RETAKE COMPLEX FUNCTIONS

AUGUST 20 2014, 9:00-12:00

- Put your name and student number on every sheet you hand in.
- When you use a theorem, show that the conditions are met.
- Include your partial solutions, even if you were unable to complete an exercise.

Exercise 1 (20 pt): Consider a transformation of the complex plane

$$
\begin{equation*}
z \mapsto a \bar{z}+b \tag{1}
\end{equation*}
$$

where $a, b \in \mathbb{C}$ are such that $|a|=1$ and $a \bar{b}=-b$. It is known that this transformation has a straight line composed of fixed points. Prove that (1) acts as a mirror reflection in this line.
Exercise $2(10 p t)$: Find the convergence radius of the series

$$
\sum_{n=1}^{\infty} z^{n!}
$$

where $n!=1 \cdot 2 \cdots(n-1) \cdot n$.
Exercise 3 (50 pt): Let $0<a<b$ and let

$$
\begin{equation*}
I:=\frac{1}{\pi} \int_{a}^{b} \frac{\sqrt{(x-a)(b-x)}}{x} d x \tag{2}
\end{equation*}
$$

a. (10 pt) Prove that there exists an analytic function $g: \mathbb{C} \backslash[a, b] \rightarrow \mathbb{C}$ such that $[g(z)]^{2}=(z-a)(b-z)$ for $z \in \mathbb{C} \backslash[a, b]$ while

$$
\begin{aligned}
& \lim _{\varepsilon \uparrow 0} g(x+i \varepsilon)=\sqrt{(x-a)(b-x)} \\
& \lim _{\varepsilon \downarrow 0} g(x+i \varepsilon)=-\sqrt{(x-a)(b-x)}
\end{aligned}
$$

for $x \in[a, b]$.
Turn the page!
b. (10 pt) Consider the integral

$$
\int_{C} \frac{g(z)}{z} d z
$$

over the closed chain $C=C_{\varepsilon}+C_{1 / \varepsilon}+C_{1}(\varepsilon)$ shown below

with ε small enough. Argue that this integral vanishes.
c. $(\mathbf{1 0} \boldsymbol{p t})$ Evaluate the integrals over the circles

$$
\int_{C_{\varepsilon}} \frac{g(z)}{z} d z \quad \text { and } \quad \int_{C_{1 / \varepsilon}} \frac{g(z)}{z} d z
$$

using residues. Hint: Substitute $w=1 / z$ in the second integral.
d. (10 pt) Prove that

$$
\lim _{\varepsilon \downarrow 0} \int_{C_{1}(\varepsilon)} \frac{g(z)}{z} d z=2 \pi I
$$

where $C_{1}(\varepsilon)$ is the path near the segment $[a, b]$ and I is the integral (2).
e. (10 pt) Combine the obtained results to explicitly evaluate I.

Exercise 4 (20 pt): Let $r, R \in \mathbb{R}$ such that $0<r<R$. Denote by D the open unit disc in \mathbb{C}. Prove that there is no analytic isomorphism from the punctured disc $D \backslash\{0\}$ to the annulus $A:=\{z \in \mathbb{C}: r<|z|<R\}$.

