INLDS Practicum 5

Exercises

Ex.1 Rayleigh's equation Consider the equation

$$\ddot{x} + \dot{x}^3 - 2\alpha \dot{x} + x = 0 \tag{1}$$

and rewrite it as a planar system by introducing $y = -\dot{x}$.

- 1. Construct the phase portrait of the resulting planar system for $\alpha = 0$ and for small $\alpha < 0$ and $\alpha > 0$ using the MATLAB tool pplane9.
- 2. Identify the occurring bifurcation and support your conclusions by analytical arguments as outlined below:
 - (a) Introduce the complex variable z = x + iy and write the planar system for $\alpha = 0$ as one complex equation $\dot{z} = i\omega z + g(z, \bar{z})$.
 - (b) Compute the Taylor coefficients g_{20}, g_{11}, g_{21} and evaluate the first Lyapunov coefficient l_1 .
 - (c) Determine the type and direction of the Andronov-Hopf bifurcation based on the sign of l_1 and the analysis of the eigenvalues of the equilibrium x = y = 0.

Ex.2 Brusselator Consider the planar system

$$\begin{cases} \dot{x} = A - (B+1)x + x^2 y, \\ \dot{y} = Bx - x^2 y, \end{cases}$$
(2)

where A > 0 is fixed and B is a bifurcation parameter.

- (a) Find the bifurcation parameter value $B_0 = B_0(A)$ at which system (2) exhibits an Andronov-Hopf bifurcation.
- (b) Determine whether this bifurcation is sub- or super-critical by computing l_1 .
- (c) Illustrate your analysis for A = 1 by constructing the phase portrait of (2) with pplane9 at $B = B_0$ and for $B < B_0$ and $B > B_0$ with small $|B B_0|$.

Homework

Hand-in is exercise 2.