INLDS Practicum 7

Exercises

Study the following two-parameter planar systems exhibiting local codim 2 bifurcations by combining analytical and numerical methods.

Ex. 1 Takens normal form

$$
\left\{\begin{array}{l}
\dot{x}=\beta x+y+x^{2}, \tag{1}\\
\dot{y}=\alpha-4 x^{2} .
\end{array}\right.
$$

(a) Derive equations for the saddle-node and Andronov-Hopf bifurcations in the system.
(b) Prove that a Bogdanov-Takens (BT) bifurcation occurs in the system and find the corresponding parameter values.
(c) Compute the normal form coefficients a and b for the BT-bifurcation and verify that $a b \neq 0$.
(d) Use pplane9 to produce all representative phase portraits of the system near the BogdanovTakens point. Sketch the bifurcation diagram of the system.
(e) For $\alpha=0.25$ find numerically the value of β corresponding to the saddle homoclinic bifurcation.

Ex. 2 A prey-predator model by Bazykin and Khibnik

$$
\left\{\begin{align*}
\dot{x} & =\frac{x^{2}(1-x)}{n+x}-x y \tag{2}\\
\dot{y} & =-y(m-x)
\end{align*}\right.
$$

where $x, y \geq 0$ and $0<m<1$.
(a) Using pplane9, produce several phase portraits of model (2) for different values of m and fixed $n=\frac{1}{4}$ and $n=\frac{1}{16}$. Hint: The most interesting phase portrait occurs at $(m, n)=\left(\frac{1}{5}, \frac{1}{16}\right)$.
(b) For $m=\frac{1}{5}$ approximate by simulations the value of n corresponding to the collision and disappearance of two periodic orbits.
(c) Derive an equation for the Andronov-Hopf bifurcation in the model. Hint: Consider the orbitally-equivalent polynomial system

$$
\left\{\begin{array}{l}
\dot{x}=x^{2}(1-x)-x y(n+x), \tag{3}\\
\dot{y}=-y(m-x)(n+x) .
\end{array}\right.
$$

(d) Compute the 1st Lyapunov coefficient l_{1} along the Andronov-Hopf bifurcation line in (3) and prove that this coefficient vanishes at $(m, n)=\left(\frac{1}{4}, \frac{1}{8}\right)$. Conclude that a Bautin bifurcation happens in the model.
(e) Sketch the bifurcation diagram of the model.
(f) Challenge: Prove that the Bautin bifurcation is nondegenerate by computing the corresponding 2nd Lyapunov coefficient l_{2}.

Homework

Hand-in is exercise 2.

