BIFURCATION PHENOMENA

Lecture 1: Qualitative theory of planar ODEs

Yuri A. Kuznetsov

August, 2010

Contents

1. Solutions and orbits.
2. Equilibria.
3. Periodic orbits and limit cycles.
4. Homoclinic orbits.

Literature

1. A.A. Andronov, E.A. Leontovich, I.I. Gordon, and A.G. Maier Qualitative Theory of Second-Order Dynamic Systems, Willey \& Sons, London, 1973
2. L.P. Shilnikov, A.L. Shilnikov, D.V. Turaev, and L.O. Chua Methods of Qualitative Theory in Nonlinear Dynamics, Part I, World Scientific, Singapore, 1998
3. F. Dumortier, J. Llibre, and J.C. Artés Qualitative Theory of Planar Differential Systems, Universitext, Springer-Verlag, Berlin, 2006

1. SOLUTIONS AND ORBITS

Newton's Second Law: $m \ddot{x}=F(x, \dot{x}) \Rightarrow\left\{\begin{array}{l}\dot{x}=y, \\ \dot{y}=\frac{1}{m} F(x, y)\end{array}\right.$
General planar system:

$$
\left\{\begin{array}{l}
\dot{x}=P(x, y), \quad \text { or } \quad \dot{X}=f(X), \quad X \in \mathbb{R}^{2}, \\
\dot{y}=Q(x, y)
\end{array}\right.
$$

where

$$
X=\binom{x}{y}, \quad f(X)=\binom{P(x, y)}{Q(x, y)} .
$$

Theorem 1 If f is smooth than for any inital point $\binom{x_{0}}{y_{0}}$ there exists a unique locally defined solution $t \mapsto\binom{x(t)}{y(t)}$ such that $x(0)=x_{0}$ and $y(0)=y_{0}$.

Definition 1 Let I be the maximal definition interval of a solution $t \mapsto$ $X(t), t \in I$. The oriented by the advance of time image $X(I) \subset \mathbb{R}^{2}$ is called the orbit.

Vector field: $X \mapsto f(X)$
$f(X) \neq 0$ is tangent to the orbit through X \Rightarrow orbits do not cross.

Definition 2 Phase portrait of a planar system is the collection of all its orbits in \mathbb{R}^{2}.

We draw only key orbits, which determine the topology of the phase portrait.

Types of orbits:

1. Equilibria: $\quad X(t) \equiv X_{0}$ so that $f\left(X_{0}\right)=0$.
2. Periodic orbits (cycles): $X(t) \not \equiv X_{0}, X(t+T)=X(t), t \in \mathbb{R}$ The minimal $T>0$ is called the period of the cycle.
3. Connecting orbits: $\lim _{t \rightarrow \pm \infty} X(t)=X_{ \pm}$with $f\left(X_{ \pm}\right)=0$. If $X_{-}=X_{+}$the connecting orbit is called homoclinic If $X_{-} \neq X_{+}$the connecting orbit is called heteroclinic.
4. All other orbits

Theorem 2 (Poincaré-Bendixson)

A bounded orbit of a smooth system

$$
\dot{X}=f(X), \quad X \in \mathbb{R}^{2},
$$

tends to one of the following sets in the phase plane:
(i) an equilibrium point;
(ii) a periodic orbit;
(iii) a union of equilibria and their connecting orbits.

2. EQUILIBRIA: Null-isoclines

$$
f(X)=0 \Leftrightarrow\left\{\begin{array}{l}
P(x, y)=0 \\
Q(x, y)=0
\end{array}\right.
$$

$\nabla P=\binom{P_{x}}{P_{y}}$ and $\nabla Q=\binom{Q_{x}}{Q_{y}}$
are orthogonal to $P=0$ and $Q=0$, resp.

If $\operatorname{det} A \neq 0 \Rightarrow$ the null-isoclines intersect transversally at X_{0}. If $\operatorname{det} A=0 \Rightarrow$ the null-isoclines are tangent at X_{0}.

Eigenvalues of the equilibrium X_{0} are the eigenvalues of A, i.e. the solutions of

$$
\lambda^{2}-\sigma \lambda+\Delta=0
$$

where

$$
\begin{gathered}
\sigma=\lambda_{1}+\lambda_{2}=\operatorname{Sp} A=P_{x}\left(x_{0}, y_{0}\right)+Q_{y}\left(x_{0}, y_{0}\right) \\
\Delta=\lambda_{1} \lambda_{2}=\operatorname{det} A=P_{x}\left(x_{0}, y_{0}\right) Q_{y}\left(x_{0}, y_{0}\right)-P_{y}\left(x_{0}, y_{0}\right) Q_{x}\left(x_{0}, y_{0}\right) \\
\lambda_{1,2}=\frac{\sigma}{2} \pm \sqrt{\frac{\sigma^{2}}{4}-\Delta}
\end{gathered}
$$

Definition 3 An equilibrium X_{0} is hyperbolic if $\Re(\lambda) \neq 0$.

Equilibrium X_{0} with $\lambda_{1}=0$ (i.e. $\operatorname{det} A=0$) is called multiple.
Equilibrium X_{0} with $\lambda_{1}+\lambda_{2}=0$ (i.e. Sp $A=0$) is called neutral.

Phase portraits of planar linear systems $\dot{Y}=A Y$

$\left(n_{u}, n_{s}\right)$	Eigenvalues	Phase portrait	Stability
$(0,2)$		 node focus	stable
$(1,1)$	$\bullet-$	saddle	unstable
$(2,0)$		node focus	unstable

Definition 4 Two systems are called topologically equivalent if their phase portraits are homeomorphic, i.e. there is a continuous invertible transformation that maps orbits of one system onto orbits of the other, preserving their orientation.

Theorem 3 (Grobman-Hartman) Consider a smooth nonlinear system

$$
\dot{X}=A X+F(X), \quad F=\mathcal{O}\left(\|X\|^{2}\right) \equiv O(2)
$$

and its linearization

$$
\dot{Y}=A Y
$$

If $\Re(\lambda) \neq 0$ for all eigenvalues of A, then these systems are locally topologically equivalent near the origin.

Warning: A stable/unstable node is locally topologically equivalent to a stable/unstable focus.

Trivial topological equivalences

1. Orbital equivalence:

$$
\dot{X}=f(X) \sim \dot{Y}=g(Y) f(Y)
$$

where $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is smooth positive function; $Y=h(X)=X$ preserves orbits.
2. Smooth equivalence:

$$
\dot{X}=f(X) \sim \dot{Y}=h_{X}\left(h^{-1}(Y)\right) f\left(h^{-1}(Y)\right)
$$

where $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a smooth diffeomorphism; the substitution $Y=h(X)$ transforms solutions onto solutions:

$$
\dot{Y}=h_{X}(X) \dot{X}=h_{X}(X) f(X) \quad \text { where } \quad X=h^{-1}(Y)
$$

3. Smooth orbital equivalence: $1 .+2$.

Simplest critical cases

- $\lambda_{1}=0, \lambda_{2} \neq 0$

By a linear diffeomorphism, $\dot{X}=f(X)$ can be transformed into

$$
\left\{\begin{array}{l}
\dot{x}=a x^{2}+b x y+c y^{2}+O(3) \\
\dot{y}=\lambda_{2} y+O(2) .
\end{array}\right.
$$

If $a \neq 0$ then $\dot{X}=f(X)$ is locally topologically equivalent near the origin to

$$
\left\{\begin{array}{l}
\dot{x}=a x^{2}, \\
\dot{y}=\lambda_{2} y .
\end{array}\right.
$$

Saddle-node ($a>0$):

$\lambda_{2}>0$

- $\lambda_{1,2}= \pm i \omega, \omega>0$

By a linear diffeomorphism, $\dot{X}=f(X)$ can be transformed into

$$
\left\{\begin{array}{l}
\dot{x}=-\omega y+R(x, y), \quad R=O(2) \\
\dot{y}=\omega x+S(x, y), \quad S=O(2)
\end{array}\right.
$$

Introduce $z=x+i y \in \mathbb{C}$. Then this system becomes

$$
\dot{z}=i \omega z+g(z, \bar{z})
$$

where

$$
g(z, \bar{z})=R\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right)+i S\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right)
$$

Write its Taylor expansion in z, \bar{z} :

$$
g(z, \bar{z})=\frac{1}{2} g_{20} z^{2}+g_{11} z \bar{z}+\frac{1}{2} g_{02} \bar{z}^{2}+\frac{1}{2} g_{21} z^{2} \bar{z}+\ldots
$$

Definition 5 The first Lyapunov coefficient is

$$
l_{1}=\frac{1}{2 \omega^{2}} \Re\left(i g_{20} g_{11}+\omega g_{21}\right)
$$

If $l_{1} \neq 0$ then $\dot{X}=f(X)$ is locally topologically equivalent near the origin to

$$
\left\{\begin{array}{l}
\dot{\rho}=l_{1} \rho^{3}, \\
\dot{\varphi}=1,
\end{array}\right.
$$

where (ρ, φ) are polar coordinates: $z=\rho e^{i \varphi}$.

Weak focus:

$l_{1}<0$
stable

$l_{1}>0$
unstable

3. PERIODIC ORBITS AND LIMIT CYCLES

Poincaré map:

$$
\xi \mapsto P(\xi)=\mu \xi+O(2),
$$

where the multiplier

$$
\mu=\exp \left(\int_{0}^{T}(\operatorname{div} f)\left(X^{0}(t)\right) d t\right)>0
$$

Definition 6 A cycle of the planar system is hyperbolic if $\mu \neq 1$.

The cycle is stable if $\mu<1$ and is unstable if $\mu>1$.

Theorem 4 (Bendixson-Dulac)

If $(\operatorname{div} f)(X)>0(<0)$ in a disc $D \in \mathbb{R}^{2}$, then $\dot{X}=f(X)$ has no periodic orbits in D.

Proof: Suppose, there is a cycle $C \subset D$ and let Ω be a bounded domain with $\partial \Omega=C$.
but

$$
\oint_{C} P d y-Q d x=\iint_{\Omega}(\operatorname{div} f) d X>0
$$

(or <0), contradiction.

Implications:

1. If $\operatorname{div}(g f)>0(<0)$ in a disc $D \subset \mathbb{R}^{2}$ for a smooth positive function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$, then $\dot{X}=f(X)$ has no periodic orbits in D.
2. If $\operatorname{div}(g f)>0(<0)$ is an annulus $A \subset \mathbb{R}^{2}$ for a smooth positive function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$, then $\dot{X}=f(X)$ has at most one periodic orbit in A.
3. If $f(X) \neq 0$ and $\operatorname{div}(g f)<0$ in a trapping annulus $A \in \mathbb{R}^{2}$ for a smooth positive function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$, then $\dot{X}=f(X)$ has a unique stable periodic orbit in A.

Example:

Consider

$$
\left\{\begin{array}{l}
\dot{x}=y \equiv P(x, y) \\
\dot{y}=a x+b y+\alpha x^{2}+\beta y^{2} \equiv Q(x, y) .
\end{array}\right.
$$

Define

$$
g(x, y)=e^{-2 \beta x}>0
$$

in \mathbb{R}^{2}. Then

$$
\begin{aligned}
\frac{\partial}{\partial x}(g P)+\frac{\partial}{\partial y}(g P) & =\frac{\partial}{\partial x}\left(e^{-2 \beta x} y\right)+\frac{\partial}{\partial y}\left(e^{-2 \beta x}\left(a x+b y+\alpha x^{2}+\beta y^{2}\right)\right) \\
& =-2 \beta e^{-2 \beta x} y+b e^{-2 \beta x}+2 \beta e^{-2 \beta x} y \\
& =b e^{-2 \beta x} \neq 0
\end{aligned}
$$

in \mathbb{R}^{2} if $b \neq 0 . \quad \Rightarrow \quad$ no periodic orbits.

Reversible systems

Definition 7 A smooth system $\dot{X}=f(X)$ is called reversible if

$$
f(J X)=-J f(X)
$$

for a matrix J such that $J^{2}=E$. The transformation $X \mapsto J X$ is called an involution.

If there is an orbit segment without equilibria connecting two points in the fixed subspace $\{Y: J Y=Y\}$ of the involution, there is a periodic orbit of $\dot{X}=f(X) . \Rightarrow$ Periodic orbits occur in continuos familes.

Example:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\dot{x}=y, \\
\dot{y}=x+x y-x^{3},
\end{array}\right. \\
& J\binom{x}{y}=\binom{-x}{y}
\end{aligned}
$$

Example: A prey-predator model

$$
\left\{\begin{aligned}
\dot{\xi} & =\xi-\frac{\xi \eta}{(1+\alpha \xi)(1+\beta \eta)} \equiv f_{1}(\xi, \eta) \\
\dot{\eta} & =-\eta+\frac{\xi \eta}{(1+\alpha \xi)(1+\beta \eta)} \equiv f_{2}(\xi, \eta)
\end{aligned}\right.
$$

where $\alpha, \beta>0$ and $x, y \geq 0$.

- There is a family of closed orbits for $\alpha=\beta$ if

$$
0<\alpha=\beta<\frac{1}{4} .
$$

since the system is reversible with involution $J:(\xi, \eta) \mapsto(\eta, \xi)$.

- There are no closed orbits if $\alpha \neq \beta$, since the choice

$$
g(\xi, \eta)=\xi^{a} \eta^{b}(1+\alpha \xi)(1+\beta \eta)
$$

with appropriate a and b implies $\operatorname{div}(g f)=(\alpha-\beta) \xi g$.

Planar Hamiltonian systems: $H: \mathbb{R}^{2} \rightarrow \mathbb{R}$ (smooth)

$$
\left\{\begin{array}{l}
\dot{x}=H_{y}(x, y), \\
\dot{y}=-H_{x}(x, y) .
\end{array} \quad \Rightarrow \quad \dot{H}=H_{x} \dot{x}+H_{y} \dot{y} \equiv 0 \quad \Rightarrow \quad H(x(t), y(t))=h\right.
$$

Potential system:

$$
H(x, y)=\frac{y^{2}}{2}+U(x)
$$

(reversible: $y \mapsto-y, t \mapsto-t$).

$$
T=\left.\frac{d S}{d h}\right|_{h=H_{0}}
$$

where

$$
S(h)=\left\langle\text { area inside } \frac{y^{2}}{2}+U(x)=h\right\rangle
$$

The Lotka-Volterra prey-predator model is orbitally equivalent to a Hamiltonian system.

Dissipative perturbations of 2D Hamiltonian systems

$$
\left\{\begin{array}{l}
\dot{x}=H_{y}(x, y)+\varepsilon P(x, y), \\
\dot{y}=-H_{x}(x, y)+\varepsilon Q(x, y),
\end{array} \quad F(x, y)=\binom{P(x, y)}{Q(x, y)} .\right.
$$

Let $X^{0}(t)$ correspond to the T_{0}-periodic orbit C_{0} at $\varepsilon=0$ and let $\Omega_{0}=\left\langle\right.$ domain bounded by $\left.C_{0}\right\rangle$.

Theorem 5 (Pontryagin-Melnikov) If

$$
\iint_{\Omega_{0}} \operatorname{div} F(X) d X=0 \text { but } \int_{0}^{T_{0}} \operatorname{div} F\left(X^{0}(t)\right) d t \neq 0
$$

then there exists an annulus contaning C_{0} in which the system has a unique periodic orbit C_{ε} for all sufficiently small ε, such that $C_{\varepsilon} \rightarrow C_{0}$ as $\varepsilon \rightarrow 0$.

Example: Van der Pol equation $\ddot{x}+x=\varepsilon \dot{x}\left(1-x^{2}\right)$

$$
\left\{\begin{array}{l}
\dot{x}=y \\
\dot{y}=-x+\varepsilon y\left(1-x^{2}\right)
\end{array}\right.
$$

For $\varepsilon=0, H(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right)$ and

$$
X^{0}(t)=\binom{r \sin t}{r \cos t}, \quad C_{0}=\left\{(x, y): x^{2}+y^{2}=r^{2}, r>0\right\}
$$

with $T_{0}=2 \pi$.

$$
F(x, y)=\binom{P(x, y)}{Q(x, y)}=\binom{0}{y\left(1-x^{2}\right)}
$$

Then
$\iint_{C_{0}} \operatorname{div} F d x d y=-\oint_{C_{0}} P d y-Q d x=\int_{0}^{2 \pi} r^{2} \cos ^{2} t\left(1-r^{2} \sin ^{2} t\right) d t=\frac{\pi}{4} r^{2}\left(4-r^{2}\right)$ and

$$
\int_{0}^{T_{0}} \operatorname{div} F\left(X^{0}(t)\right) d t=\int_{0}^{2 \pi}\left(1-4 \sin ^{2} t\right) d t=-2 \pi
$$

\Rightarrow A cycle close to $r=2$ exists for small $\varepsilon \neq 0$.

4. HOMOCLINIC ORBITS

Homoclinic orbits to saddles:

Definition 8 The real number $\sigma=\lambda_{1}+\lambda_{2}=(\operatorname{div} f)\left(X_{0}\right)$ is called the saddle quantity of X_{0}.

Singular map:

$$
\begin{gathered}
\left\{\begin{array}{l}
\dot{x}=\lambda_{1} x \\
\dot{y}=\lambda_{2} y
\end{array}\right. \\
\xi=\Delta(\eta)=\eta^{-\frac{\lambda_{1}}{\lambda_{2}}}
\end{gathered}
$$

Regular map:

$$
\tilde{\eta}=Q(\xi)=A \xi+O(2), \quad A>0 .
$$

Poincaré map:

$$
\eta \mapsto \tilde{\eta}=Q(\Delta(\eta))=A \eta^{-\frac{\lambda_{1}}{\lambda_{2}}}+\ldots
$$

The homoclinic orbit is stable if $\sigma<0$ and is unstable if $\sigma>0$.

If $\sigma=\lambda_{1}+\lambda_{2}=0$, then
if $\int_{-\infty}^{\infty}(\operatorname{div} f)\left(X^{0}(t)\right) d t<0$ the homoclinic orbit is stable;
if $\int_{-\infty}^{\infty}(\operatorname{div} f)\left(X^{0}(t)\right) d t>0$ the homoclinic orbit is unstable.
Homoclinic orbits to saddle-nodes:

codim 1

codim 2

