ENDTERM COMPLEX FUNCTIONS

JUNE 29 2011, 9:00-12:00

- Put your name and studentnummer on every sheet you hand in.
- When you use a theorem, show that the conditions are met.

Exercise 1. ($5 \boldsymbol{p} \boldsymbol{t}$) Let $U=\{z \in \mathbb{C}: z \neq x, x \leq 0\}$. Prove that any continuous closed path γ in U is homologous to 0 in U.
Exercise 2. ($10 \boldsymbol{p t}$) Show that equation $z^{6}+4 z^{2}=1$ has exactly two simple roots with $|z|<1$.

Exercise 3. ($10 \boldsymbol{p t}$) Let $a>b>0$. Evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{x^{3} \sin x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} d x
$$

Exercise 4. (20 pt) Consider the function $f(z)=\frac{\mathrm{e}^{i \pi z^{2}}}{\sin (\pi z)}$.
a. (2 pt) Find all singular points of f in \mathbb{C} and determine their type. Compute $\operatorname{Res}_{0} f$.
b. (5 pt) Show that $f(z)-f(z-1)=2 i \mathrm{e}^{i \pi z(z-1)}$ for $z \neq 0, \pm 1, \pm 2, \ldots$.
c. (3 pt) Let γ be a closed path composed by four straight line segments $\gamma_{k}, k=1,2,3,4$, connecting the points

$$
\pm \frac{1}{2} \pm R \mathrm{e}^{i \theta}, \quad 0<\theta<\pi
$$

and oriented counterclockwise. Let γ_{1} and γ_{3} be the right and left sides of γ, respectively. Prove that

$$
\int_{\gamma_{3}} f(z) d z=-\int_{\gamma_{1}} f(z-1) d z
$$

d. (5 pt) Let γ_{2} and γ_{4} be the top and bottom sides of γ, respectively. Show for $\theta=\frac{\pi}{2}$ and $\frac{\pi}{4}$ that

$$
\lim _{R \rightarrow \infty}\left|\int_{\gamma_{2}} f(z) d z+\int_{\gamma_{4}} f(z) d z\right|=0
$$

e. (5 pt) Use the information obtained for $\theta=\frac{\pi}{2}$ and $\frac{\pi}{4}$ to evaluate the integrals

$$
\int_{-\infty}^{\infty} \cos \left(\pi x^{2}\right) d x \quad \text { and } \quad \int_{-\infty}^{\infty} \mathrm{e}^{-\pi x^{2}} d x
$$

respectively.
Bonus Exercise. ($10 \boldsymbol{p} \boldsymbol{t}$) Let $f(z)=\frac{1}{z^{2} \sin z}$.
a. (5 pt) Find poles of f and compute the residue of f at each of them.
b. (5 pt) Evaluate

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}
$$

