RETAKE COMPLEX FUNCTIONS

August 24 2011, 9:00-12:00

- Put your name and studentnummer on every sheet you hand in.
- When you use a theorem, show that the conditions are met.

Exercise 1. (30 pt) Given complex numbers $a_{0}, a_{1}, u_{1}, u_{2}$, define a_{n} for $n \geq 2$ by the difference equation:

$$
\begin{equation*}
a_{n}=u_{1} a_{n-1}+u_{2} a_{n-2} . \tag{1}
\end{equation*}
$$

Assume that the polynomial $z^{2}-u_{1} z-u_{2}$ has two roots $\alpha, \beta \in \mathbb{C}$ such that $|\alpha|<|\beta|$.
a. (10 pt) Show that $a_{n}=A \alpha^{n}+B \beta^{n}$ satisfies (1) with suitable $A, B \in \mathbb{C}$.
b. (10 pt) Determine the radius of convergence of the power series

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n} z^{n} . \tag{2}
\end{equation*}
$$

c. (10 pt) Find a rational function $f(z)$ for which (2) is the power series expansion at $z=0$.

Exercise 2. (20 pt) Show that all solutions of the equation $z^{4}=6 z+3$ satisfy $|z|<2$.

Exercise 3. (20 pt) Prove that

$$
\int_{0}^{\infty} \sin \left(\pi x^{2}\right) d x=\int_{0}^{\infty} e^{-2 \pi x^{2}} d x
$$

Hint: Consider the integral of an appropriate analytic function $f(z)$ over the following closed path:

Continued on p. 2

Exercise 4. (30 pt) Let $a \in \mathbb{R} \backslash \mathbb{Z}$. Consider the function

$$
f(z)=\frac{\cos (\pi z)}{(z-a)^{2} \sin (\pi z)}
$$

a. (10 pt) For integer $n \geq 0$, introduce the rectangular closed path γ_{n} passing through the points

$$
\pm\left(n+\frac{1}{2}\right) \pm i n
$$

and oriented couter-clockwise. Prove by integral estimates that

$$
\left|\int_{\gamma_{n}} f(z) d z\right| \rightarrow 0 \text { as } n \rightarrow \infty
$$

b. (10 pt) Find poles of f and compute the residue of f at each of them.
c. $(5 p t)$ Show that

$$
\int_{\gamma_{n}} f(z) d z=2 \pi i\left(-\frac{\pi}{\sin ^{2}(\pi a)}+\sum_{k=-n}^{n} \frac{1}{\pi(k-a)^{2}}\right) .
$$

d. (5 pt) Compute $\sum_{n=-\infty}^{\infty} \frac{1}{(n-a)^{2}}$.

Bonus Exercise. (20 pt) Is there an analytic function f on $\mathbb{C} \backslash[-1,1]$ that satisfies

$$
e^{f(z)}=\frac{z+1}{z-1} ?
$$

