INLDS Practicum 4

For each planar system below, construct its phase portrait for $\alpha=0$ and for small $\alpha<0$ and $\alpha>0$ using the MATLAB tool pplane9. Identify the occurring bifurcation and try to support your conclusions by analytical arguments as outlined below.

Ex. 1 A system with a local bifurcation

$$
\left\{\begin{array}{l}
\dot{x}=y \tag{1}\\
\dot{y}=\alpha-y+x^{2} .
\end{array}\right.
$$

(a) Find a multiple equilibrium at $\alpha=0$.
(b) Introduce new coordinates (ξ, η) by the linear substitution

$$
\left\{\begin{array}{l}
x=\xi-\eta \\
y=\eta
\end{array}\right.
$$

(c) Write the principal part of the system at $\alpha=0$ in the new coordinates. Compute the normal form coefficient a for the saddle-node bifurcation and verify that $a \neq 0$.

Ex. 2 A system with a global bifurcation in which a local bifurcation is involved

$$
\left\{\begin{array}{l}
\dot{x}=x\left(1-x^{2}-y^{2}\right)-y(1+\alpha+x), \tag{2}\\
\dot{y}=x(1+\alpha+x)+y\left(1-x^{2}-y^{2}\right) .
\end{array}\right.
$$

(a) Substitute $x=r \cos \varphi, y=r \sin \varphi$ and rewrite the system in the polar coordinates (r, φ).
(b) Prove that the unit circle $r=1$ is invariant and study equilibria on this circle.
(c) Find a multiple equilibrium at $\alpha=0$ on the invariant circle.
(d) Compute the normal form coefficient a for the saddle-node bifurcation of this equilibrium at $\alpha=0$ and verify that $a \neq 0$.

Homework

Hand-in exercise is number 2.

