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1. SOLUTIONS AND ORBITS

Newton’s Second Law: mẍ = F(x, ẋ) ⇒

{

ẋ = y,

ẏ = 1
m

F(x, y)

General planar system:
{

ẋ = P(x, y),
ẏ = Q(x, y)

or Ẋ = f(X), X ∈ R
2,

where

X =

(

x

y

)

, f(X) =

(

P(x, y)
Q(x, y)

)

.

Theorem 1 If f is smooth than for any inital point

(

x0
y0

)

there exists

a unique locally defined solution t 7→

(

x(t)
y(t)

)

such that x(0) = x0 and

y(0) = y0.



Definition 1 Let I be the maximal definition interval of a solution t 7→

X(t), t ∈ I. The oriented by the advance of time image X(I) ⊂ R2 is

called the orbit.

X
f(X)

Vector field: X 7→ f(X)

f(X) 6= 0 is tangent to the orbit through X

⇒ orbits do not cross.

Definition 2 Phase portrait of a planar system is the collection of all

its orbits in R2.

We draw only key orbits, which determine the topology of the phase

portrait.



Types of orbits:

1. Equilibria: X(t) ≡ X0 so that f(X0) = 0.

2. Periodic orbits (cycles): X(t) 6≡ X0, X(t + T) = X(t), t ∈ R

The minimal T > 0 is called the period of the cycle.

3. Connecting orbits: lim
t→±∞

X(t) = X± with f(X±) = 0.

If X− = X+ the connecting orbit is called homoclinic

If X− 6= X+ the connecting orbit is called heteroclinic.

4. All other orbits



Theorem 2 (Poincaré-Bendixson)

A bounded orbit of a smooth system

Ẋ = f(X), X ∈ R
2,

tends to one of the following sets in the phase plane:

(i) an equilibrium point;

(ii) a periodic orbit;

(iii) a union of equilibria and their connecting orbits.



2. EQUILIBRIA: Null-isoclines

f(X) = 0 ⇔

{

P(x, y) = 0,

Q(x, y) = 0.

x0

Q(x, y) = 0

P (x, y) = 0

∇P ∇Q

y0

∇P =

(

Px

Py

)

and ∇Q =

(

Qx

Qy

)

are orthogonal to P = 0 and Q = 0, resp.

Jacobian matrix of the equilibrium X0:

A = fX(X0) =

(

Px Py

Qx Qy

)∣

∣

∣

∣

∣

x=x0,y=y0

If detA 6= 0 ⇒ the null-isoclines intersect transversally at X0.

If detA = 0 ⇒ the null-isoclines are tangent at X0.



Eigenvalues of the equilibrium X0 are the eigenvalues of A, i.e. the

solutions of

λ2 − σλ + ∆ = 0,

where

σ = λ1 + λ2 = SpA = Px(x0, y0) + Qy(x0, y0),

∆ = λ1λ2 = detA = Px(x0, y0)Qy(x0, y0) − Py(x0, y0)Qx(x0, y0).

λ1,2 =
σ

2
±

√

σ2

4
− ∆

Definition 3 An equilibrium X0 is hyperbolic if ℜ(λ) 6= 0.

Equilibrium X0 with λ1 = 0 (i.e. detA = 0) is called multiple.

Equilibrium X0 with λ1 + λ2 = 0 (i.e. Sp A = 0) is called neutral.



Phase portraits of planar linear systems Ẏ = AY

(0, 2)

(1, 1)

Eigenvalues Phase portrait

node

focus

saddle

node

Stability

stable

unstable

unstable

focus

(2, 0)

(nu, ns)



Definition 4 Two systems are called topologically equivalent if their

phase portraits are homeomorphic, i.e. there is a continuous invertible

transformation that maps orbits of one system onto orbits of the other,

preserving their orientation.

Theorem 3 (Grobman-Hartman) Consider a smooth nonlinear sys-

tem

Ẋ = AX + F(X), F = O(‖X‖2) ≡ O(2),

and its linearization

Ẏ = AY.

If ℜ(λ) 6= 0 for all eigenvalues of A, then these systems are locally

topologically equivalent near the origin.

Warning: A stable/unstable node is locally topologically equivalent to

a stable/unstable focus.



Trivial topological equivalences

1. Orbital equivalence:

Ẋ = f(X) ∼ Ẏ = g(Y )f(Y )

where g : R2 → R is smooth positive function; Y = h(X) = X

preserves orbits.

2. Smooth equivalence:

Ẋ = f(X) ∼ Ẏ = hX(h−1(Y ))f(h−1(Y )),

where h : R2 → R2 is a smooth diffeomorphism; the substitution

Y = h(X) transforms solutions onto solutions:

Ẏ = hX(X)Ẋ = hX(X)f(X) where X = h−1(Y ).

3. Smooth orbital equivalence: 1. + 2.



Simplest critical cases
• λ1 = 0, λ2 6= 0

By a linear diffeomorphism, Ẋ = f(X) can be transformed into
{

ẋ = ax2 + bxy + cy2 + O(3),
ẏ = λ2y + O(2).

If a 6= 0 then Ẋ = f(X) is locally topologically equivalent near the

origin to
{

ẋ = ax2,

ẏ = λ2y.

Saddle-node (a > 0):

λ2 < 0 λ2 > 0



• λ1,2 = ±iω, ω > 0

By a linear diffeomorphism, Ẋ = f(X) can be transformed into
{

ẋ = −ωy + R(x, y), R = O(2),
ẏ = ωx + S(x, y), S = O(2).

Introduce z = x + iy ∈ C. Then this system becomes

ż = iωz + g(z, z̄),

where

g(z, z̄) = R

(

z + z̄

2
,
z − z̄

2i

)

+ iS

(

z + z̄

2
,
z − z̄

2i

)

.

Write its Taylor expansion in z, z̄:

g(z, z̄) =
1

2
g20z2 + g11zz̄ +

1

2
g02z̄2 +

1

2
g21z2z̄ + . . .

Definition 5 The first Lyapunov coefficient is

l1 =
1

2ω2
ℜ(ig20g11 + ωg21).



If l1 6= 0 then Ẋ = f(X) is locally topologically equivalent near the

origin to
{

ρ̇ = l1ρ3,

ϕ̇ = 1,

where (ρ, ϕ) are polar coordinates: z = ρeiϕ.

Weak focus:

unstablestable

l1 < 0 l1 > 0



3. PERIODIC ORBITS AND LIMIT CYCLES

ξ

P (ξ)

X0(t)

0

Poincaré map:

ξ 7→ P(ξ) = µξ + O(2),

where the multiplier

µ = exp

(

∫ T

0
(div f)(X0(t)) dt

)

> 0

Definition 6 A cycle of the planar system is hyperbolic if µ 6= 1.

The cycle is stable if µ < 1 and is unstable if µ > 1.

µ < 1

µ > 1

ξ

ξ′
ξ′ = ξ



Theorem 4 (Bendixson-Dulac)

If (div f)(X) > 0 (< 0) in a disc D ∈ R2, then Ẋ = f(X) has no periodic

orbits in D.

Proof: Suppose, there is a cycle C ⊂ D and let Ω be a bounded domain

with ∂Ω = C.

C

f =

(

P

Q

) f⊥ =

(

−Q

P

)

dX

X
∮

C
Pdy − Qdx =

∮

C
〈f⊥, dX〉 ≡ 0

but
∮

C
Pdy − Qdx =

∫∫

Ω
(div f)dX > 0

(or < 0), contradiction. �



Implications:

1. If div(gf) > 0 (< 0) in a disc D ⊂ R2 for a smooth positive function

g : R2 → R, then Ẋ = f(X) has no periodic orbits in D.

2. If div(gf) > 0 (< 0) is an annulus A ⊂ R2 for a smooth positive

function g : R2 → R, then Ẋ = f(X) has at most one periodic orbit

in A.

3. If f(X) 6= 0 and div(gf) < 0 in a trapping annulus A ∈ R2 for a

smooth positive function g : R2 → R, then Ẋ = f(X) has a unique

stable periodic orbit in A.



Example:

Consider
{

ẋ = y ≡ P(x, y),

ẏ = ax + by + αx2 + βy2 ≡ Q(x, y).

Define

g(x, y) = e−2βx > 0

in R2. Then

∂

∂x
(gP) +

∂

∂y
(gP) =

∂

∂x
(e−2βxy) +

∂

∂y
(e−2βx(ax + by + αx2 + βy2))

= −2βe−2βxy + be−2βx + 2βe−2βxy

= be−2βx 6= 0

in R2 if b 6= 0. ⇒ no periodic orbits.



Reversible systems

Definition 7 A smooth system Ẋ = f(X) is called reversible if

f(JX) = −Jf(X)

for a matrix J such that J2 = E. The transformation X 7→ JX is called

an involution.

If there is an orbit segment without equilibria connecting two points in

the fixed subspace {Y : JY = Y } of the involution, there is a periodic

orbit of Ẋ = f(X). ⇒ Periodic orbits occur in continuos familes.

Example:
 
 

 
 

−3 −1 1 3
−10

−3

4

x

y

{

ẋ = y,

ẏ = x + xy − x3,

J

(

x

y

)

=

(

−x

y

)



Example: A prey-predator model


















ξ̇ = ξ −
ξη

(1 + αξ)(1 + βη)
≡ f1(ξ, η),

η̇ = −η +
ξη

(1 + αξ)(1 + βη)
≡ f2(ξ, η),

where α, β > 0 and x, y ≥ 0.

• There is a family of closed orbits for α = β if

0 < α = β <
1

4
.

since the system is reversible with involution

J : (ξ, η) 7→ (η, ξ).

• There are no closed orbits if α 6= β, since the choice

g(ξ, η) = ξaηb(1 + αξ)(1 + βη),

with appropriate a and b implies div(gf) = (α − β)ξg.



Planar Hamiltonian systems: H : R2 → R (smooth)
{

ẋ = Hy(x, y),
ẏ = −Hx(x, y).

⇒ Ḣ = Hxẋ + Hyẏ ≡ 0 ⇒ H(x(t), y(t)) = h

(1)

(2)

(3)

(1)
(2)

(3) (3)

h

U(x)
y

H(x, y) = h x

Potential system:

H(x, y) =
y2

2
+ U(x)

(reversible: y 7→ −y, t 7→ −t).

T =
dS

dh

∣

∣

∣

∣

h=H0

where

S(h) = 〈area inside
y2

2
+ U(x) = h〉

The Lotka-Volterra prey-predator model is orbitally equivalent to a

Hamiltonian system.



Dissipative perturbations of 2D Hamiltonian systems
{

ẋ = Hy(x, y) + εP(x, y),
ẏ = −Hx(x, y) + εQ(x, y),

F(x, y) =

(

P(x, y)
Q(x, y)

)

.
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X0

C0

Γ0

Ω0

Let X0(t) correspond to the T0-periodic

orbit C0 at ε = 0 and let

Ω0 = 〈domain bounded by C0〉.

Theorem 5 (Pontryagin-Melnikov) If

∫∫

Ω0

div F(X) dX = 0 but
∫ T0

0
div F(X0(t)) dt 6= 0

then there exists an annulus contaning C0 in which the system has a

unique periodic orbit Cε for all sufficiently small ε, such that Cε → C0

as ε → 0.



Example: Van der Pol equation ẍ + x = εẋ(1 − x2)
{

ẋ = y,

ẏ = −x + εy(1 − x2),

For ε = 0, H(x, y) = 1
2(x

2 + y2) and

X0(t) =

(

r sin t

r cos t

)

, C0 = {(x, y) : x2 + y2 = r2, r > 0}

with T0 = 2π.

F(x, y) =

(

P(x, y)
Q(x, y)

)

=

(

0

y(1 − x2)

)

.

Then
∫∫

C0

div F dxdy = −
∮

C0

Pdy−Qdx =

∫ 2π

0
r2 cos2 t(1−r2 sin2 t)dt =

π

4
r2(4−r2)

and
∫ T0

0
div F(X0(t)) dt =

∫ 2π

0
(1 − 4 sin2 t)dt = −2π

⇒ A cycle close to r = 2 exists for small ε 6= 0.



4. HOMOCLINIC ORBITS

Homoclinic orbits to saddles:

small bigΓ0
Γ0

X0

X0

Definition 8 The real number σ = λ1 + λ2 = (div f)(X0) is called the

saddle quantity of X0.

σ < 0 σ > 0

Γ0
Γ0

X0
X0



Singular map:

ξ

η

η̃
∆

y

x

1

0 1

Q

{

ẋ = λ1x

ẏ = λ2y

ξ = ∆(η) = η
−

λ1
λ2

Regular map:

η̃ = Q(ξ) = Aξ + O(2), A > 0.

Poincaré map:

η 7→ η̃ = Q(∆(η)) = Aη
−

λ1
λ2 + . . .

The homoclinic orbit is stable if σ < 0 and is unstable if σ > 0.



If σ = λ1 + λ2 = 0, then

if

∫ ∞

−∞
(div f)(X0(t)) dt < 0 the homoclinic orbit is stable;

if

∫ ∞

−∞
(div f)(X0(t)) dt > 0 the homoclinic orbit is unstable.

Homoclinic orbits to saddle-nodes:

codim 1 codim 2

X0 X0

Γ0
Γ0


