MIDTERM COMPLEX FUNCTIONS

APRIL 20 2011, 9:00-12:00

- Put your name and studentnummer on every sheet you hand in.
- When you use a theorem, show that the conditions are met.

Exercise 1. (8 $\boldsymbol{p} \boldsymbol{t})$ Consider the series $\sum_{n=1}^{\infty} \sin (n \phi) z^{n}$ for some $\phi \in(0, \pi)$.
a. (3 pt) Determine it's radius of convergence ρ and show that it's sum equals a rational function f on $|z|<\rho$.
b. (4 pt) Prove that for all non-negative integers n we have

$$
2 \sum_{k=0}^{n} \sin (k \phi) \sin (k \phi-n \phi)=(n+1) \cos (n \phi)-\frac{\sin (n \phi+\phi)}{\sin (\phi)}
$$

Hint: Use the method of generating functions, i.e. consider the series

$$
\sum_{n=0}^{\infty} a_{n} z^{n} \text { where } a_{n}=-4 \sum_{k=0}^{n} \sin (k \phi) \sin (n \phi-k \phi) .
$$

c. (1 $p t$) Prove that for all integers $n>2$

$$
\sum_{k=0}^{n} \sin ^{2}\left(\frac{2 \pi k}{n}\right)=\frac{n}{2}
$$

Exercise 2. ($\mathbf{8} \boldsymbol{p t}$) Let $z_{1}, z_{2}, \ldots, z_{n}$ be points on the unit circle in \mathbb{C}. Prove that there exists a point z on the unit circle such that

$$
\left|z-z_{1}\right| \cdot\left|z-z_{2}\right| \cdots\left|z-z_{n}\right|>1
$$

Hint: Use the Maximum Modulus Principle.

Exercise 3. (10 pt) Let U be an open subset of \mathbb{C} and let $f: U \rightarrow \mathbb{C}$ be a function satisfying $(f(z))^{2}=z$ for all $z \in U$.
a. (4 pt) Show there exist $\alpha, \beta: U \rightarrow\{-1,1\}$ such that for all $z \in U \backslash \mathbb{R}$

$$
\operatorname{Re} f(z)=\frac{\alpha(z)}{\sqrt{2}} \sqrt{|z|+\operatorname{Re}(z)} \text { and } \operatorname{Im} f(z)=\frac{\beta(z)}{\sqrt{2}} \sqrt{|z|-\operatorname{Re}(z)}
$$

b. (3 pt) Show that if on $U \backslash \mathbb{R}$ the Cauchy-Riemann equations are satisfied then $|\operatorname{Im}(z)| \alpha(z)=\operatorname{Im}(z) \beta(z)$ for all $z \in U \backslash \mathbb{R}$.
c. (3 pt) Suppose C is a circle of radius R in U centered at the origin. Prove that f is not analytic.

Hint: Why should α be constant on $C \backslash\{-R\}$?

Exercise 4 ($6 \boldsymbol{p t}$). Let R be a real positive number and let n be a nonnegative integer. Calculate

$$
\int_{0}^{2 \pi} e^{R \cos (t)} \cos (R \sin (t)-n t) d t
$$

Exercise 5 ($8 \boldsymbol{p t}$). Suppose the power series

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

has radius of convergence $\rho>0$. Prove that f is analytic on the open disk $D(0, \rho)$, without using the equivalence "holomorphic" \Leftrightarrow "analytic".

Hint: Use the binomial formula.

