RETAKE COMPLEX FUNCTIONS

August 22 2012, 9:00-12:00

- Put your name and studentnummer on every sheet you hand in.
- When you use a theorem, show that the conditions are met.

Exercise 1. (20 pt) Let $k>0$ with $k \neq 1$ and $\alpha, \beta \in \mathbb{C}$ with $\alpha \neq \beta$. Prove that the set

$$
\{z \in \mathbb{C}:|z-\alpha|=k|z-\beta|\}
$$

is a circle and find its center and radius.
Exercise 2. ($10 \boldsymbol{p} \boldsymbol{t}$) Compute $\int_{\gamma} \frac{e^{z}-e^{-z}}{z^{4}} d z$ along the path shown below.

Exercise 3. (20 pt) Let $w=f(z)$ be an analytic function in a neighbourhood of $z=0$ with $f(0)=0$ but $f^{\prime}(0) \neq 0$.
a. (15 pt) Suppose that f has a series representation

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

near $z=0$. Derive explicit expressions for the coeffcients b_{n} with $n \leq 5$ in the series representation of the inverse function $g=f^{-1}$ near $w=0$:

$$
g(w)=\sum_{n=0}^{\infty} b_{n} w^{n} .
$$

b. (5 pt) Prove that

$$
\arcsin w=w+\frac{1}{6} w^{3}+\frac{3}{40} w^{5}+O\left(|w|^{7}\right) .
$$

Turn the page!

Exercise 4. (20 pt) Let $f(z)=z^{6}-5 z^{4}+10$.
a. (15 pt) Prove that f has
(i) no zeroes with $|z|<1$;
(ii) 4 zeroes with $|z|<2$;
(iii) 6 zeroes with $|z|<3$;
b. (5 pt) For cases (ii) and (iii), show that all zeroes are different.

Exercise 5. (30 pt) Let $a \in \mathbb{R} \backslash \mathbb{Z}$. Consider the function

$$
f(z)=\frac{\cos (\pi z)}{(z-a)^{2} \sin (\pi z)}
$$

a. (10 pt) For integer $n \geq 0$, introduce the rectangular closed path γ_{n} passing through the points

$$
\pm\left(n+\frac{1}{2}\right) \pm i n
$$

and oriented couter-clockwise. Prove by integral estimates that

$$
\left|\int_{\gamma_{n}} f(z) d z\right| \rightarrow 0 \text { as } n \rightarrow \infty
$$

b. (10 pt) Find poles of f and compute the residue of f at each of them.
c. $(5 p t)$ Show that

$$
\int_{\gamma_{n}} f(z) d z=2 \pi i\left(-\frac{\pi}{\sin ^{2}(\pi a)}+\sum_{k=-n}^{n} \frac{1}{\pi(k-a)^{2}}\right) .
$$

d. (5 pt) Compute $\sum_{n=-\infty}^{\infty} \frac{1}{(n-a)^{2}}$.

Bonus Exercise. (20 pt) Suppose that f is an entire function and for every point $a \in \mathbb{C}$ at least one of the coefficients c_{n} in the Taylor series

$$
f(z)=\sum_{n=0}^{\infty} c_{n}(z-a)^{n}
$$

vanishes. Prove that f is a polynomial.

