MIDTERM COMPLEX FUNCTIONS

APRIL 18 2012, 9:00-12:00

- Put your name and studentnummer on every sheet you hand in.
- When you use a theorem, show that the conditions are met.

Exercise $1(7 \boldsymbol{p t})$ Let $a, b, c \in \mathbb{C}$ be located on the unit circle and let $a+b+c=0$. Prove that the corresponding points are the vertices of an equilateral triangle.

Exercise 2 (10 pt) Write the Cauchy-Riemann equations in polar coordinates (r, θ). Then show that the function $\log z=\log r+i \theta, z=r e^{i \theta}$, is holomorphic in the region $r>0,-\pi<\theta<\pi$.

Exercise 3 (10 pt) Suppose $f: U \rightarrow \mathbb{C}$ is a non-constant holomorphic function on an open set $U \subset \mathbb{C}$ containing the closed unit disc $\overline{D(0,1)}$. Suppose that $|f(z)|=1$ for all $z \in \mathbb{C}$ with $|z|=1$. Prove that the equation $f(z)=0$ has a solution in the open unit disc $D(0,1)$.

Exercise 4 (8 pt) Compute

$$
\int_{\gamma} \frac{\sin z}{z^{2}} d z \quad \text { and } \quad \int_{\gamma} \frac{\cos z}{z^{3}} d z
$$

where γ is the unit circle $|z|=1$ oriented counter-clockwise and traced once.
Exercise 5 (10 pt) Suppose that a complex function f has a power series representation near the origin, i.e. there is a power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ that converges absolutely to $f(z)$ in an open disc centered at $z=0$.
(i) Assuming that $a_{0} \neq 0$, prove that the function

$$
g(z)=\frac{1}{f(z)}
$$

also has has a power series representation near the origin.
(ii) Derive explicit formulas for the coefficients b_{0}, b_{1}, b_{2}, and b_{3} in the series $\sum_{n=0}^{\infty} b_{n} z^{n}$ representing the function g near the origin.

