INLDS Practicum 8

Exercises

Study the following two-parameter planar systems exhibiting codim 2 homclinic bifurcations by combining analytical and numerical methods.

Ex. 1 Noncentral homoclinic orbit to a saddle-node

$$
\left\{\begin{array}{l}
\dot{x}=\alpha-x-y+x^{2}, \tag{1}\\
\dot{y}=\beta x+\beta y-x-y+\frac{3}{2} x^{2}+\frac{3}{2} x y .
\end{array}\right.
$$

(a) Verify that at $\alpha=\beta=0$ the system has a noncentral homoclinic orbit Γ_{0} to a saddlenode. Hint: The curve $y^{2}-x^{2}(1-x)=0$ is invariant and Γ_{0} is a part of it.
(b) Derive an equation of the saddle-node bifurcation curve passing through the origin of the (α, β)-plane. Hint: Look at the equilibrium $x=y=0$. Construct the phase portraits of (1) along this curve with pplane9.
(c) Use pplane9 to produce all representative phase portraits of the system (1) near the codim 2 bifurcation point $\alpha=\beta=0$. Hint: Consider the phase region $(x, y) \in$ $[-0.5,1.5] \times[-0.5,0.5]$ and take $(\alpha, \beta)=(0.1,0),(-0.1,0),(-0.1,0.2)$.
(d) Find by simulations the values $\alpha_{\text {Hom }}$ corresponding to the saddle homoclinic bifurcation for fixed $\beta=0.2,0.15,0.1$, and 0.05 . Sketch the bifurcation diagram of the system (1) in the parameter region $(\alpha, \beta) \in[-0.25,0.25] \times[-0.25,0.25]$.

Ex. 2 Neutral saddle homoclinic orbit

$$
\left\{\begin{array}{l}
\dot{x}=y+\alpha x+\beta y-\alpha x^{2}+\gamma H(x, y) H_{x}(x, y) \tag{2}\\
\dot{y}=x-\frac{3}{2} x^{2}+\alpha y-\frac{3}{2} \alpha x y+\gamma H(x, y) H_{y}(x, y),
\end{array}\right.
$$

where $H(x, y)=\frac{1}{2}\left[y^{2}-x^{2}(1-x)\right]$ and (α, β) are parameters, while γ is a constant.
(a) Verify that for $\alpha=\beta=\gamma=0$ the system is Hamiltonian and has a neutral saddle homoclinic orbit Γ_{0} in the level set $H(x, y)=0$. Check that the saddle quantity $\sigma=0$ and that $\int_{-\infty}^{\infty} \operatorname{div} F\left(X^{0}(t)\right) d t=0$, where F is the RHS of (2) and X^{0} is the corresponding homoclinic solution.
(b) Prove that for $\alpha=\beta=0$ and any $\gamma<0$ the system (2) still has the same neutral saddle homoclinic orbit Γ_{0} but now it is stable (from inside), since $\int_{-\infty}^{\infty} \operatorname{div} F\left(X^{0}(t)\right) d t<0$.
(c) Prove that for $\beta=0, \gamma<0$, and any $\alpha \neq 0$ the system (2) has the same saddle homoclinic orbit Γ_{0} but with $\sigma \neq 0$. Use pplane9 to illustrate this for $\beta=0, \gamma=-1$, and $\alpha= \pm 0.3$. Which bifurcations can be expected near these values of α under the variation of β ?
(d) Use pplane9 to produce all representative phase portraits of (2) near the codim 2 bifurcation point $\alpha=\beta=0$ for $\gamma=-1$. Hint: The most interesting phase portrait (with two cycles) can be seen, for example, at $(\alpha, \beta)=(0.3,0.15)$.
(e) For $\gamma=-1$, find by simulations the values $\beta_{\text {LPC }}$ corresponding to the fold bifurcation (collision) of cycles for fixed $\alpha=0.3,0.2$, and 0.1 . Sketch the bifurcation diagram of the system (2) in the parameter region $(\alpha, \beta) \in[-0.3,0.3] \times[-0.2,0.2]$.

Homework

Hand-in is exercise 2.

