EXAM COMPLEX FUNCTIONS

APRIL 192010

- You may do this exam either in English or Dutch.
- Put your name and studentnummer on every sheet you hand in.
- Give only reasoned solutions, but try to be concise.

1. (3 $p t$) Let $U:=\{z \in \mathbb{C} \mid \operatorname{Re}(z)>0\}$. Suppose f is holomorphic on Uand satisfies $f(1)=0$ and $\operatorname{Re}(f(z))=\log |z|$. Show that f is unique and determine it.
2. (5 pt) Let $d \in \mathbb{N}$. Consider the series $f_{d}(z)=\sum_{n=0}^{\infty} n^{d-1} z^{n}$. Show that its radius of convergence is 1 and prove (by induction) that there exists a polynomial p_{d} of degree at most $d-1$ such that for $|z|<1$

$$
f_{d}(z)=\frac{p_{d}(z)}{(1-z)^{d}}
$$

Use the method of generating functions to prove that

$$
\sum_{n=0}^{d}\binom{d}{n}(-1)^{n} n^{d-1}=0
$$

3. (5 pt) Let $n \in \mathbb{N}_{\geq 2}$ and find the roots of $z^{n}+1$. Show that:

$$
\int_{0}^{\infty} \frac{d x}{x^{n}+1}=\frac{\pi / n}{\sin \pi / n}
$$

Hint: Use the chain which lies on the boundary of the circular sector with vertices $0, R$ and $R e^{\frac{2 \pi i}{n}}$. Show that the integral of $1 /\left(z^{n}+1\right)$ over the circular arc approaches 0 as $R \rightarrow \infty$. (See page 2 for a picture.)
4. (3 pt) Prove the (global) maximum modulus principle.
5. (4 pt) Let $U:=\{z \in \mathbb{C} \mid \operatorname{Re}(z)>0\}$ and assume $f: U \rightarrow \mathbb{C}$ is analytic. Suppose that $f(z)=g(z) f(z+1)$ for all $z \in U$ for some analytic function $g: \mathbb{C} \rightarrow \mathbb{C}$. Prove there exists an analytic continuation of f to \mathbb{C}.
6. (2 pt Bonus) Find all analytic functions f on \mathbb{C} with $|f(z)|=|f(|z|)|$.

The chain for exercise 3:

