INLDS Practicum 1

For each planar system below, construct its phase portrait numerically using the MATLAB tool pplane9 and then try to prove its essential features analytically.

Exercises

Ex. 1 Two systems without cycles

$$
\left\{\begin{array} { l }
{ \dot { x } = y , } \\
{ \dot { y } = - x - y + x ^ { 2 } , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
\dot{x}=y, \\
\dot{y}=-x-y+x^{2}+y^{2} .
\end{array}\right.\right.
$$

Ex. 2 A system with infinite number of cycles

$$
\left\{\begin{array}{l}
\dot{x}=y \\
\dot{y}=x+x y-x^{3} .
\end{array}\right.
$$

Hint: Consider the transformation $(x, y, t) \rightarrow(-x, y,-t)$.

Ex. 3 A system with one stable cycle

$$
\left\{\begin{array}{l}
\dot{x}=y \\
\dot{y}=-x+y\left(1-x^{2}-y^{2}\right)
\end{array}\right.
$$

Hint: Introduce polar coordinates $x=r \cos \varphi, y=r \sin \varphi$.

Ex. 4 A system with an unstable cycle

$$
\left\{\begin{array}{l}
\dot{x}=x\left(x^{2}+y^{2}-2 x-3\right)-y \\
\dot{y}=y\left(x^{2}+y^{2}-2 x-3\right)+x .
\end{array}\right.
$$

Ex. 5 Van der Pol oscillator

$$
\left\{\begin{aligned}
\dot{x} & =y-x^{3}+x \\
\dot{y} & =-\varepsilon x
\end{aligned}\right.
$$

with $\varepsilon=1.0,0.1$, and 0.01 .

Homework

Hand-in exercise is number 4. A solution should contain a phase plane with a periodic orbit obtained with pplane9. Also prove rigorously the existence of at least one periodic orbit using the Poincaré-Bendixson Theorem. Hint: Introduce polar coordinates $x=r \cos \varphi, y=r \sin \varphi$, and consider an annulus $r_{1}<r<r_{2}$ with suitable $r_{1,2}>0$.
Challenge: Prove that the cycle is unique. Hint: Consider the curve div $F(x, y)=0$ as the inner border of another annulus.

