INLDS Practicum 2

For each planar system below, construct its phase portrait numerically using the MATLAB tool pplane9 and then try to prove its essential features analytically.

Exercises

Ex. 1 System with a degenerate equilibrium

$$
\left\{\begin{aligned}
\dot{x} & =x^{2}-y^{2}, \\
\dot{y} & =2 x y .
\end{aligned}\right.
$$

Hint: To find an integral of motion $H=H(x, y)$, write a differential equation for the complex variable $z=x+i y$ and take the imaginary part of its general solution. Then study the level curves of H.

Ex. 2 System with a neutral focus

Find and classify all equilibria of the system

$$
\left\{\begin{aligned}
\dot{x} & =-y-x y+2 y^{2} \\
\dot{y} & =x-x^{2} y .
\end{aligned}\right.
$$

Hint: To determine local stability of the equilibrium $(0,0)$, compute its 1 st Lyapunov coefficient l_{1}.

Ex. 3 System with a non-degenerate saddle homoclinic orbit

$$
\left\{\begin{aligned}
\dot{x} & =-x+2 y+x^{2} \\
\dot{y} & =2 x-y-3 x^{2}+\frac{3}{2} x y .
\end{aligned}\right.
$$

Hint: The curve $x^{2}(1-x)-y^{2}=0$ is invariant, i.e. consists of orbits.

Homework

Hand-in exercise is number 3. A solution should contain a phase portrait with three equilibria and a homoclinic orbit. Classify the equilibria and prove rigorously the existence of a unique homoclinic orbit. Determine stability of the homoclinic orbit analytically.

