INLDS Practicum 6

For each planar system below, construct its phase portrait for $\alpha=0$ and for small $\alpha<0$ and $\alpha>0$ using the MATLAB tool pplane9. Identify the occuring bifurcation and try to support your conclusions by analytical arguments as outlined below.

Exercises

Ex. 1 A system with a global bifurcation

$$
\left\{\begin{array}{l}
\dot{x}=1-x^{2}-\alpha x y \tag{1}\\
\dot{y}=x y+\alpha\left(1-x^{2}\right) .
\end{array}\right.
$$

Prove that for $\alpha=0$ there exists a heteroclinic connection between two saddles.
(a) Determine the equilibria and classify them.
(b) Compute the heteroclinic solution explicitly and verify the limits $t \rightarrow \pm \infty$.

Ex. 2 A system with a saddle homoclinic bifurcation

$$
\left\{\begin{array}{l}
\dot{x}=-x+2 y+x^{2}, \tag{2}\\
\dot{y}=(2-\alpha) x-y-3 x^{2}+\frac{3}{2} x y .
\end{array}\right.
$$

Recall that for $\alpha=0$ the system has a homoclinic orbit with $\sigma<0$.
(a) Predict the stability of the bifurcating cycle and the direction of its bifurcation.
(b) Challenge: Show that the splitting function $\beta(\alpha)$ has a regular zero at $\alpha=0$, see Theorem 4.4 in Applied Nonlinear Dynamics.

Ex. 3 A system with a fold bifurcation of a cycle

$$
\left\{\begin{array}{l}
\dot{x}=\left(\alpha-\frac{1}{4}\right) x-y+x\left(x^{2}+y^{2}\right)-x\left(x^{2}+y^{2}\right)^{2} \tag{3}\\
\dot{y}=x+\left(\alpha-\frac{1}{4}\right) y+y\left(x^{2}+y^{2}\right)-y\left(x^{2}+y^{2}\right)^{2}
\end{array}\right.
$$

(a) Introduce polar coordinates $x=r \cos \varphi, y=r \sin \varphi$.
(b) Analyze the number and stability of equilibria of the r-equation for various α. Plot the equilibria (vertically) versus α (horizontally).
(c) Show that $\alpha=0$ the system (3) has a non-hyperbolic cycle, so that a fold bifurcation of cycles should occur in the system.
(d) Challenge: Compute the quadratic normal form coefficient for the fold bifurcation. Hints: Use separation of variables to define a suitable function g such that $g\left(r_{0}, r_{1}\right)=0$, where $r_{0}=r(0)$ and $r_{1}=r(2 \pi)$. Introduce the Poincaré map $P\left(r_{0}\right)=r_{1}$ and differentiate the relation $g\left(r_{0}, P\left(r_{0}\right)\right)=0$ twice with respect to r_{0} to get the second derivative of P at the critical fixed point $r_{0}=\frac{1}{\sqrt{2}}$. Use limit values of the derivatives.

Homework

Hand-in is exercise 3.

