\{\begin{aligned}
\dot{x}^{ \pm}-f\left(x^{ \pm}, \alpha\right) & =0, \\
x^{ \pm}(0)-x^{ \pm}\left(T^{ \pm}\right) & =0 .
\end{aligned}\right.
$$

Cycle-related equations

\square Periodic solutions:

$$
\left\{\begin{aligned}
\dot{x}^{ \pm}-f\left(x^{ \pm}, \alpha\right) & =0 \\
x^{ \pm}(0)-x^{ \pm}\left(T^{ \pm}\right) & =0
\end{aligned}\right.
$$

\square Adjoint eigenfunctions: $\mu^{+}=\frac{1}{\mu_{u}^{+}}, \mu^{-}=\frac{1}{\mu_{s}^{-}}$.

$$
\left\{\begin{aligned}
\dot{w}^{ \pm}+f_{u}^{\mathrm{T}}\left(x^{ \pm}, \alpha\right) w^{ \pm} & =0 \\
w^{ \pm}\left(T^{ \pm}\right)-\mu^{ \pm} w^{ \pm}(0) & =0 \\
\left\langle w^{ \pm}(0), w^{ \pm}(0)\right\rangle-1 & =0
\end{aligned}\right.
$$

Cycle-related equations

\square Periodic solutions:

$$
\left\{\begin{aligned}
\dot{x}^{ \pm}-f\left(x^{ \pm}, \alpha\right) & =0 \\
x^{ \pm}(0)-x^{ \pm}\left(T^{ \pm}\right) & =0
\end{aligned}\right.
$$

\square Adjoint eigenfunctions: $\mu^{+}=\frac{1}{\mu_{u}^{+}}, \mu^{-}=\frac{1}{\mu_{s}^{-}}$.

$$
\left\{\begin{aligned}
\dot{w}^{ \pm}+f_{u}^{\mathrm{T}}\left(x^{ \pm}, \alpha\right) w^{ \pm} & =0 \\
w^{ \pm}\left(T^{ \pm}\right)-\mu^{ \pm} w^{ \pm}(0) & =0, \\
\left\langle w^{ \pm}(0), w^{ \pm}(0)\right\rangle-1 & =0,
\end{aligned}\right.
$$

Projection BC: $\left\langle w^{ \pm}(0), u\left(\tau_{ \pm}\right)-x^{ \pm}(0)\right\rangle=0$.

Connection-related equations

The equation for the connection:

$$
\dot{u}-f(u, \alpha)=0 .
$$

Connection-related equations

\square The equation for the connection:

$$
\dot{u}-f(u, \alpha)=0 .
$$

We need the base points $x^{ \pm}(0)$ to move freely and independently upon each other along the corresponding cycles $O^{ \pm}$.

Connection-related equations

\square The equation for the connection:

$$
\dot{u}-f(u, \alpha)=0 .
$$

\square We need the base points $x^{ \pm}(0)$ to move freely and independently upon each other along the corresponding cycles $O^{ \pm}$.
\square We require the end-point of the connection to belong to a plane orthogonal to the vector $f\left(x^{+}(0), \alpha\right)$, and the starting point of the connection to belong to a plane orthogonal to the vector $f\left(x^{-}(0), \alpha\right)$:

$$
\left\langle f\left(x^{ \pm}(0), \alpha\right), u\left(\tau_{ \pm}\right)-x^{ \pm}(0)\right\rangle=0 .
$$

The defining BVP in 3D: $\lambda^{ \pm}=\ln \left|\mu^{ \pm}\right|, \quad s^{ \pm}=\operatorname{sign} \mu^{ \pm}$

$$
\begin{aligned}
\dot{x}^{ \pm}-T^{ \pm} f\left(x^{ \pm}, \alpha\right) & =0, \\
x^{ \pm}(0)-x^{ \pm}(1) & =0, \\
\dot{w}^{ \pm}+T^{ \pm} f_{u}^{\mathrm{T}}\left(x^{ \pm}, \alpha\right) w^{ \pm}+\lambda^{ \pm} w^{ \pm} & =0, \\
w^{ \pm}(1)-s^{ \pm} w^{ \pm}(0) & =0, \\
\left\langle w^{ \pm}(0), w^{ \pm}(0)\right\rangle-1 & =0, \\
\dot{u}-T f(u, \alpha) & =0, \\
\left\langle f\left(x^{+}(0), \alpha\right), u(1)-x^{+}(0)\right\rangle & =0, \\
\left\langle f\left(x^{-}(0), \alpha\right), u(0)-x^{-}(0)\right\rangle & =0, \\
\left\langle w^{+}(0), u(1)-x^{+}(0)\right\rangle & =0, \\
\left\langle w^{-}(0), u(0)-x^{-}(0)\right\rangle & =0, \\
\left\|u(0)-x^{-}(0)\right\|^{2}-\varepsilon^{2} & =0 .
\end{aligned}
$$

4. Finding starting solutions with homopoty

\square Adjoint scaled eigenfunctions.
\square Homotopy to connection.

References to homotopy techniques for point-to-point connections:
E.J. Doedel, M.J. Friedman, and A.C. Monteiro [1994] "On locating connecting orbits", Appl. Math. Comput. 65, 231-239.
E.J. Doedel, M.J. Friedman, and B.I. Kunin [1997] "Successive continuation for locating connecting orbits", Numer. Algorithms 14 , 103-124.

Adjoint scaled eigenfunctions

\square For fixed α and any $\lambda, x^{ \pm}(\tau)=x_{\text {old }}^{ \pm}(\tau), w^{ \pm}(\tau) \equiv 0$, and $h^{ \pm}=0$ satisfy

$$
\begin{aligned}
\dot{x}^{ \pm}-T^{ \pm} f\left(x^{ \pm}, \alpha\right) & =0, \\
x^{ \pm}(0)-x^{ \pm}(0) & =0, \\
\int_{0}^{1}\left\langle\dot{x}_{o l d}^{ \pm}(\tau), x^{ \pm}(\tau)\right\rangle & =0, \\
\dot{w}^{ \pm}+T^{ \pm} f_{u}^{T}\left(x^{ \pm}, \alpha\right) w^{ \pm}+\lambda w^{ \pm} & =0, \\
w^{ \pm}(1)-s^{ \pm} w^{ \pm}(0) & =0, \\
\left\langle w^{ \pm}(0), w^{ \pm}(0)\right\rangle-h^{ \pm} & =0,
\end{aligned}
$$

Adjoint scaled eigenfunctions

\square For fixed α and any $\lambda, x^{ \pm}(\tau)=x_{\text {old }}^{ \pm}(\tau), w^{ \pm}(\tau) \equiv 0$, and $h^{ \pm}=0$ satisfy

$$
\left\{\begin{aligned}
\dot{x}^{ \pm}-T^{ \pm} f\left(x^{ \pm}, \alpha\right) & =0, \\
x^{ \pm}(0)-x^{ \pm}(0) & =0, \\
\int_{0}^{1}\left\langle\dot{x}_{o l d}^{ \pm}(\tau), x^{ \pm}(\tau)\right\rangle & =0, \\
\dot{w}^{ \pm}+T^{ \pm} f_{u}^{\mathrm{T}}\left(x^{ \pm}, \alpha\right) w^{ \pm}+\lambda w^{ \pm} & =0, \\
w^{ \pm}(1)-s^{ \pm} w^{ \pm}(0) & =0, \\
\left\langle w^{ \pm}(0), w^{ \pm}(0)\right\rangle-h^{ \pm} & =0,
\end{aligned}\right.
$$

A branch point at $\lambda_{1}^{ \pm}$corresponds to the adjoint multiplier $\mu^{ \pm}=s^{ \pm} e^{\lambda_{1}^{ \pm}}$. Branch switching and continuation towards $h^{ \pm}=1$ gives the eigenfunction $w^{ \pm}$.

Homotopy to connection in $\left(T, h_{j k}\right)$

5. Implementation in AUTO

$$
\begin{aligned}
\dot{U}(\tau)-F(U(\tau), \beta) & =0, \tau \in[0,1], \\
b(U(0), U(1), \beta) & =0 \\
\int_{0}^{1} q(U(\tau), \beta) d \tau & =0,
\end{aligned}
$$

where

$$
U(\cdot), F(\cdot, \cdot) \in \mathbb{R}^{n_{d}}, b(\cdot, \cdot) \in \mathbb{R}^{n_{b c}}, q(\cdot, \cdot) \in \mathbb{R}^{n_{i c}}, \beta \in \mathbb{R}^{n_{f p}}
$$

The number $n_{f p}$ of free parameters β is

$$
n_{f p}=n_{b c}+n_{i c}-n_{d}+1
$$

In our primary BVPs: $n_{d}=15, n_{i c}=0$, and $n_{b c}=19$ so that $n_{f p}=5$.

6. Example: Poincaré homoclinic structure in ecology

The standard tri-trophic food chain model:

$$
\left\{\begin{aligned}
\dot{x}_{1} & =x_{1}\left(1-x_{1}\right)-\frac{a_{1} x_{1} x_{2}}{1+b_{1} x_{1}}, \\
\dot{x}_{2} & =\frac{a_{1} x_{1} x_{2}}{1+b_{1} x_{1}}-\frac{a_{2} x_{2} x_{3}}{1+b_{1} x_{2}}-d_{1} x_{2}, \\
\dot{x}_{3} & =\frac{a_{2} x_{2} x_{3}}{1+b_{1} x_{2}}-d_{2} x_{3},
\end{aligned}\right.
$$

with $a_{1}=5, a_{2}=0.1, b_{1}=3$, and $b_{2}=2$.

6. Example: Poincaré homoclinic structure in ecology

\square The standard tri-trophic food chain model:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{1}\left(1-x_{1}\right)-\frac{a_{1} x_{1} x_{2}}{1+b_{1} x_{1}}, \\
\dot{x}_{2}=\frac{a_{1} x_{1} x_{2}}{1+b_{1} x_{1}}-\frac{a_{2} x_{2} x_{3}}{1+b_{1} x_{2}}-d_{1} x_{2}, \\
\dot{x}_{3}=\frac{a_{2} x_{2} x_{3}}{1+b_{1} x_{2}}-d_{2} x_{3},
\end{array}\right.
$$

with $a_{1}=5, a_{2}=0.1, b_{1}=3$, and $b_{2}=2$.

- M.P. Boer, B.W. Kooi, and S.A.L.M. Kooijman [1999] "Homoclinic and heteroclinic orbits to a cycle in a tri-trophic food chain," J. Math. Biol. 39, 19-38.
Yu.A. Kuznetsov, O. De Feo, and S. Rinaldi [2001] "Belayakov homoclinic bifurcations in a tritrophic food chain model," SIAM J. Appl. Math. 62, 462-487.
Universiteit Utrecht

Continuation of cycle-to-cycle connections

\square Homoclinic orbit to the cycle at $\left(d_{1}, d_{2}\right)=(0.25,0.0125)$:

Continuation of cycle-to-cycle connections

\square Homoclinic orbit to the cycle at $\left(d_{1}, d_{2}\right)=(0.25,0.0125)$:

Limit points: $d_{1}=0.2809078$ and $d_{1}=0.2305987$.

Homoclinic tangency curve

Detailed bifurcation diagram

Open questions

$\square n>3$?

Open questions

$\square n>3$?
Should all this be integrated in AUTO ?

