Topic (elapsed time)
Lecture 1: Planar ODEs

• Solutions of planar autonomous ODE systems (22:25), Orbits (28:20) and phase portraits (32:32).
• Equilibria and cycles. Homo- and heteroclinic orbits to equilibria (36:50).
• Equivalence of planar ODEs (59:00).
• Classification of generic equilibria (1:07:40).
• Poincaré return maps and classification of cycles (1:38:16).
• Types of homoclinic orbits (1:50:00).
Lecture 2: Planar ODEs

• Remarks on topological equivalence (3:25). Orbitally equivalent systems (10:00). Topologically conjugate systems; diffeomorphic systems and substitution of variables (14:50) .
• Classification of some non-hyperbolic equilibria (33:25) and cycles (1:07:20).
• Poincare- Bendixson Theorem (1:14:50). Dulac criteria (1:23:25).
• Planar Hamiltonian systems (1:30:40) and their dissipative perturbations (1:36:23).
Lecture 3: One-parameter equilibrium bifurcations in planar ODEs

• Bifurcation points (01:20). Bifurcations sets and diagrams (03:48).
• Classification of bifurcations (09:00). Codimension of a bifurcation (14:05).
• Hyperbolic equilibria do not bifurcate (23:00). Simplest equilibrium bifurcations (29:47).
• Fold/saddle- node (40:00) and Andronov-Hopf (59:28) bifurcations of equilibria and their normal forms.
• Efficient computation of complex equations (1:22:15).
• Derivation of the normal form for Andronov-Hopf bifurcation (1:36:19).
Lecture 4: One-parameter global bifurcations in planar ODEs

• Fold bifurcation of cycles (3:30) and the normal form for its Poincaré return map (30:00).
• Saddle homoclinic bifurcation (57:20).
• Bifurcation of a homoclninc orbit to a saddle-node (1:37:30).
• Saddle heteroclinic bifurcation (1:44:45).
• Structural stability of planar ODEs (1:46:11).
Lecture 5: Two-parameter bifurcations in planar ODEs

• Curves of fold and Andronov-Hopf bifurcations in the parameter plane (03:12).
• List of codim 2 equilibrium bifurcations in generic systems (19:50).
• Cusp (30:28), Bogdanov-Takens (1:04:13), and Bautin (1:29:50) bifurcations, and their topological normal forms.
• Remarks on global codim 2 bifurcations: Triple cycle (1:48:54), neutral saddle homoclinic orbit (1:55:31), noncentral homoclininc orbit to a saddle-node (1:57:50), saddle heteroclinic cycles (1:59:47), "figure-of-eight" (2:04:42), and saddle to saddle-node connection (2:05:00).
Lecture 6: One-parameter bifurcations of equilibria in n-dimensional ODEs

• Solutions, orbits, equilibria, cycles, connecting orbits, and chaotic invariant sets of n-dimensional ODEs (02:42).
• Phase portraits and topological equivalence (13:30). Bifurcations of n- dimensional ODEs (14:38).
• Hyperbolic equilibria (22:40) and Grobman-Hartman Theorem (24:25). Stable and unstable manifolds of hyperbolic equilibria (27:15).
• Center- manifold reduction for bifurcations of equilibria (38:25).
• Codim 1 local bifurcations in n-dimensional systems: Fold (1:17:37) and Andronov-Hopf (1:26:10).
• Practical computation of the critical normal form coefficients for fold (1:47:20) and Andronov- Hopf (1:58:27) bifurcations.
Lecture 7: One-parameter bifurcations of cycles in n-dimensional ODEs

• Periodic orbits in n-dimensional ODEs: Poincaré maps (2:19), multipliers (13:00), hyperbolic cycles (30:00) and Grobman- Hartman Theorem for maps (32:20).
• Center- manifold reduction for bifurcations of limit cycles (59:00). Simplest critical cases (1:16:24).
• Codim 1 bifurcations of cycles in n-dimensional systems and normal forms for their Poincaré return maps: fold bifurcation (1:23:10), period- doubling (1:36:50), and Neimark-Sacker bifurcation (1:55:20 + the first 9 minutes of Lecture 8)
Lecture 8: Some global one- parameter bifurcations in n-dimensional ODEs
• Homoclinic orbits in n-dimensional ODEs (09:20). Leading eigenvalues (18:23). Stable and unstable invariant sets (24:30). Homoclinic orbits to hyperbolic equilibria in 3D, simple and twisted saddle cases (31:48).
• Homoclinic center-manifold theorem (37:36).
• Codim 1bifurcations of homoclinic orbits to hyperbolic equilibria (38:06). Shilnikov's theorems: Saddle (1:06:03), saddle-focus (1:28:38), and focus- focus (1:36:10) cases.
• Bifurcations of homoclinic orbits to the saddle-node (1:38:36) and saddle-saddle (1:40:10) nonhyperbolic equilibria.