INLDS Practicum 5

Exercises

Ex. 1 Rayleigh's equation Consider the equation

$$
\begin{equation*}
\ddot{x}+\dot{x}^{3}-2 \alpha \dot{x}+x=0 \tag{1}
\end{equation*}
$$

and rewrite it as a planar system by introducing $y=-\dot{x}$.

1. Construct the phase portrait of the resulting planar system for $\alpha=0$ and for small $\alpha<0$ and $\alpha>0$ using the MATLAB tool pplane9.
2. Identify the occurring bifurcation and support your conclusions by analytical arguments as outlined below:
(a) Introduce the complex variable $z=x+i y$ and write the planar system for $\alpha=0$ as one complex equation $\dot{z}=i \omega z+g(z, \bar{z})$.
(b) Compute the Taylor coefficients g_{20}, g_{11}, g_{21} and evaluate the first Lyapunov coefficient l_{1}.
(c) Determine the type and direction of the Andronov-Hopf bifurcation based on the sign of l_{1} and the analysis of the eigenvalues of the equilibrium $x=y=0$.

Ex. 2 Brusselator Consider the planar system

$$
\left\{\begin{align*}
\dot{x} & =A-(B+1) x+x^{2} y \tag{2}\\
\dot{y} & =B x-x^{2} y
\end{align*}\right.
$$

where $A>0$ is fixed and B is a bifurcation parameter.
(a) Find the bifurcation parameter value $B_{0}=B_{0}(A)$ at which system (2) exhibits an Andronov-Hopf bifurcation.
(b) Determine whether this bifurcation is sub- or super-critical by computing l_{1}.
(c) Illustrate your analysis for $A=1$ by constructing the phase portrait of (2) with pplane9 at $B=B_{0}$ and for $B<B_{0}$ and $B>B_{0}$ with small $\left|B-B_{0}\right|$.

Homework

Hand-in is exercise 2.

