ENDTERM COMPLEX FUNCTIONS

JUNE 26 2013, 9:00-12:00

- Put your name and student number on every sheet you hand in.
- When you use a theorem, show that the conditions are met.

Exercise 1 (10 pt) Give an analytic isomorphism between the first quadrant

$$
Q=\{z \in \mathbb{C}: \operatorname{Re}(z)>0 \text { and } \operatorname{Im}(z)>0\}
$$

and the open unit disc $D=\{z \in \mathbb{C}:|z|<1\}$.
Exercise 2 (25 pt) Let $a, b>0$. Prove that the following integrals converge and evaluate them.
a. (10 pt) $\int_{-\infty}^{\infty} \frac{\cos (a x)-\cos (b x)}{x^{2}} d x$
b. (15 pt) $\int_{-\infty}^{\infty} e^{-a x^{2}} \cos (b x) d x \quad$ (Hint: Use a rectangular countour.)

Exercise 3 (10 pt) Consider the polynomial function $P(z)=z^{7}-2 z-5$.
a. ($7 p t$) Determine the number of roots of P with $\operatorname{Re}(z)>0$.
b. (3 pt) How many of them are simple?

Bonus Exercise (15 pt) Prove that

$$
\int_{0}^{\infty} \frac{\sin (x)}{\log ^{2}(x)+\frac{\pi^{2}}{4}} d x=\frac{2}{e}+\frac{2}{\pi} \int_{0}^{\infty} \frac{\log (x) \cos (x)}{\log ^{2}(x)+\frac{\pi^{2}}{4}} d x
$$

You may assume that the integrals converge.

