RETAKE COMPLEX FUNCTIONS

AUGUST 20 2014, 9:00-12:00

- Put your name and student number on every sheet you hand in.
- When you use a theorem, show that the conditions are met.
- Include your partial solutions, even if you were unable to complete an exercise.

Exercise 1 (20 pt): Consider a transformation of the complex plane

$$z \mapsto a\bar{z} + b,\tag{1}$$

where $a, b \in \mathbb{C}$ are such that |a| = 1 and $a\overline{b} = -b$. It is known that this transformation has a straight line composed of fixed points. Prove that (1) acts as a mirror reflection in this line.

Exercise 2 $(10 \ pt)$: Find the convergence radius of the series

$$\sum_{n=1}^{\infty} z^{n!} ,$$

where $n! = 1 \cdot 2 \cdots (n-1) \cdot n$.

Exercise 3 (50 pt): Let 0 < a < b and let

$$I := \frac{1}{\pi} \int_{a}^{b} \frac{\sqrt{(x-a)(b-x)}}{x} \, dx \; . \tag{2}$$

a. (10 pt) Prove that there exists an analytic function $g : \mathbb{C} \setminus [a, b] \to \mathbb{C}$ such that $[g(z)]^2 = (z - a)(b - z)$ for $z \in \mathbb{C} \setminus [a, b]$ while

$$\lim_{\varepsilon \uparrow 0} g(x+i\varepsilon) = \sqrt{(x-a)(b-x)},$$
$$\lim_{\varepsilon \downarrow 0} g(x+i\varepsilon) = -\sqrt{(x-a)(b-x)}$$

for $x \in [a, b]$.

Turn the page!

b. $(10 \ pt)$ Consider the integral

over the closed chain $C = C_{\varepsilon} + C_{1/\varepsilon} + C_1(\varepsilon)$ shown below

 $\int_C \frac{g(z)}{z} dz$

with ε small enough. Argue that this integral vanishes.

c. $(10 \ pt)$ Evaluate the integrals over the circles

$$\int_{C_{\varepsilon}} \frac{g(z)}{z} dz$$
 and $\int_{C_{1/\varepsilon}} \frac{g(z)}{z} dz$

using residues. *Hint*: Substitute w = 1/z in the second integral.

d. $(10 \ pt)$ Prove that

$$\lim_{\varepsilon \downarrow 0} \int_{C_1(\varepsilon)} \frac{g(z)}{z} dz = 2\pi I,$$

where $C_1(\varepsilon)$ is the path near the segment [a, b] and I is the integral (2).

e. (10 pt) Combine the obtained results to explicitly evaluate I.

Exercise 4 (20 pt): Let $r, R \in \mathbb{R}$ such that 0 < r < R. Denote by D the open unit disc in \mathbb{C} . Prove that there is no analytic isomorphism from the punctured disc $D \setminus \{0\}$ to the annulus $A := \{z \in \mathbb{C} : r < |z| < R\}$.