MIDTERM COMPLEX FUNCTIONS

APRIL 20 2011, 9:00-12:00

- Put your name and studentnummer on every sheet you hand in.
- When you use a theorem, show that the conditions are met.

Exercise 1. (8 pt) Consider the series $\sum_{n=1}^{\infty} \sin(n\phi)z^n$ for some $\phi \in (0, \pi)$.

- **a.** (3 pt) Determine it's radius of convergence ρ and show that it's sum equals a rational function f on $|z| < \rho$.
- **b.** (4 pt) Prove that for all non-negative integers n we have

$$2\sum_{k=0}^{n}\sin\left(k\phi\right)\sin\left(k\phi-n\phi\right) = (n+1)\cos\left(n\phi\right) - \frac{\sin\left(n\phi+\phi\right)}{\sin\left(\phi\right)}$$

Hint: Use the method of generating functions, i.e. consider the series

$$\sum_{n=0}^{\infty} a_n z^n \text{ where } a_n = -4 \sum_{k=0}^{n} \sin(k\phi) \sin(n\phi - k\phi).$$

c. (1 pt) Prove that for all integers n > 2

$$\sum_{k=0}^{n} \sin^2\left(\frac{2\pi k}{n}\right) = \frac{n}{2}.$$

Exercise 2. (8 pt) Let $z_1, z_2, ..., z_n$ be points on the unit circle in \mathbb{C} . Prove that there exists a point z on the unit circle such that

$$|z-z_1|\cdot|z-z_2|\cdots|z-z_n|>1.$$

Hint: Use the Maximum Modulus Principle.

Exercise 3. (10 pt) Let U be an open subset of \mathbb{C} and let $f: U \to \mathbb{C}$ be a function satisfying $(f(z))^2 = z$ for all $z \in U$.

a. $(4 \ pt)$ Show there exist $\alpha, \beta: U \to \{-1, 1\}$ such that for all $z \in U \setminus \mathbb{R}$

$$\operatorname{Re} f(z) = \frac{\alpha(z)}{\sqrt{2}} \sqrt{|z| + \operatorname{Re}(z)} \text{ and } \operatorname{Im} f(z) = \frac{\beta(z)}{\sqrt{2}} \sqrt{|z| - \operatorname{Re}(z)}$$

- **b.** (3 pt) Show that if on $U \setminus \mathbb{R}$ the Cauchy-Riemann equations are satisfied then $|\operatorname{Im}(z)|\alpha(z) = \operatorname{Im}(z)\beta(z)$ for all $z \in U \setminus \mathbb{R}$.
- **c.** (3 pt) Suppose C is a circle of radius R in U centered at the origin. Prove that f is not analytic.

Hint: Why should α be constant on $C \setminus \{-R\}$?

Exercise 4 (6 pt). Let R be a real positive number and let n be a non-negative integer. Calculate

$$\int_0^{2\pi} e^{R\cos(t)}\cos(R\sin(t) - nt) dt.$$

Exercise 5 (8 pt). Suppose the power series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

has radius of convergence $\rho > 0$. Prove that f is analytic on the open disk $D(0, \rho)$, without using the equivalence "holomorphic" \Leftrightarrow "analytic".

Hint: Use the binomial formula.